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Posterior Bayes Factors

By MURRAY AITKIN{
Tel Aviv University, Israel

[Read before The Royal Statistical Society at a meeting organized by the Research Section
on Wednesday, May 9th, 1990, Professor D. V. Hinkley in the Chair]

SUMMARY

A general procedure for computing Bayes factors for the comparison of arbitrary models
is described, based on the use of the posterior mean of the likelihood under each model
rather than the usual prior mean. The use of the posterior mean has several advantages,
including reduced sensitivity to variations in the prior and the avoidance of the Lindley
paradox in testing point null hypotheses. The frequency properties of the new procedure
are evaluated in standard examples, and a non-standard example is analysed to show the
considerable differences possible between prior and posterior means of the likelihood. Several
different justifications of the procedure are given, and a non-Bayesian direct likelihood
interpretation is described.

Keywords: AKAIKE’S INFORMATION CRITERION; BAYES FACTORS; DIRECT LIKELIHOOD;
LIKELIHOOD RATIO TEST; MODEL COMPARISONS; PENALIZED LIKELIHOOD

1. BAYES FACTORS

We are concerned in this paper with general methods for comparing different statistical
models for the same data. We consider for simplicity the comparison of just two
models M, and M, for data y. Under model M;, y has density or mass function
fi(y|0;) depending on a parameter 0, of dlmensmn p;. Given the data y, the
likelihood function under M; is L;(6)). What evidence do the data provide about the
two models?

1.1. Neyman-Pearson Approach

In the Neyman-Pearson framework, if the models are completely general then there
is no optimal test for the hypothesis H,: y has model M, against the alternative
H,: y has model M,, unless 8, and @, are completely specified. Optimal tests exist
under various restricted classes of models, the most commonly useful being when
M, is a parametric submodel of M,. In the general case the likelihood ratio test is
commonly used: H, is rejected in favour of H, when L, (0,)/ L2(02) is less than some
constant ¢, chosen so that the test has level o under H,.

The formulation of the likelihood ratio test requires an unambiguous specification
of ‘null’ and ‘alternative’ models; this is clear in nested families of models but may
be quite unclear in general models. The evaluation of ¢ may involve intractable
sampling distribution problems and simulation will generally be required. The size
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of the test will depend in general on #,, complicating further the evaluation
of c.

The use of fixed conventional test sizes « like 0.05 or 0.01 leads to unreasonable
tests in completely specified models. Let M; be y ~ N(u;, 0%) with ¢2=1 known and
=0, u,=1. A sample of n=25 gives y=0.4. If M, is taken as the null hypothesis
and M, the alternative, the uniformly most powerful (UMP) test of size «=10.05
rejects M, in favour of M, when z=n'2(y —u,)/0> 1.64, i.e. when y > 0.328; the
P-value of the observed 7 is 0.023. But the likelihood ratio L(u,)/L(p,) is 12.18;
model M, is much more strongly supported by the data than M,, yet is rejected in
favour of M,. If M, is to be rejected in favour of M, only when the likelihood ratio
is less than c¢, then the critical value of z is n'/26/2 —logc/n'/26, which tends to
infinity as n—oo, where 6=(u,—p;)/0. Thus increasing sample size implies
decreasing test size for a reasonable test. This simply restates the obvious fact that
with increasing sample size both type I and type II error rates should tend to zero
against a fixed alternative.

The same conclusion applies to other model comparisons problems in which the
likelihood ratio test is UMP in a restricted class of models. For example, Dumonceaux
et al. (1973) give (in their Table 3) percentage points of the likelihood ratio test of
a log-normal against a two-parameter exponential distribution, for which the likelihood
ratio test is UMP invariant. The tabulated points imply the rejection of the hypothesis
with larger maximized likelihood for certain sample and test sizes.

It might be thought that this difficulty occurs only with simple alternative hypotheses,
which are perhaps unrealistic, and that the role of the alternative is simply to indicate
the direction of failure of the null hypothesis, rather than to be taken literally as an
alternative scientific model (Cox and Hinkley (1974), pp. 88, 95). The real alternative,
that is, is composite and unspecified. But for tests of simple hypotheses against
composite alternatives, the use of conventional test sizes also causes difficulties. If
in the example above pu, is unspecified in M,, then the UMP unbiased test of size
a=0.05 rejects M, in favour of M, when |z| > 1.96, i.e. when |y| > 0.392; the P-
value of the observed 7 is 0.046. But the maximized likelihood ratio L(u,)/ L (ji,)
is exp(—1z2)=0.146, which is not very small, and it clearly overstates
the evidence against M, since the likelihood is maximized over M,. For the
maximized likelihood ratio to be less than c, the standardized mean | z| has to exceed
(—2logc)12, which is 2.45 for ¢=1/20, corresponding to a test size of 0.014.

These and other difficulties with the interpretation of P-values have been intensively
discussed in the Bayes framework by Berger and Sellke (1987), who give extensive
references, and by Casella and Berger (1987).

1.2. Bayes Approach
In the Bayes framework we require the additional specification of prior densities
m;(8,) and prior model probabilities 7;. Then the posterior odds on model 1 is

a(M,|y) _L}m
w(M,|y) L3,

where B=LB/L% is the Bayes factor and
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- j L,(0) ,(6;) d6,

is the marginal probability of the data y, or the ‘prior mean’ of the likelihood L;.

The Bayes factor provides, in the Bayes framework, the sample ‘weight of evidence’
for model 1 over model 2. This weight of evidence depends on the priors m;(@,) and
can be very sensitive to variations in the priors (see Section 5 for a simple example).
If the prior 7;(#;) accurately represents one’s subjective belief about 8 i, then such
sensitivity may not be a matter of concern, but many Bayesians and non-Bayesians
feel more comfortable with Bayes conclusions which are insensitive to prior variations
than with those which are very sensitive to such variations.

In the absence of a well-formulated subjective belief about ; defining the prior
7;(8,), one has to specify this prior in some reasonable way. The use of diffuse,
vague, or Jeffreys priors as representations of prior ignorance is well established,
but in the case of unbounded parameter spaces these can lead to the well-known Lindley
paradox (Lindley, 1957) for a point null hypothesis.

1.3. Lindley Paradox
Let M, be y ~ N(u,, 02) with p, specified, and M, be y ~ N(u,, 0?) with g,
unspecified, o2 being known. Given vague prior information about p,, we specify
a proper uniform prior for u,: w(u,)=1/2C on (- C, C), for C large. Then the
Bayes factor for M, to M, from a sample of n observations is

BZZCEf ¢(Z) /icp(nl/}z-}-_C) ) (nl/Z'E)} R
g g

g

where the denominator rapidly approaches unity as C increases. The value of B can
be made arbitrarily large as C— o or as n— oo, whatever the fixed value of z. This
is a consequence of the prior assigning increasing weight as C— o or n— o to values
of u, of negligible likelihood. The prior does not have to be uniform; any fixed
proper prior will show the same effect as n— co. The Bayes factor for M, to M, will
tend to infinity.

These difficulties are well known and have often been discussed; see Shafer (1982)
for an extensive recent discussion. Attempts to resolve these difficulties are of several
different kinds. Since the paradox does not occur with models specifying interval
hypotheses on the parameters (Casella and Berger, 1987), it has been argued that point
null hypotheses are unreasonable—the problem is the hypothesis, not the analysis.
Such an argument would limit Bayes analyses to interval hypotheses, thereby excluding
most standard model comparisons problems, or at least requiring their reformulation.

It has been argued that the paradox occurs because of the inappropriate use of
‘ignorance’ priors. In the discussion of Shafer (1982), DeGroot said ‘In summary,
when diffuse prior distributions are used in Bayesian inference, they must be used
with care. Although they can serve as convenient and useful approximations in some
estimation problems, they are never appropriate for tests of significance. Under no
circumstances should they be regarded as representing ignorance.’

This argument would limit Bayes analyses to informative priors, with the
corresponding requirement to specify such priors as part of the analysis, and to assess
the sensitivity of the conclusions to the choice of different informative priors. Such
an approach is certainly possible, and has been implemented by Smith et al. (1985);
it makes the Bayesian analysis of data quite a complex process.
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Other approaches attempt to fix the prior specification by other arguments.

Spiegelhalter and Smith (1982) assigned a specific value to 2C, the ordinate of the
vague prior for u,, by the device of an ‘imaginary training sample’. (They applied
this approach to the more general case of unspecified location parameters under both
M, and M,.) Imagine that an additional data set (the ‘training sample’) is available
which

(a) involves the smallest possible sample size permitting a comparison of M, and
M, and
(b) provides maximum possible support for M.

Specifically, they assumed that the Bayes factor from this training sample is
approximately unity. For the previous model comparison problem, one observation
y* is required which provides maximum support for M, and gives a Bayes factor of

approximately unity:
%k _ * *
o g g

g

The value y*=pu, gives maximum support to M, so

1i§¢(o)/{q><”‘zc>—¢<”‘_c>

g g

for which an approximate solution is, neglecting the denominator term,
2C/0=1/¢(0).
Then the Bayes factor for the comparison of M, and M, is
B=n'2¢(2)/$(0) =n'/? exp(—3z?),

where z is as in Section 1.1. This still increases with n» whatever the value of z.

Smith and Spiegelhalter (1980) proposed the use of the prior N(u,, 02/n) for u,,
in the context of local alternatives to the null hypothesis. This gives a Bayes factor
for M, to M, of

n(y—m)*

B=212
exp 402

=2"2exp(—}z?).

While this Bayes factor is not a function of » and therefore does not suffer from
the Lindley paradox, it requires very large values of z for evidence against M,: a
value of B of 1/20, corresponding to a posterior probability of M, of 1/21 assuming
uniform model priors, requires |z|=3.66.

Smith and Spiegelhalter called this a ‘local Bayes factor’, since it gives increasing
prior weight under M, to a local neighbourhood of M,. While this may be
appropriate in some problems, it is clear that as n increases the prior under M,
becomes increasingly concentrated on the M, value, rather than on some value
appropriate to the alternative model M,. The approach leaves open the question of
how to treat models symmetrically, without strong prior evidence in support of a
local neighbourhood of one model, and how to compare non-nested models.

We leave aside here the logical status of the ‘prior’, depending as it does on the
data through the sample size. Smith and Spiegelhalter (1980), p. 216, commented:
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“The approach we adopt in examining an alternative prior specification may be viewed
either as a genuine subjective Bayesian analysis, with respect to a particular form
of prior belief, or simply as a formal analysis, intended as a theoretical ad hoc device
for comparing [ M,] with a ‘‘local’’ subset of the models contained within [ M,]’.

We now consider a variation on the Smith and Spiegelhalter approach which treats
the models symmetrically. Since as # increases y approaches the true value of u,
under M, with variance o2/n, we propose the prior for pu, under M, to be
u2~ N(¥, 02/n). This gives a Bayes factor of 21/2exp(—31z2?), which also does not
suffer from the Lindley paradox. It requires larger values of z as evidence against
M, than does the ratio of maximized likelihoods, but smaller values than the Smith
and Spiegelhalter factor: for a factor of 1/20, z must exceed 2.585, the 1% point
of the normal distribution.

How can such a prior be justified objectively, beyond the kind of justification given
by Smith and Spiegelhalter? We observe that the Lindley paradox occurs because
values of u, of negligible likelihood are assigned non-zero prior weight. In
calculating the posterior distribution of u,, such an assignment does no harm, but
in integrating the likelihood with respect to the prior to give the marginal probability
of y, such an assignment reduces the average of the likelihood to zero as the prior
weight increases on these values of pu,.

If the prior is intended to be ‘objective’, rather than to represent one’s subjective
belief, why should this objective prior assign weight to values of u, which are
untenable given the data, thus reducing the probability of the observed data to zero?
If the probability of the observed data goes to zero under the integrated model, this
surely means that the prior assignment is untenable. From this viewpoint, a Bayes
factor approaching infinity does not mean strong support for the null model M,
but strong rejection of the diffuse prior model M,. It seems more appropriate to
average with respect to one’s posterior weight for u, having observed the data. This
is the variation we propose: that the posterior mean, rather than the prior mean, of
the likelihood should be used in comparing the two models. We now state the result
formally.

2. POSTERIOR BAYES FACTOR
With the same model notation as in Section 1, define
where 7;(6;|y) is the posterior density of 6;:
n(0,19) =1,6)) 7,6,/ | 1,0, 7,0,) do,.

Then Zj‘ is the posterior mean of the likelihood function L;(@;) of the data y and
parameters ;. Equivalently,

Li= SLf(Oj) ;(6)) dOJ/S L;(0;) ;(8;) db;.

The ratio of posterior means Z‘l“/ Z;‘ will be called the posterior Bayes factor
denoted by A (for average):

A=L%/L%.



116 AITKIN [No. 1,

It is easily seen that L; (0 ) >Lj‘ ;LB

We propose the use of A in the same way as B, as a measure of the weight of sample
evidence in favour of M, compared with M,, with the calibration that values of A
less than 1/20, 1/100 or 1/1000 constitute strong, very strong and overwhelming sample
evidence against M, in favour of M,. _

It is immediately clear from the equivalent definition of L? that it does not depend
on the ordinate of a uniform prior density, for the constant 1/2C cancels from the
ratio of integrals of L? and L;. We may formally relate LA LB and the maximized
likelihood L; (0 ;) through the indexed integral family

L= SL,.(o ) wh(@)) db,
where
Wb (©)=L150)7,0) | | Lk, 7,6 d6,
so that
L= Sth(o ) 7,8)) d0-/SL’.‘(0 ) 7,(8,) do,.

Formally, w"(0) is the posterior density of @, from k ‘copies’ or replicates of
the data y and prior density 7;(6;). As_ k—»oo w¥(8;) approaches a spike at
the maximum likelihood estimate (MLE) 8, ;, and hence L(")—>L (0 ) as k— . The
case k=0 gives the usual prior mean, and the posterior mean is the case k=1.

3. REPEATED SAMPLING PROPERTIES

The repeated sampling properties of the posterior Bayes factor are easily determined
in the usual nested model comparisons problems, along the lines of the discussion
in Section 2.2 of Smith and Spiegelhalter. Let M, be a regular submodel of M, and
assume that the likelihoods L; and L, are normal in the parameters, i.e. that the
sample size is large compared with the number of parameters, and that the prior
w(6;) is locally uniform in the neighbourhood of 0 Then

Lj(oj) =Lj(0j) exp{ — i(oj - oj) "1 j(oj - oj)}
where I, is the observed information for M;. It is easily shown that
I_J}A = 2—p//2 LJ(OJ)
and therefore that the posterior Bayes factor for M, to M, is
A=2"2L,8,)/L,®),

with »=p,—p,, a penalized version of the ratio of maximized likelihoods. Write
A= —2log{L,(8,)/L,(8,)} for the usual likelihood ratio test statistic (‘deviance
difference’) which is distributed as x? under the model M;. Then

—2logA=N—vlog2,

a particular case of the general class of penalized likelihood ratio test statistics discussed
by Smith and Spiegelhalter. This class

A(m)=\—my
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includes Akaike’s information criterion (Akaike, 1973) (m = 2), a local Bayes factor
obtained by Smith and Spiegelhalter using a particular uniform prior density on 6 j
rather than the normal density in Section 1 (m=3/2), the generalized linear model
proposal of Nelder and Wedderburn (1972) to compare the deviance to its degrees
of freedom (m=1) and the direct use of the ratio of maximized likelihoods (72 = 0)
discussed by Edwards (1972) in the context of ‘support tests’. The local Bayes factor
obtained by the normal prior density argument leads to a different criterion, with

—2logB=i\—vlog?2

and Smith and Spiegelhalter do not consider its properties.

The B information criterion (BIC) or Schwarz (1978) criterion with m=1logn is
a special case of the (prior) Bayes factor when the information in a proper normal
prior is proportional (in sample size) to that in the sample (Smith and Spiegelhalter
(1980), pp. 214-215). In the posterior mean of the likelihood, the information matrix
I; cancels, and so the posterior Bayes factor does not depend explicitly on » or other
aspects of the design matrix.

The posterior Bayes factor corresponds to m =1log 2 = 0.693. Smith and Spiegelhalter
remark that ‘generally speaking, values of m<1 tend to favour complex models
unduly’. This remark appears to be based only on the test sizes resulting from the
use of the Bayes factors as formal tests in the usual way. In the approach described
here, the penalty arises naturally from the object of specifying the value of the
likelihood that would have been achieved had the parameters been known. It is not
an g priori penalty against complex models. We reproduce in our Fig. 1 part of the
information on test sizes in Fig. 1 of Smith and Spiegelhalter supplemented by
corresponding information for the posterior Bayes factor.

1.0 ~ m=0
m=iog 2
m=1

PR
a=.05

A
m=15

.01
m=2
.00 I 1 I )
1 5 10 20
14

Fig. 1. Test sizes for penalized likelihood ratio test statistics (c=0.05)
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MLR
1073
107 L .
T2 3 4 5 6 7 8 1011 12 13 14 15 16 17 18
1%

Fig. 2. Critical values of maximized likelihood ratios (c=0.05)

The standard use of Akaike’s information criterion rejects M, in favour of M,
when

A—2r>0,
with equivalent test size
a2)=P(x2>2v).

We compare this test size with those denoted by «(m,.) resulting from comparisons
of A(m) for m=1.5, 1, log2 and 0 with —2logc for ¢=0.05, one of the values
considered by Smith and Spiegelhalter. We choose this value because, for equal prior
model probabilities, the posterior probability of M, is 1/21, sufficiently small to
provide strong evidence against M,. We also include the constant test size o =0.05
for the usual use of the likelihood ratio test.

Our Fig. 1 shows the test size rising rapidly with the degrees of freedom » to 1
for m =0, rising more slowly for m=1og2 and m = 1, being fairly stable for m=1.5
and decreasing rapidly for m=2. Fig. 2 shows the values on a logarithmic scale of
the corresponding maximized likelihood ratios using the same ‘critical values’.

The conventional likelihood ratio test of size « rejects M, when

Li(,)/Ly0;)<exp(—ix2,_.).

The corresponding critical value of the maximized likelihood ratio is given in
Table 1 for «=0.05 and shown in Fig. 2. The critical value of the likelihood ratio
decreases rapidly with » and becomes extremely small for large ». While maximization
over 0, and 0, overstates the evidence against M,, it is difficult to believe that this
overstatement is so extreme that a maximized likelihood ratio of 10-¢ for » =20 is
still not convincing evidence against M. It appears that insisting on a fixed test size
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TABLE 1
Dimension v Critical value exp(— %xﬁyo_gs ) Dimension v Critical value exp(— %Xf,o.«)s )

1 0.147 7 8.81x107*
2 0.050 8 4.29%x107*
3 0.0201 10 1.06x 107*
4 8.70x 1073 20 1.51x 1077
5 3.95x1073 30 3.13x 10710
6 1.85%x 1073

of 0.05, however many parameters there are in the model, leads to increasing
conservatism with increasing degrees of freedom in the rejection of M, in favour of
the better supported M,.

Increasing the test size with the number of parameters is a common practice in
multiple comparisons and multiple-testing problems, where it has long been recognized
that conventional overall test sizes of 0.05 or less lead to increasingly conservative tests
for individual effects or contrasts as the number of parameters increases. Overall
test sizes as high as 0.50 have sometimes been used (Gabriel, 1964), and values like
I — (1 -a)” have been used frequently in regression model simplification (Aitkin e#
al., 1989).

Thus an increasing test size with increasing » is not an a priori disadvantage of
the posterior Bayes factor viewed as a formal test statistic. We now consider the
advantages of the posterior Bayes factor in other model comparison problems.

4. NORMAL REGRESSION MODEL

Let model M; be y~ N,(X;8;, o2I) with X; of full rank p;. Then omitting
irrelevant constants

where RSS; is the residual sum of squares for M;. We take a diffuse prior for 8, and
the improper prior o7~! for o, where r=0 is the usual diffuse prior for log 0. Then

XLf(ﬁj, U) dBj o'~ ldo=
2Ank=p,~r=2/2f ~ k=02 D{(nk — p;— r)/2}| X} X; | - I2RSS; (nk— =227/ 2
for k=1, 2, and so

1

202

1
L;B;, 0)= "ojeXP

{Rssﬁ (B, — B8, X/X,(8,~8))

I'@n—-p;—r)/2}
L{(n—p;—r)/2}

ZJA =2-(m-n/2 RSS; n/2

while
ZJB =20-2,-r=22D{(n — p,— 1)/2|X/X; | - 2RSS~ (n—Pj_r)/Z(z,R.)pj/ch’
where ¢; is the ordinate of the diffuse prior. The (prior) Bayes factor depends in

general on the scaling of both y and the explanatory variables in the model, as well
as the ratio of the diffuse prior ordinates.
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TABLE 2

r -2 0 2
Penalty constant (n=20, p,=2, p,=4) 2.11 2.25 2.43

The posterior Bayes factor for M, to M, is

I{2n—p,—n/2} T{(n—p,—r)/2} /RSSl —n/2
Ti(n—p,—r)/2) T{Q2n—p,—r)/2)\RSS,

A=LY/Ly=

which is invariant to scaling and is not subject to the Lindley paradox. It is again
a penalized form of the ratio of maximized likelihoods. The penalty constant in 4
multiplying this ratio depends only weakly on the value of r, the ‘hyperparameter’
in the prior for o. Table 2 gives the penalty constant for n=20, p,=2, p,=4 and
r= -2, 0 and 2, representing diffuse priors for ¢-2, log ¢ and o2.

Thus even substantial variation in the prior distribution for ¢ has little effect on
the posterior Bayes factor in reasonable-sized samples. If p,=p,, i.e. if we are
comparing non-nested models with the same number of parameters, the penalty
constant is unity whatever the value of r, and the posterior Bayes factor is simply
the ratio of maximized likelihoods, which now has a direct interpretation as evidence
for M, compared with M,. This is an important benefit of the posterior Bayes
factor, in allowing direct comparisons of non-nested models.

For nested models, the variation in the penalty constant with n, p, and p, serves
the same function as the sampling distribution of the likelihood ratio test statistic—
to adjust for the different numbers of parameters—without requiring this distribution.
A detailed discussion of regression model choice using this approach will be presented
elsewhere.

We conclude with a non-standard problem.

5. BINOMIAL SAMPLE SIZE

The binomial sample size problem has been discussed recently by Carroll and
Lombard (1985), who gave historical background, and by Kahn (1987). Draper and
Guttman (1971) gave a Bayes analysis (see also Raftery (1988)). A full discussion of
the difficulties caused by the peculiar form of the likelihood function in this model
is given by Aitkin and Stasinopoulos (1989).

We are given independent observations sy, . . ., s, from the binomial distribution
b(N, p) with both parameters unknown, and the problem is to draw conclusions about
N, p being a nuisance parameter. The likelihood function is
r (N 5
LN, p)=1I (S >ps,(1 AR

i=1 i

- (N pra-ppr

I 1



1991] POSTERIOR BAYES FACTORS 121

where T=2s;, and 0<p<1, N>max;s;=N,;. We illustrate with the sample of r=35
observations (16, 18, 22, 25, 27) taken from Olkin et al. (1981). The joint MLEs of
p and N are (0.218, 99). For given N the MLE of p is

and the profile likelihood in N is
< K )T(l 5 )N’—T
N N

For the example, the profile likelihood is shown in Fig. 3. It rises rapidly from zero
at N=27 to a poorly defined maximum value at N =99 and then declines very slowly,
approaching an asymptote of 0.935L(N, p) as N— .

A conditional likelihood approach is possible by conditioning on 7T, the sufficient
statistic for p when N is known. The conditional likelihood is
/ (Nr)

T
which is a conditional hypergeometric likelihood. The conditioning variable T has
a distribution which also depends strongly on N, so there must be some loss of
information about N in the conditioning.

The conditional likelihood also rises rapidly from zero but approaches its maximum
as N—oo and is flat for a large range of N (see Fig. 3).

Carroll and Lombard (1985) pointed out that C(/N) is effectively an integrated
likelihood obtained by integrating out p from L (N, p) with respect to the improper
prior 1/p. They considered the conjugate family of beta distributions for p and
obtained point estimators of NV as the maximizing values of the integrated likelihoods
L(N) with respect to the beta distributions. For two proper priors (uniform and
quadratic) they found that the point estimators of N have improved mean-square
error relative to earlier estimators. Aitkin and Stasinopoulos (1989) show that for
this example the two integrated likelihoods have well-defined maxima around 50-60
and approach zero as N— o (Fig. 3).

Raftery (1988) gave a Bayes analysis using independent priors, with p uniform and
the prior for N proportional to N-!. The posterior for N was then N-!L(N).

Kahn (1987) noted that the upper tail behaviour of these integrated likelihoods
is entirely predictable from the prior for p and does not depend on the data
at all. If the prior is w(p)=p*~!(1—-p)*-1/B(a, b), the integrated likelihood
{L(N, p)w(p)dp—CN-2, where C is independent of N. For a=0 the tail of the
integrated likelihood is constant, as already noted. Aitkin and Stasinopoulos (1989)
show that the likelihood function L (N, p) is extremely concentrated along the
hyperbola Np =35, and therefore the choice of prior distribution for p (if this is
taken independently of N) has a critical effect on the integrated likelihood for N.
Fig. 4 shows the two-parameter likelihood L (N, p) for the example.

The difficulty with the Bayes approach with independent priors on p and N is evident
from Fig. 4. If p is small, N must be large, and this is evident from prior consideration
of the model, not just by inspection of the likelihood. Aitkin and Stasinopoulos (1989)
show that reparameterizing the nuisance parameter to Y =Np gives a likelihood

L(N, p(N))=

()

i

ew-[n}

i
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Fig. 4. Likelihood L(N, p)

in N and y which is almost orthogonal in the parameters, and the resulting likelihood
in N is very close to the profile likelihood in the original parameterization.

To construct the posterior Bayes factor for N, we consider models M : s ~ b(N,,
p) for fixed N, and M,: s ~ b(N, p) for unspecified N. We take p to have a uniform
prior on (0, 1) for both models and N to have an independent diffuse prior on (N,
o) for M,. Then the posterior mean of the likelihood under M, is

Lo = | 22No, ) dp [ | L(No, ) dp
where

SolLk(No , pdp= { 11 ({Zo)}k Solpkr(l — p)KWNe=T) dp

k
_ {H <N°>} BkT+1, k(Ngr—T)+1)
giving the posterior mean
Nyr )
No\ N0r+ 1 T

S; /2N0r+1 2Nyr .
2T

fi*(No)=H(

Under M,, the average likelihood is

oo

It= 5 Joae e/ 5 Lo

N=N,

The value of LA has to be obtained numerically, but its value is irrelevant here as
there is no formal hypothesis to test about the value of N: LA(N) describes the
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Fig. 5. Profile and average (

) and conditional (- - - -) likelihoods

posterior evidence for different values of N. As N— oo, the posterior mean L% (N)
approaches a constant, like the profile and conditional likelihoods. For the example
it has a poorly defined maximum at N=98. The asymptotic values of all three
likelihoods are easily evaluated from Stirling’s formula: we have

P(N)~exp(—T) (;)T /s

C(N)=@27T)>P(N)
LA(N)—=2-12P(N)

where S=ms;!. These three likelihoods are shown in Fig. 5, scaled by their
asymptotic values.

The posterior mean likelihood is indistinguishable from the scaled profile likelihood.
The reason is easy to see: for reasonably large N, the likelihood in p for given N
is effectively normal, and integrating over p is equivalent to dividing the maximum
of the likelihood L(N, p (N)) by J 2. Thus for large N the posterior mean likelihood
will closely resemble the profile likelihood.

The difference between the prior and posterior means of the likelihood is very clearly
evident here. The prior mean with respect to the general beta prior is

ZB(N)=H({;])B(T+ a, Nr— T+b)/B(a, b)

while the posterior mean is

LAN) =H<1§> B{(2T+a, 2(Nr—T)+b}/B(T+a, Nr—T+Db).
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As N> o, LB(N)—C N4, while L{(N)—C,, where C, and C, are independent of
N. If the sample is not strongly underdispersed, as is the case here, the Poisson model
will be a plausible alternative to the binomial model, and the likelihood as N— oo
should be appreciable. Under the prior mean, if >0 then the prior probability of
P goes to zero with p, so N cannot be large, and the Poisson model is made implausible
by the prior specifications, whatever the data; the posterior mean as N— o is unaffected
by this specification.

6. DISCUSSION

The posterior Bayes factor performs well in the examples discussed here, and in
many others to be presented elsewhere. (Models with the number of nuisance
parameters of the same order as the sample size—Neyman-Scott problems—suffer
the same difficulties in this approach as in conventional maximum likelihood, and
require an explicit model for the nuisance parameters, e.g. a variance component
model.) We consider further its logical justification.

We note first that the use of the posterior distribution of the likelihood has been
suggested before: Dempster (1974) proposed the use of the posterior means of the
log-likelihoods for model comparisons, a difference of the order of log(1/20) being
strong evidence. In an unpublished report, Raghunathan (1984) applied this approach
to the variable subset selection problem in normal regression. With normal likelihoods
another penalized maximized likelihood criterion results, with easily calculated penalty
function: If L(#) is normal with 8 of dimension », then

E{log L(0)|y}=log L(#)—»/2.

The corresponding penalty for —2 logL(@) is », giving the Nelder and Wedderburn
proposal.

However, in other models the average log-likelihood is not simple. For example,
in the normal regression model of Section 3, the posterior mean of the log-likelihood is

E(log L;]y) 2{"(‘_2 >+log<RSSj>}/ F( 2 )(RSSJ> 2

where ¢ is the digamma function. The difference between the posterior mean log-
likelihoods for two models is not a function of the ratio of residual sums of squares.

The use of the posterior mean of the likelihood has caused concern to referees
because of the appearance of ‘using the data twice’, once to obtain the posterior
distribution of 8, and again to average the likelihood—essentially the posterior—
with respect to the posterior.

One response to this is simply to note that, once the data y are observed, any function
of 0 and the data has a posterior distribution which can be derived from that of 8.
The likelihood L () is one such function, and we can in theory determine its full
posterior distribution, as discussed by Dempster (1974). In practice this distribution
is very complicated, and we settle for the first moment of the posterior distribution
of L(0), i.c. the posterior mean, which is easily evaluated in many models. From this
point of view, the posterior mean of L has the same inferential status as the posterior
mean of @ or of any other function of , and the ratio L%/L#% of posterior means
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of L; for the different models M, is a practical alternative to the likelihood ratio
L,(0,5)/ L,(0,5) at the (unknown) fully specified values 6,5 and 6,5.

A second response is to note that the posterior averaging is equivalent to a form
of penalty on the maximized likelihood, so that there is a close analytic connection
between the conventional likelihood ratio test and the posterior Bayes factor. The
form of penalty is similar to that of Akaike’s information criterion in normal
likelihoods, but it is model specific and does not require normality of the likelihood.
The penalty serves the same purpose as the sampling distribution of the likelihood
ratio test statistic—to allow for the maximizations over different parameter spaces.

A third response is to note that, given y, the predictive distribution of new data
z generated from the same model is

faly)= Sf(zlo) 7(6]y) b

If we evaluate the predictive density for data z which has the same sufficient statistics
as y, then f(z|0) is identical with the likelihood function L (#), and the posterior mean
of the likelihood can be interpreted as the predictive probability of new data with
the same sufficient statistics as the observed data. The ratio of two such predictive
probabilities is then interpreted like a (prior) Bayes factor.

We note finally a non-Bayesian direct likelihood interpretation of the posterior
mean. We may regard the normalized likelihood

wj(o,)=L(o,)/SL(o,) de,
simply as a weight function without a Bayes posterior interpretation and regard
IA= SL}((),)dO,/SL,(O,)dO,

as the best available one-point summary of the likelihood L;(8,) as the evidence for
M;. This is formally equivalent to the posterior mean with a diffuse prior for 6;.
In a non-Bayes framework the question of parameterization of L; arises, since the
integral form of LA is not invariant to arbitrary monotone transformatlon of 9. A
reasonable approach to this problem is to note that, in real finite populations w1th
finite measurement precision of y, parameters like means or proportions can take
values only on an equally spaced grid, and therefore there is a natural uniform scale
0, for such parameters. On this scale, the average of the likelihood is

L=%120,) [ 3LO,)
and the sums can be approximated by the corresponding integrals, since
SLKO,) -6~ SL"(O) de

where 6 is the grid interval for 8. A monotone transformation of 8 to ¢ = ¢ (6) leaves
the finite sums 2, L*(¢,) unchanged, and so the correct discrete form of the average
likelihood is invariant. To maintain this invariance, the integral approximations have
to incorporate the differential of the transformation:
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de
k — k
SL 6)do= SL (9) <d )dd:.

Thus with this convention the average likelihood is invariant to monotone parameter
transformations: it is only necessary to determine the parameter scale on which uniform
spacing is appropriate.

7. CONCLUSION

The comparison of models through the posterior Bayes factor is generally applicable
for arbitrary models, requires no more than conventional diffuse prior specifications
for the model parameters and does not suffer from Lindley’s paradox. Variations
in the prior specification have little effect on the posterior Bayes factor in reasonable
sample sizes.

Applications of this approach to other model comparisons problems will be presented
elsewhere.

ACKNOWLEDGEMENTS

I am grateful to Jim Berger, Bob Berk, Steve Fienberg, Camil Fuchs, Sam Oman,
Richard Smith and David Steinberg for comments, and to referees of an earlier version
of this paper for many helpful comments and references.

REFERENCES

Aitkin, M. A., Anderson, D. A., Francis, B. J. and Hinde, J. P. (1989) Statistical Modelling in GLIM,
sect. 2.7. Oxford: Clarendon.

Aitkin, M. A. and Stasinopoulos, M. (1989) Likelihood analysis of a binomial sample size problem.
In Contributions to Probability and Statistics (eds L. J. Gleser, M. D. Perlman, S. J. Press and
A. R. Sampson). New York: Springer.

Akaike, H. (1973) Information theory and the extension of the maximum likelihood principle. In Proc.
2nd Int. Symp. Information Theory (eds B. N. Petior and F. Csaki), pp. 267-281. Budapest: Akademiai
Kiado.

Berger, J. O. and Sellke, T. (1987) Testing a point null hypothesis: the irreconcilability of P values
and evidence. J. Am. Statist. Ass., 82, 112-122.

Carroll, R. J. and Lombard, F. (1985) Note on N estimators for the binomial distribution. J. Am. Statist.
Ass., 80, 423-426.

Casella, G. and Berger, R. L. (1987) Reconciling Bayesian and frequentist evidence in the one-sided
testing problem. J. Am. Statist. Ass., 82, 106-111.

Cox, D. R. and Hinkley, D. V. (1974) Theoretical Statistics. London: Chapman and Hall.

Dempster, A. P. (1974) The direct use of likelihood for significance testing. In Proc. Conf. Foundational
Questions in Statistical Inference (eds O. Barndorff-Nielsen, P. Blaesild and G. Sihon), pp. 335-352.
Aarhus: University of Aarhus.

Draper, N. and Guttman, I. (1971) Bayesian estimation of the binomial parameter. Technometrics,
13, 667-673.

Dumonceaux, R., Antle, C. E. and Haas, G. (1973) Likelihood ratio test for discrimination between
two models with unknown location and scale parameters. Technometrics, 15, 19-27.

Edwards, A. W. F. (1972) Likelihood. Cambridge: Cambridge University Press.

Gabriel, K. R. (1964) A procedure for testing the homogeneity of all sets of means in analysis of variance.
Biometrics, 20, 459-477.

Kahn, W. D. (1987) A cautionary note for Bayesian estimation of the binomial parameter n. Am. Statistn,
41, 38-39.



128 AITKIN [No. 1,

Lindley, D. V. (1957) A statistical paradox. Biometrika, 44, 187-192.

Nelder, J. A. and Wedderburn, R. W. M. (1972) Generalized linear models. J. R. Statist. Soc. A, 135,
370-384.

Olkin, I., Petkau, A. J. and Zidek, J. V. (1981) A comparison of n estimators for the binomial
distribution. J. Am. Statist. Ass., 76, 637-642.

Raftery, A. E. (1988) Inference for the binomial N parameter: a hierarchical Bayes approach. Biometrika,
75, 223-228.

Raghunathan, T. E. (1984) A new model selection criterion. Research Report S-96. Department of
Statistics, Harvard University, Cambridge.

Schwarz, G. (1978) Estimating the dimension of a model. Ann. Statist., 6, 461-464.

Shafer, G. (1982) Lindley’s paradox. J. Am. Statist. Ass., 77, 325-351.

Smith, A. F. M., Skene, A. M., Shaw, J. E. H., Naylor, J. C. and Dransfield, M. (1985) The
implementation of the Bayesian paradigm. Communs Statist. A, 14, 1079-1102.

Smith, A. F. M. and Spiegelhalter, D. J. (1980) Bayes factors and choice criteria for linear models.
J. R. Statist. Soc. B, 42, 213-220.

Spiegelhalter, D. J. and Smith, A. F. M. (1982) Bayes factors for linear and log-linear models with
vague prior information. J. R. Statist. Soc. B, 44, 377-387.

DISCUSSION OF THE PAPER BY AITKIN

G. A. Barnard (Colchester): Murray Aitkin has presented us with an eminently discussable paper
which raises many important issues and presents a most useful addition to likelihood methods. I must
confine myself to comments on a few of the many introductory points he makes before coming to the
main point, and then commenting on his final example.

His criticisms of conventional fixed significance levels are well taken and one can only wonder when
0.05 and 0.01 will disappear from the text-books. They had their origin in limitations of computing
power which have long since disappeared. It surely cannot be long before quotation of attained mid-P-
values becomes general. Anyone studying a single set of data can then set a critical P-value judged
appropriate to the circumstances and, more importantly, it will become easy to combine independent
sets of data by, for instance, simple addition of mid-P-values. It is high time that we recognized that
situations where important issues turn on single data sets are to be avoided wherever possible.

One advantage that log-likelihood ratios have over P-values is that log-likelihood ratios from
independent data sets combine unambiguously by simple addition to produce a combined value of the
same kind, though that is not their only advantage. We do not have to leave the Neyman-Pearson
framework to see the anomalies arising from fixed significance levels. A very slight extension of the
argument used by Neyman and Pearson to derive their fundamental lemma shows that in a series of
tests of simple hypotheses Hy; against a series of simple alternatives H,;, i=1, 2, . . ., we minimize
the long run risk of error of the second kind, subject to a specified upper bound on the long run risk
of error of the first kind, by keeping constant the critical likelihood ratio, not the critical a-level. This
fact, noted by Pitman (1965) a quarter of a century ago, still seems not to have reached text-books
following the Neyman-Pearson approach. As a result, concentration on the likelihood ratio is often
thought of as a Bayesian idea—a tendency encouraged by the term ‘Bayes factor’.

However, I do not wish here to attack the Bayesian position. I agree with Jack Good on the
need for a ‘Bayes-non-Bayes’ compromise, though perhaps we approach the compromise from
opposite sides. In this spirit I wish that we could agree on regularly quoting the observed likelihood
ratio L(H,|y)/L(H,|y) in addition to attained mid-P-values on H,, and power on a specified
alternative H,. With Aitkin’s example at the top of the second page such a practice would
produce the correct conclusion—that model 1 fits much better than model 2, but neither model 1 nor
model 2 fits at all well.

The reference on the third page to a ‘well-formulated subjective belief about 0; worries me. I would
be less worried if ‘subjective belief” were replaced by ‘agreed further assumptlon The primary role
of the statistician as such is to present his client(s) with the inferences that flow from the data together
with any assumptions concerning the model or the parameters which have been accepted as appropriate—
usually on the basis of past experience. If these do not answer all the client’s questions he should be
told that further assumptions, for which he must take responsibility, are needed. In the model choice
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problem these further assumptions will typically change the question being asked—from the choice
between models M; with parameters unknown to the choice between models W with parameters
having specified dlstrlbutlons It is very difficult to imagine circumstances in which such a process could
properly be described as ‘subjective’. It is true that the use of diffuse, vague or Jeffreys priors is ‘well
established’—or, at least, very common; but one wishes the use of likelihood plots, which usually serve
their purposes better, was as well established among statisticians as it is among geneticists and some
physicists.

The author’s reference to our late friend Morris DeGroot’s outstanding contribution to the Shafer
(1982) discussion is very welcome. The only point DeGroot made that seemed to me to call for further
comment was his reference to the fact that an assumption of a uniform prior for an unknown 6 implies
that an equally unknown y=exp /(1 + exp 6) was almost certainly equal to zero or to unity. The lack
of invariance of a uniform prior under non-linear transformation was decisive for Fisher in his rejection
of a Bayesian approach; but we should not forget that Fisher’s mentor ‘Student’ failed to distinguish
between Fisher’s likelihood and a posterior relative to a uniform prior. Neither Gosset nor Fisher was
lacking in logical penetration, and we should ask why their views differed in this respect. I think that
it was because Gosset’s parameters were always measured on a natural scale, as so many bushels per
acre, for example. But Fisher’s genetical recombination fractions, interpretable though they might have
been in terms of chromosome distances, did not have any clearly defined natural scale. So Gosset would
have had very strong grounds for objecting to any transformation such as that from 6 to » whereas
Fisher would not. This distinction bears on the choice of parameters for Professor Aitkin’s posterior
Bayes factors.

In the model choice problem, when the parameter distributions are unknown, Aitkin has had the
ingenious idea of allowing the data themselves, so far as possible, to supply the additional assumption.
Using a uniform prior for all the parameters in each model, the data provide posterior distributions
w;(#) for the parameters; and then the problem can be restated as that of comparing models M“< where
M’.“ consists of M; together with the distribution ;(f;) for its parameters. The ratio of marglnal
probablhtles of the data on the two models M"‘ then prov1des the required likelihood ratio or ‘posterior
Bayes factor’. Provided that the client accepts the choice between the M as a proper reformulation
of his problem, the likelihood ratio needs no reinterpretation in terms of test sizes—a consistent use
of, say, a critical value of 10/1 in a long run of cases means that, on the assumption that one or other
of the M;* is correct, then the correct choice will be made at least 10 times as often as the incorrect
choice. The restriction that the choice lies between the two M* models is important, and it is worthwhile
to point out that situations will arise where both M* models fail to be credible in the light of the data
on the basis of a test procedure not necessarily related to the choice between them. And what is said
above about the possible inappropriateness of taking uniform priors as a starting point shows that care
is needed to ensure that the scales of measurement of the @ can-be regarded as natural. Provided that
these cautions are borne in mind, the symmetry between the two models implicit in the Aitkin procedure,
and the fact that it depends only on the data and its parameterization, must make it a very valuable
addition to our collection of standard procedures. Simple addition of log-likelihoods from independent
data sets will no longer apply, but the specification of the 7; for each data set will make combination
quite easy.

As already indicated, there are sound reasons, independent of Bayesian doctrine, for treating the
likelihood ratio as being at least on a par with test sizes as indicators of strength of evidence, but the
fact that in many cases the Aitkin procedure is effectively equivalent to penalized likelihood
helps to relate it to the now large amount of work that has been done since the pioneering efforts of
Jeffreys concerning model choice. Jeffreys’s simplicity postulate represented a profoundly original insight
into the way that scientific progress is made. The fact that Jeffreys tentatively related his measure of
simplicity to the number of coefficients in a differential equation suggested that he was primarily
concerned with physical science. And in some scientific fields theories may be more acceptable than
others just because they are not over-simple in relation to their subject matter. The general notion of
acceptability of a model and the notion of ‘naturalness’ of a particular parameterization are topics that
both need to be addressed if we wish to extend our statistical methods towards a general theory of scientific
inference.

I have left myself very little time to comment on the binomial index problem. The current problems
relating to the acquired immune deficiency syndrome epidemic illustrate that statisticians must sometimes
be prepared to make estimates based on the most inadequate data. But a check on the references given
for practical applications of the binomial index problem leave me with the impression that, if a statistician
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is provided only with the observations s,, s,, . . ., 5, and is asked on that basis to estimate NV, he should
very often refuse to do so. Unless the index of dispersion is significantly low, the Poisson possibility,
equivalent to infinite N, cannot be ruled out. In one allegedly practical case, the s; represented the
number of appliances brought in for repair over a given period. It was suggested that these could be
used to estimate the total number of appliances in use, knowledge of the rate of breakdown of appliances
being absent. For a binomial model accurately to underlie such data would require an unbelievable absence
of what in the motor trade are referred to as ‘Friday’ or ‘Monday’ products; even given such uniformity
of production the time and effort needed to present the small amount of information about N contained
in the data would almost certainly have been better spent in obtaining further data bearing directly
on the p-parameter. None-the-less Aitkin’s analysis of this theoretical problem reminds us not only of
the much greater graphical facilities that are now at our disposal for likelihood plots—and the value
of careful choice of the parameters for these plots—but also of his other valuable contributions to
likelihood theory—his work on profile and on canonical likelihood.

It gives me the greatest pleasure to move a warm vote of thanks.

Professor D. V. Lindley (Minehead): The method of posterior Bayes factors is seriously flawed and
cannot be recommended.

To demonstrate this, consider four models, M,,, M,,, M,; and M,,, for some data. These models
are supposed simple, i.e. each completely specifies the probability distribution for the data without a
nuisance parameter (6 in the paper). The likelihoods are L; and the models have probabilities 7;. In
addition, take two other models, M,,UM,, and M,UM,,. These are composite, saying that the model
is either specified by the distribution corresponding to M;; or by that of M,; (j =1, 2). Effectively there
are nuisance parameters taking two values only in each. We calculate some posterior Bayes factors and
to do this we need the expression for the posterior mean likelihoods given near the beginning of
Section 2, namely

SLZ(O) w(0) dO/SL(O) w(0) dé, (€8]

where suffixes have been omitted.

In the first row of Table 3, three model comparisons are proposed. In the first two the simple models
with common first suffix are being compared with respect to their second suffix. In the last comparison,
M,,UM,, is taken with M,,UM,,, each being a union of first suffixes. The posterior Bayes factors are
easily found from expression (1). With the simple models, the integrals have only one term and ratio
(1) is simply L. The factors are listed in the second row of Table 3. Now the likelihoods are arbitrary
positive values, as are the probabilities with the additional requirement that they add to unity. The third
row of Table 3 gives the numerical values of the factors for the case described below it. The result is
that M|, is thought more plausible than M), (a factor of 1.5) and M,, more plausible than M,, (1.5
again), yet the union of M|, and M,, is thought less plausible than the union of M}, and M), (the factor
is 0.77). The effect of the unions is to reverse the comparisons of second suffixes.

This is ridiculous. Consider models for the next person to enter the room. Let the first suffix correspond
to height with tall (short) meaning above (below) average height, and the second to sex. Then advocates
of posterior Bayes factors could find themselves saying ‘It is more likely to be

TABLE 3f
Comparison M, v M, M, v M,, (M \UM,,) v (M,UM,,)
L L L* w4+ L% 7wy Lym,+Ly,w
Posterior Bayes factor —- = St L ;2 2 :2 =
Ly, Ly, Lyymy+Lyymy Ly,mp+ L7y
Numerical value 1.5 1.5 . 0.77
Lym, Ly my Lyymy+ Ly my
Odds
Ly, Ly,my, Lyymyy+Lymy

+The numbers in the third row are derived by taking
L,=9 L,=6 L, =3 L,,=2,
m,;=0.05 m,=0.45 my, =0.45 m,,=0.05.



1991] DISCUSSION OF THE PAPER BY AITKIN 131

a tall man than a tall woman,
a short man than a short woman,
a woman than a man’.

One hardly advances the respect with which statisticians are held in society by making such declarations.

A natural question that arises is whether there is a method that avoids this difficulty, for perhaps
it is inevitable that such contradictions occasionally arise. It is not; there is a sensible way to proceed.
The fourth row of Table 3 gives the comparisons using the odds. The numerator (denominator) of the
factor for comparison of the composite models is the sum of the numerators (denominators) for the
comparisons of the simple models. So if the numerators exceed the denominators in the simple cases,
they will continue to do so in the composite case. The contradiction cannot occur.

This is all easy. However, there is a deeper result. A theorem says that essentially only the odds will
avoid the difficulty. This was first proved by Ramsey, though appreciation of it dates from other proofs
by Savage, de Finetti and Jeffreys. The best exposition is to be found in chapter 6 of DeGroot (1970),
which I recommend as required reading for all statisticians. The requirement that the above contradiction
does not arise is his assumption SP,.

The theorem says that the only way to compare models is through the probabilities of these models
and hence, with two models, the ratio. In other words, to avoid situations like that developed above
for posterior Bayes, you must act like a Bayesian. Any method that is not Bayesian will contain
contradictions. Experience shows me that it is often difficult to exhibit explicitly a counter-example
to a non-Bayesian proposal. I have been able to do so here because Aitkin’s ideas are clear cut and
not hedged about with vague qualifications. For this reason I have pleasure in seconding the vote of
thanks for a well-written paper.

The vote of thanks was passed by acclamation.

Sir David Cox (Nuffield College, Oxford): I agree with Professor Barnard that we must distinguish
between

(a) the assessment of the relative fit of two models, M, and M,, assuming provisionally that one
of the models is ‘true’, and
(b) analysis of the adequacy of M, looking for departures in the direction of M,, and vice versa.

In (b), the conclusion may be that the fit of both, one or neither model is adequate.

The intriguing introduction of A in Section 2 of the paper can be assessed by calibration, i.e. by
examining performance under hypothetical repetitions (and I would have liked to have seen more explicit
discussion of this, particularly for some well-known treacherous examples with many nuisance
parameters), or by comparison with logical principles, such as those of Bayesian theory. It is unlikely
on general grounds that the effectively data-dependent prior could be consistent with the usual Bayesian
requirements and Professor Lindley has shown this via a striking example. It helps, however, to consider
the form of A in the light of the distinction between coherence and temporal coherence, the latter term
due, I think, to P. Suppes; I. J. Good has written about dynamic probability.

Suppose that in the planning of an investigation we consider hypotheses H;; denote the data, yet
to be obtained, by y. Then coherence asserts

P(H,|y) = P(H;) P*(y|H)).

The factor with an asterisk is hypothetical, whereas P(H;) concerns our current knowledge about H,
from other sources. Time passes, data y, are collected and now coherence asserts

P(H,|yo) = P*(H;) P(y,|H))

where P* (H;) is hypothetical in the sense that it concerns knowledge which we would have had in the
absence of the y, which we do have. Temporal coherence requires P(H;)= P*(H,). Often, but certainly
not always, this is a very reasonable working assumption. It may, however, be that the work of data
collection, or the data themselves, lead to the formulation of an H previously rejected or ignored, especially
when the data show some unanticipated effect. The latter is the Bayesian analogue of data-snooping
with corresponding dangers (and advantages). In many fields plausible ex post explanations of ‘strange’
effects can be constructed. It is important not to dismiss such hypotheses generated by the data, but
to recognize them as in some way distinct from hypotheses considered a priori.

One interpretation of Professor Aitkin’s A4 is that it represents a mechanical adjustment of P(H,),
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in the light of y,. I am very uneasy at this as a general procedure, but I do not think that it is logically
incorrect in the above framework; calibration is an ultimate test!

R. L. Smith (University of Surrey, Guildford): My comments are concerned with the binomial
population size problem discussed in Section 5 and, at greater length, in the cited paper of Aitkin and
Stasinopoulos (1989).

First, let us be clear about what the problem is here. It is not so much the discreteness of N, since
this can almost be treated as a continuous variable, but the fact that N is in effect an end point of
the distribution, far away from any of the data points. As such, the issues raised are similar to those
which arise in statistical inference about extreme values.

Aitkin and Stasinopoulos showed that, typically, the profile likelihood for N is flat but a Bayesian
analysis, based on independent prior distributions for N and p, leads to a sharply peaked posterior
density for N. However, if the problem is reparameterized in terms of N and y = Np, and independent
prior distributions taken for N and y, then the posterior density of N is very similar to the profile
likelihood.

To me this is an important point. If nothing else, it serves as a salutary warning of the difficulties
of defining an uninformative prior distribution in multiparameter problems.

In his paper, Professor Aitkin takes this analysis a step further, showing that if posterior Bayes factors
are used to compare different values of N, even in the original parameterization, the results are again
very similar to those deduced from the profile likelihood.

I would like to raise two questions for Professor Aitkin. First, the posterior Bayes factors approach
is itself not parameterization invariant, so it might still be desirable to compare the effects of different
parameterizations of the problem. Would this have any material effect on the results?

Secondly, the broad conclusion with this example seems to be that, once the first Bayesian analysis
is discarded, the others are equivalent to the profile likelihood. I found this an unsatisfactory conclusion.
A possible explanation is that, for this problem, the structure of the nuisance parameter is very simple—if
we assume that N is known, then we all know what to do about p. Would a problem with a more
complicated, perhaps multidimensional, nuisance parameter require a more detailed comparison of the
different procedures available?

Professor A. F. M. Smith (Imperial College of Science, Technology and Medicine, London): Suppose
that data x are to be used to compare or choose among a set of alternative models M ={M;, i€ I}.
Any criterion for model comparison should surely depend on two things: first, the decision context
in which the comparison is taking place; secondly, the perspective from which the model set 9 is viewed.

Figs 6 and 7 illustrate two possible such decision contexts. In the first case, given data x we choose
M;; subsequently some ‘state of the world’ w obtains and the utility #(M;, w) ensues. In the second

u(M;, w)

Fig. 6. Decision problem involving model choice only

uM;, d;, w)

Fig. 7. Decision problem involving model choice and subsequent decision
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case, given data x we choose M, and, based on M;, take a decision d;; some state of the world w then
obtains and the utility u(M;, d;, w) ensues. In both cases, the optimal model choice is M*, where

T(M*|x) = sup{ir(M;|x)},
with l
7%= | (M, W) p(wlx) dw
in the first case, and in the second case
a(M;|x)= Su(l\/[i, df, w) p(w|x) dw,

where df is the d; that maximizes {u(M,, d;, w) p;,(w|x) dw.

In the last expression, p;(w|x) denotes beliefs about w conditional on x and model M;. Throughout,
p(w|x) represents beliefs about w conditional on x and one’s actual perspective on ‘the true model’,
making clear that the perspective from which 9 is viewed is a crucial part of the analysis.

There are three possible perspectives, which, based on joint work with J. M. Bernardo, can be identified
as follows.

(a) The M-closed view corresponds to acting as if M;, i € I, exhaust all conceivable modelling
possibilities; equivalently, one of the M, is assumed to be the true model. In this case, we have

p(W[x)=2p(W|M;, x) p(M;|x),

1
and the required expected utility calculations proceed relatively straightforwardly.
(b) The M-completed view acknowledges M;, i€ I, to be convenient possible proxies for an
identified distinct model M,, which is regarded as the true model but is perhaps too cumbersome
to use in routine practice. In this case,

p(W|x)=p(W|M,, x)

and the required calculations typically involve extensive numerical integrations.
(c) The M-open view again acknowledges M;, i € I, to be proxies but does not identify M,, so that
p(w|x) is not directly available.

The (prior) Bayes factor is a key ingredient in the case of Fig. 6, with 0-1 utilities and an 9M-closed
perspective. However, as this discussion hopefully makes clear, this is just a very particular, reasonably
well-illuminated, corner of a much bigger, murkier world of model choice problems.

A. C. Davison (University of Oxford): One motivation for the work described by Professor Aitkin
is the difficulties associated with discriminating between separate, i.e. non-nested, families of hypotheses
(Cox, 1961). I have two comments on Section 1.1 of the paper.

First, the problem that the size of tests depends on the values of parameters unknown under the null
hypothesis can sometimes be eliminated, along with the parameters themselves, by conditioning on
statistics sufficient under the null hypothesis. This approach is taken by Pace and Salvan (1990). In
general approximate conditional tests would be obtained by conditioning on maximum likelihood estimates
obtained under the null hypothesis.

When the competing models are specified up to unknown parameters, the simulation effort required
to estimate significance levels can be reduced by generating data not from the null but from the alternative
hypothesis, and weighting the results appropriately. As an example, consider the data due to Bliss (1935)
and subsequently analysed by Pregibon (1980), concerning the deaths of flour beetles at different doses
of a poison. The deviances for a binomial model with the logit and complementary log-log link functions
are 11.22 and 3.44, both on six degrees of freedom. The second model fits better, but is the difference
of deviances significant? The usual x? result does not apply because the models are not nested. We aim
to estimate the probability that the difference in deviances exceeds 7.78 under each model. Importance
sampling from the complementary log-log model to fix things up as if the sampling were from the logistic
distribution gives estimated significance level 0.0033, with standard error 1.8 x 10~ based on 1000
simulations. The variance of this estimate is approximately 100 times smaller than would have been
the case for simulation from the null distribution; theoretical calculations by Anna Gigli at Imperial
College bear this gain out. This is a worthwhile gain in efficiency, but there is more. The simulation
was performed from the complementary log-log model, and hence the significance level taking
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this model as the null hypothesis can be obtained directly in the usual way. Thus importance sampling
not only gives an improved estimate of one tail probability; it also gives the other one gratis. More
details will be written up shortly by Dr Gigli and myself.

Michael Goldstein (University of Durham): Consider the following counter-example to the
interpretation of posterior Bayes factors.

From a random number table, I select a random integer between 1 and 1000. I do not reveal this
value, which serves as the parameter 6. I now generate a data value Y, which I will report to you. There
are two different models under which the data can be generated. Under model 1, the value Y that I
report is equal to the previously selected value 6. Under model 2, I ignore 6 and instead select and report
a value Y which is a random integer, between 1 and 1000.

Having seen Y, you must guess whether the data value was generated under model 1 or model 2,
i.e. whether you are seeing the first or the second of two random integers. The data value carries no
information to distinguish between the two models, and this is what a statistician should report.

The usual Bayes factor is unity. However, because the likelihoods are all unity or zero under model
1, but all 1/1000 under model 2, the posterior Bayes factor favours model 1 by a factor of 1000 to
1. (In the author’s words, this should constitute ‘overwhelming’ sample evidence against model 2 in
favour of model 1.) We can easily elaborate this example so that for half of the sample values the posterior
Bayes factor gives overwhelming support to model 1, for half to model 2, and yet, as above, there is
no information in the data to distinguish the two models.

What do counter-examples such as this imply? Not that we should necessarily follow the Bayes route,
but that at the least, when we change the rules, we should expect various pathologies, even in the simplest
problems, which must be carefully addressed (somehow!) before we can hope that the new methods
will be reliable for difficult problems.

Dr T. Fearn (University College London): My analysis of the logic of this paper is as follows.

(a) Model comparison depends critically on the prior distributions for the unknown parameters in
the models.

(b) Actually specifying these priors would be difficult and subjective (and by unspoken implication
bad).

(c) Here is an arbitrary prior (which is ‘objective’ and therefore good). Objective here means that
it can depend on the experiment, the observations or anything else as long as it does not depend
on your prior beliefs about the parameters in question.

(d) Use it and the model comparison does not depend on the prior.

The beginning and end points of this sequence seem contradictory—Aitkin’s paradox perhaps? This
paradox at least is easily resolved. The illogical step is the sleight-of-hand whereby the calculated Bayes
factor—which is a Bayes factor for one very special (and difficult to defend) choice of prior—is implicitly
regarded as the Bayes factor for the diffuse prior that happened to be involved in its calculation.

The author, as he points out, has a perfect right to calculate the posterior mean of any quantity he
wishes—what he cannot do is to interpret the result as a Bayes factor, except in so far as it corresponds
to one very special (and highly informative) prior.

The only justification for diffuse/ignorance/reference (call them what you will) priors is that the results
that they give in some situations approximate those that would result from a wide range of actual prior
beliefs. The objective priors used here do no such thing—since you need to know the outcome of the
experiment to specify them they cannot approximate any coherent prior belief.

Incidentally, problems caused by diffuse priors will still occur more often than the author admits.
A good example of the sort of problem that can arise is the equation at the foot of page 123. Since
| L and | L? both have 1/ N tails this looks like /0. One cannot be quite so cavalier with improper
priors and get away with it all the time.

Professor D. A. Sprott (University of Waterloo): The example described in Section 1.3 hardly seems
to be a ‘paradox’. It seems only to illustrate the way in which the Bayesian approach using ad hoc diffuse
priors leads to an endless thrashing around to find one that makes sense. The simplest and most direct
approach would be the use of the likelihood ratio mentioned by Professor Aitkin. It has a simple
interpretation in terms of the ratio of objective frequencies and avoids the special pleading required
by the use of diffuse priors.
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If diffuse priors are used, Professor Aitkin’s procedure which uses posterior Bayes factors seems
preferable, and to produce more convincing results, than the use of Bayes factors.

In the comparison of two models M, and M, care has to be used in obtaining the likelihood functions
when one model is not a submodel of the other. In writing down the likelihood L;(6,) it must be
remembered that j is also a parameter. This determines which constants are irrelevant. In this regard
the description at the foot of the fifth page of L;(8;) as the ‘likelihood function of the data y and
parameters ,’ is misleading. For example, in Section 4 the factor exp(— RSS;/20?) in the expression
for L;(B;, o) is still relevant if ¢ is known, whereas it is not if L; is the likelihood function of 8; only.

Finally, from Figs 3 and 5 it appears that the conditioning in Section 5 to form the conditional likelihood
loses somewhat less information than do the profile and average likelihoods.

Professor A. P. Dawid (University College London): Aitkin dismisses the (proper) Bayes approach
to model comparison with the comment that it can be ‘very sensitive to variations in the priors’. However,
this so-called sensitivity deserves closer attention. For large samples, it turns out that (in regular problems,
with the parameters consistently estimable) the prior density w;(-) enters ij only through a factor
7rj(9j). Changes to the prior densities will thus introduce an asymptotically constant factor into the
posterior odds. This will be swamped by the other, data-derived, terms which determine the asymptotic
behaviour (tending to zero or infinity depending on which model holds) of the posterior odds. Moreover,
the appropriateness of this prior-based term is clear when we realize that, with extensive data, we are
effectively observing 0j=9j, and so a comparative assessment of different priors 7;(+) and 7rj’."(~) for
the same model would be based on the likelihood ratio wj(éj)/ 7rj’." (91-) generated by such an observation.

Asymptotic sensitivity analysis in the proper Bayesian approach is thus straightforward, while small
sample sensitivity is no harder to assess than in Aitkin’s approach. True, improper priors cause trouble,
and the above analysis shows why—they yield 7rj(9j)=0. Thus while I agree with Aitkin that ‘this
argument would limit Bayes analysis to informative priors’, I cannot accept his inference that this
conclusion (the very basis of much exciting work in modern Bayesian statistics) is something to be avoided,
by the development of such ad hoc constructions as posterior Bayes factors.

The problem of Section 5 is interesting since (on account of the Poisson approximation to the binomial
distribution) for large N and small p the data are effectively informative only about the single parameter
¥ = Np. Consequently, although posterior inferences about y will feature only the unimportant sensitivity
to the prior discussed above, those for other parameters will remain highly sensitive. But it should be
pointed out that Aitkin’s approach does not remove this sensitivity. In particular, if he were to re-do
his analysis with a prior incorporating independence between N and y, which seems perfectly sensible,
he would obtain entirely different results. Where then is the practical pay-off from Aitkin’s theoretical
compromise?

The following contributions were received in writing after the meeting.

Professor H. Akaike (Institute of Statistical Mathematics, Tokyo): It is often dangerous to advance
an argument related to the likelihood of a model without proper understanding of the basis for the
use of the likelihood as a criterion. The repeated use of one and the same sample in the posterior mean
of the likelihood function for the definition and evaluation of a posterior density certainly introduces
a particular type of bias that invalidates the use of the mean as the likelihood of the model.

Consider two models y ~ N(u, 0%) and y ~ N(u, 72) with a common diffuse prior for u, where both
o2 and 72 are known and ¢2 > 72. The posterior mean of the likelihood function for the first and second
model is given by (27/20)~! and (27'/27)~! respectively, and the posterior Bayes factor is given by
A =17/0 which is always less than unity. This shows that, other things being equal, the second model
is always preferred to the first.

The entropic or information theoretic interpretation of log-likelihood as developed in Akaike (1985)
will be useful to avoid this difficulty.

Jack Cuzick (Imperial Cancer Research Fund, London): The most problematic aspect of Professor
Aitkin’s proposal is to use the same data twice for making a single inference. Such an approach has
been successful in empirical Bayes estimation, where the data are used once to estimate the prior
distribution of some variable and then again to estimate its value for each observation, because the
two uses are in a sense orthogonal. If the prior distribution is estimated by all data points except that
under consideration, the answer does not change much. However, this is not so here, and absurd results
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will result in limiting cases. A more defensible procedure would be to split the data into two samples,
one for estimating the prior and the second for computing the expected likelihood.

Consider for example the normal regression model Y=N(X "y, ¢2I), p € R?, Y € R", ¢ known, and
split the observations into two samples of size n, and n,, defining Y, =N(X{u, 02I) and Y,=N(Xju,
a%I). If we assume I;=X;X;, j=1, 2, are both of full rank and that a vague prior is assumed for the
first sample, the expected likelihood for the second sample, with the posterior from the first sample
used as the prior, denoted E,(L,), is given by

@ro?)=-"2| I| - 12| [, |V exp[— ;
20

{Ry+ (i — 1) ' T iy —ﬁz)}}

where fi; are the maximum likelihood estimates for each sample, R,=(Y,—X37,)' (Y, — X3h,) is the
residual sum of squares for the second sample and I, = (/]! +1I; H-1,

If n; and n, are large and the two samples are chosen at random, then n; '/, and ny'I, are
approximately equal and by reparameterizing we can take them to be the identity. With this approximation
we obtain the simpler form

ny

2y-na/2 P2 1 * || N N2
E|(L,)=(2mo?) ™" exp| = (Rotn* i =) |
o

n,+n,

where n*=(n;'+n; ") "1,

The first factor is a constant and can be ignored, the second is a penalty for large p, while R,
measures the maximum likelihood fit of the second sample, and | i, — p, | measures the comparability
of the two samples. Several features require comment. If n,=p, then R,=0, Xju,=Y, and
n,/(n +ny)=1 so that this is essentially cross-validation. The opposite extreme of letting n,=p is
discussed by Atkinson (1978). Even when n,=n,, the samples are not treated symmetrically and
averaging E|(L,) with E,(L,) and other randomly selected subsamples, either on the additive or
logarithmic scale, might be considered.

This approach seems to have a more secure basis than that proposed and in principle overcomes the
problems which the author set out to deal with. Practical issues require further consideration.

Dr A. O’Hagan (University of Warwick, Coventry): Professor Aitkin suggests that we obtain the
posterior distribution using the whole data vector y, and then reuse all these data to effect model
comparisons. Such a procedure is quite evidently non-coherent, as Professor Lindley and Professor
Goldstein have demonstrated. Yet Professor Aitkin has persuasively argued some advantages of his
method. I believe that those advantages may be obtained without abandoning coherence, as follows.
Divide the data into two parts, y=(y;, ¥,), use y, to update the prior distribution to a posterior density
Ly (0j| ¥1), then use y, to provide model comparisons. Like Professor Aitkin’s posterior Bayes factor,
we obtain a method that avoids Lindley’s paradox, but for any chosen partition of the sample it is
a genuine Bayesian method, and so coherent. The difference between this and the usual full Bayes factor
is simply that we do not use y, for model comparisons.

If a proportion p of the sample is used to update the prior distribution, yielding a ‘partial’ Bayes
factor of C, then following the argument about the asymptote of Section 3 of the paper we find

—2log C=(1-p)(\—vim(p)}, 2)

where m(p) = —log p/(1 — p). Unlike Professor Aitkin’s m =log 2, this penalty factor m(p) exceeds unity
for all p. Akaike’s m =2 corresponds to using a proportion p=0.203, or a fifth, of the sample for updating
the prior distribution. The Smith and Spiegelhalter factor m=1.5 corresponds to p=0.417. However,
the term 1 — p in equation (2) represents the overall loss of information in not using the whole sample
for model comparison and argues for smaller p rather than larger.

Dr L. I. Pettit (Goldsmiths’ College, London): The examples presented by Professor Lindley and
Professor Goldstein illustrate why we should not be using posterior Bayes factors. However, I would
like to examine the relationship between the posterior Bayes factor and the Spiegelhalter and Smith
(1982) Bayes factor for normal regression models. In Section 4 Professor Aitkin uses a standard non-
informative prior. We adopt the Spiegelhalter and Smith limiting normal inverse x? conjugate prior,
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equation (4) of their paper, which leads to a Bayes factor which is invariant to scale changes in the
dependent variable. It follows that

r =L s6inaggs -
7 T'(n/2) J
and hence
TA —n/2
A:L__l: 2Ww2=p1)/2 ﬂ X
L’Z" RSS,

If we compare this with equation (5) in Spiegelhalter and Smith (1982) we see that the posterior Bayes
factor in this case is formally equivalent to taking

T -1/2
_ 2(p1pz)/2<M> .
(&) | A}‘Al |

This may be interpreted as equivalent to a training sample, with the same design matrix as the data,
which gives maximal support to the smaller model being given a Bayes factor of 2(P2=P1)/2_ | prefer the
Spiegelhalter and Smith procedure involving a minimal training sample which is not data dependent
and which leads to a Bayes factor of unity with maximal support.

If Professor Aitkin is concerned about the effect of the prior he could adopt the suggestions of Lempers
(1971) and Atkinson (1978) to set aside part of the data randomly as a real training sample to give
posteriors. He would then not be using the same data twice. If there is not enough data to make this
viable then I suggest that the methods of Spiegelhalter and Smith (1982) and Smith and Spiegelhalter
(1981) are preferable.

Professor T. E. Raghunathan (University of Washington, Seattle): What do data tell us about the
possibly many models that are justifiable from prior experience and the scientific context of the problem?
Once the model is specified then the likelihood contains all the information about the parameter under
that model. However, the uncertainty about the parameter naturally leads to uncertainty about this
informal ‘informational measure’, i.e. the likelihood function. It is natural, at least from a Bayesian
perspective, in model comparisons to study various characteristics of the posterior distribution of the
likelihood (Raghunathan, 1984). The posterior mean of the distribution of the likelihood is one such
characteristic. It is dangerous just to compare this mean across models and to stop at that. Given that
two models have the same posterior Bayes factor, it does not mean that the data favour the two models
equally. The whole posterior distribution of the likelihood should be considered before settling on one
model.

An easy way to do this is to use the importance sampling to simulate the posterior distribution of
the likelihood under different models. Let L;(#|x) denote the likelihood function under the jth model.
Let p;(¢’|x) denote the posterior density of & under the jth model where j=1, 2, . . ., M and @ denote
the parameters of the jth model. For simplicity let us assume that the parameters in these models represent
similar characteristics (like location, scale, skewness, kurtosis etc.) of the distributions. This can be
achieved in most cases by reparameterization.

Suppose that g,(8) is a reasonable approximation for p, (6” |x) and it is easy to draw values from
g, for some g. For each drawn value 0, from g, attach an importance ratio % =p;(0«|x)/g,(0+) up
to a multiplicative constant. Then (&%, 04, j=1,2,...,M; x=1,2, ..., N) can be used to construct
the posterior density of the likelihood under different models if Nis sufficiently large. We need to draw
values 6, only once and to recompute the importance ratios when a new model is introduced.

It is possible that the posterior distribution of the likelihood under a subset of models will be similar
in many aspects. Then as a Bayesian I see no alternative but to draw inference under these models and
to combine them using the posterior probabilities of the models being correct (calculated usually under
the discrete uniform prior) as weights. For instance, the prediction scheme that makes sense is to consider
a weighted average of predictions with the posterior probabilities as weights. Should we not take this
approach regardless and abandon all the model selection procedures?
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Dr Trevor J. Sweeting (University of Surrey, Guildford): Results given by the posterior Bayes factor
will usually seriously conflict with Bayesian analyses based on proper prior distributions for the nuisance
parameters and, as already demonstrated by previous discussants, with common sense. I would therefore
like to explore a little further the arguments leading to the definition of the posterior Bayes factor.
The motivation seems to come from statements such as ‘. . . why should this objective prior assign
weight to values of pu, which are untenable given the data . . .?’ (in discussion of the example in
Section 1.3). Continuing with this example, this leads to the intuitively plausible idea that we could
first use the data y to revise the prior distribution of u,, and then use y to calculate the Bayes factor
based on this revised distribution. The distribution used in the definition of the posterior Bayes factor
A, however, is not the posterior distribution of u,, but the posterior distribution of u, given that the
data are actually generated from M, . If the data are known to be generated from M|, then they provide
no information relating to the likely value of u, under M,. Thus values of u, specified by the prior
outside the main range of its posterior distribution (conditional on M,) are only ‘untenable given the
data’ if we know at the outset that P(M,|y) is small; but this is precisely the quantity that we are
attempting to evaluate! Likewise, a large Bayes factor only implies strong rejection of the diffuse prior
model M,’ (see Section 1.3) when we know that P(M,|y) is very small.

Let us pursue the author’s ideas, using the correct posterior distribution of u,, and introduce LC (C
for correct average) given by

L§= SLz(Itz) (| y) dpsz.
Then, since 7(u,|y, M,)=m(p,), we find that
LS=L% P(M,|y)+ Ly P(M,]y).

Now let C=p(y|M,)/L5. By equating posterior odds to prior odds x C, we can obtain C as the positive
solution of a quadratic equation which involves 4, the Bayes factor B and the prior odds. I am not
suggesting that anyone should use this, any more than the posterior Bayes factor A. The point is that,
if we pursue the author’s motivation a little more carefully, we see that it is just not possible to eliminate
entirely the Bayes factor B from consideration. Furthermore, the prior odds ratio also becomes entangled
with the ‘Bayes factor’.

Professor H. Tong (University of Kent, Canterbury): Sir David Cox’s comment has reminded me
of the role of predictive distributions in modelling. Given (past) data (¥, ¥, . . ., ¥,), the predictive
distribution of a (future) observation, y,,,, may be defined as the mean of the data distribution
P(¥,.1]0) with respect to the posterior distribution w(8|y,, . . ., y,). Akaike (1980) has discussed the
use of predictive distributions in the context of what he called ‘the commonsense approach to Bayesian
statistics’.

Joe Whittaker (Lancaster University): In this interesting paper Murray Aitkin defines and evaluates
the posterior Bayes factors. I should like his opinion on the following construction which indicates that
these posterior factors may have an undesirable property for use in inference.

We wish to compare two models denoted by j=1, 2 based on data y, in a situation complicated by
an unknown nuisance parameter 6, where the distribution of Y, p(»|/, 8), depends on both j and .
If 6 has a known prior distribution (for example # may index a random choice of experiment) and is
distributed independently of j, we may integrate over 6 to obtain the conditional distribution p(y|/)
of Y given just j. The argument is that

(a) if, in this distribution, Y is independent of j (so that an observation of Y cannot be informative
about j) and
(b) if the posterior Bayes factors for j differ with differing values of y,

then the use of these posterior factors for inference is unwarranted.

To see that such an example exists consider the following example.
Suppose that the distribution of Y given j and 6 is determined by the conditional probabilities in
Table 4, where these given numbers satisfy

a+Bi+vi=1=0+B+7,,

and a,+a2=§, B, +BZ=§ and v, +'yz=§. Further assume that the nuisance parameter 6 takes the
values 1 and 2 with probability %, irrespective of the value of ;.
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TABLE 4
Jj=1 Jj=2
0=1 0=2 0=1 0=2
y=1 a, &, B, B,
y=2 B B, oy @,
y=3 Y 42 7 Y2

The distribution of Y given j must then be

p(1)N=3
for y=1, 2, 3 whatever j, and so is uninformative about j. However, the posterior mean of the likelihood
function fj, defined at the beginning of Section 2 of the paper, in this example becomes

I- S P16, j p6) d6/p (),

so that the posterior Bayes factors for model j=2 against model j=1 are (82+33)/(c?+a3),
(o3 +o2)/(B+ %) and 1, corresponding to observing y=1, y=2 and y=3 respectively. For a numerical
example, set a; =1/6, 3;=2/6 and ~, =3/6, so that the posterior Bayes factors are 8/10, 10/8 and 1
respectively.

This example is a version of the well-known counter-example to the assertion that, for random variables
X, Y and Z, the independence of X from Y and of X from Z implies the independence of X from
(Y, Z). For instance, see Whittaker (1990).

The author replied later, in writing, as follows.

I thank the discussants for their comments. I shall deal first with comments on my examples, then
with the counter-examples, and finally make some general comments.

First, the use of the posterior Bayes factor (PBF) is not restricted to the comparison of just two models.
Professor Barnard and Sir David Cox refer in the ‘simple/simple’ models of Section 1.1 to the possibility
of a third composite model, which I will take as M;: y ~ N(u, 02) with x unknown. The average
likelihoods for the three models are proportional to L, =exp(—2)=0.135, L,=exp(—4.5)=0.011 and
L;=1/+/2=0.707. Model 3 is best supported and model 1 is tenable, with L,/ L;=0.191, but model
2 is firmly ruled out, with L,/ L;=0.016. Such comparisons can be extended directly to any number
of models of any complexity.

The examples in Sections 4 and 5, and the discussion of the Lindley paradox, were meant to show
the failure of the Bayes approach with conventional priors when these are used to calculate the Bayes
factor, and the corresponding success of the PBF. Very few comments refer to these examples, which
I take to establish that the analyses are not challenged. In the regression example, Dr Pettit proposes
the improper limiting normal inverse x? conjugate prior for 8 and o, in which the prior for 8 depends
on o, so that the joint prior is strongly informative about g, though this is hardly the kind of informative
prior resulting from prior information, either subjective or objective. Nevertheless the PBF is almost
unaffected, and in fact has the asymptotic value of Section 3 appropriate for likelihoods that are normal
in the parameters. Dr Pettit finds this unsatisfactory because it apparently corresponds to an imaginary
training sample which is not the imaginary sample imagined in the thought experiment by Spiegelhalter
and Smith. The PBF does not require imaginary training samples, or any other thought experiments,
and is not changed in value by a thought experiment, performed or not performed.

Professor Dawid asks whether the posterior mean of the likelihood in N in the binomial example
would be changed by a prior independent in N and = Np. The answer is no, as described in the paper
and in more detail in Aitkin and Stasinopoulos (1989). The same likelihood in N is obtained, with the
two-parameter likelihood almost orthogonal in N and . Dr Fearn points out that the integrated likelihood
with respect to the beta prior does not have a finite sum over N unless @ > 1. Thus a uniform prior
on N and p will give an improper posterior mass function for N unless N has a finite maximum value.
This was noted by Draper and Guttman (1971) who set a finite limit @ priori on N. However, this does
not affect the shape of the integrated likelihood, or the essential difference between the prior and posterior
means over p of the likelihood.
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Professor R. L. Smith asks whether this example is over-simple, and whether a more complex nuisance
parameter structure might throw more light on the different approaches. The analysis of more complex
capture-recapture models with multiple nuisance parameters will be reported elsewhere; the present
example is simple, but it shows clearly the extreme differences possible between prior and posterior
means of the likelihood. It appears to Professor Sprott that the conditional likelihood loses ‘somewhat
less’ information than the profile or average likelihoods, though he does not say why. The conditional
likelihood loses the information in the likelihood from the conditioning variable 7, which has the b(Nr,
p) distribution. The average likelihood recovers the ‘average’ information about N in T by integrating
out p from this marginal likelihood with respect to the posterior distribution of p given N. There is
not much information in this marginal likelihood, but there is some, and the average likelihood loses
less than the conditional likelihood which ignores 7.

Now to the counter-examples: Professor Lindley gives an example in which (to use his illustration)
the PBF very weakly supports (by a factor of 1.5) the hypothesis ‘tall man’ over ‘tall woman’, very
weakly supports by the same factor ‘short man’ over ‘short woman’, but supports even more weakly
the composite hypothesis ‘woman’ over ‘man’. None of these PBFs is conclusive sample evidence, but
Professor Lindley says that this is ridiculous. He does not give the value of the ordinary Bayes factor
for the composite hypothesis, which is 0.64, compared with 0.77 for the PBF. Since the PBFs for the
simple hypotheses are the same as the prior Bayes factors (since both are just the likelihood ratio) Professor
Lindley’s argument would make the ordinary Bayes factor conclusions even more ridiculous. Perhaps
Lindley realizes this, for he seems to reject Bayes factor as well, claiming that only posterior odds ratios
can serve as inferential summaries. But posterior odds ratios are not inconsistent with the sample
information in likelihood ratios or Bayes factors—they simply incorporate the given non-sample prior
model information. In the example the prior odds on tall man relative to tall woman are 1/9, giving
posterior odds of 1/6, and those on short man to short woman are 9/1, giving posterior odds of 13.5.
The prior odds on man to woman are 1/1, and the posterior odds are 0.64. The only difference that
the PBF makes is to change the last value to 0.77. If these inversions of weak implications from sample
evidence in this example are Professor Lindley’s only criterion for the performance of inferential methods,
then the ordinary Bayes factor fares worse than the PBF. It is this criterion, not the PBF result, that
is ridiculous.

Professor Goldstein and Dr Whittaker give examples of the same form: f;(y|0;) are different, but
w,(0;) = m(6;) are the same, and so are the marginal densities f;(y)=/(y). Given one observation y, the
ordinary Bayes factor based on the marginal distributions is 1, but the PBF is not. Professor Goldstein
makes the PBF 1000 in his example. Professor Akaike gives a similar example in which the marginal
distribution of a single observation actually degenerates, if the diffuse prior is taken literally, and the
prior Bayes factor can take any value. The common feature of all these examples is that only one
observation is allowed from f,(y |o ;): with more than one observation the marginal distributions of y
are different. In Professor Goldstein’s example a second observation immediately identifies the correct
model. These examples are slight extensions of the well-known examples of so-called ‘paradoxes’ of
likelihood inference with one observation from a two-parameter distribution. Professor Barnard warns
against settling important issues on the basis of single data sets. This warning seems even more cogent
when the data set consists of just one observation.

Now to general issues: Dr Davison refers to the recent paper by Pace and Salvan (1990) giving general
conditional tests for separate families problems. The same conditional test is given for comparing the
log-normal with the exponential distribution and the log-normal with the gamma distribution. This is
clearly unreasonable and I shall report elsewhere the PBF approach to this problem. The comparison
of different link functions for the same binomial data is an excellent example of the value of the PBF
approach. If the sample sizes are reasonably large so that the likelihoods in the parameters can be taken
as normal, the deviances for the two models can be compared directly as in Section 3. With
the same number of parameters in the models, the deviance difference is 7.78, so the PBF is
exp{—%(7.78)}=0.020. The complementary log-log link is strongly supported over the logit. If the
sample sizes are not large more accurate approximations to the average likelihood using higher derivatives
of the sample log-likelihood are required. No bootstrap sampling is needed. Details for the logit model
are given in Aitkin (1990).

Sir David Cox gives an interpretation of the PBF in terms of the principle of temporal coherence,
which it violates. Whatever the status of this principle, Sir David proposes calibration as the ultimate
test, i.e. the performance of the PBF under hypothetical replications. This is given in Section 3, which
incidentally also shows the unsatisfactory behaviour of the Akaike information criterion (m =2), with
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its very heavy penalty against complex models. Models with the number of nuisance parameters of the
same order as the sample size cause difficulties in all likelihood approaches, but these difficulties arise
because of the failure to model the nuisance parameters. Ad hoc conditional or marginal likelihood
approaches to such models work in some cases, namely those for which conditioning or marginalizing
is equivalent to integrating out the nuisance parameters with respect to a distribution. It seems simpler
to approach the problem directly and to specify a variance component model for such situations at
the beginning, rather than to introduce it implicitly later. The PBF approach then applies directly.

Professor A. F. M. Smith says, if I understand him correctly, that model choice problems are more
complicated than a simple Bayes factor calculation. Perhaps it would clarify matters if the question
of evidence for the competing models were separated from the question of decision to choose one of
the models, and the resulting utility. The posterior mean of the likelihood provides the sample evidence
for the model, and the PBF provides the weight of sample evidence for one model over another. This
is the important contribution of the data analysis, and is separate from the question of possible actions
to be taken given the evidence, and their consequences.

Several discussants (Dr Cuzick, Dr Pettit and Dr O’Hagan) suggest that we use part of the sample
to obtain the posterior density of 6;, and the rest to compare the models given these independent
posterior densities. Dr O’Hagan’s proposal is the most formal. He also shows most clearly the difficulties
in such arbitrary sample divisions: different splits of different sizes will produce different ‘partial’ Bayes
factors. On what non-arbitrary basis will the actual division be made? Such proposals are made to avoid
‘using the data twice’. Suppose that an experimenter wants the posterior density of 8, , given a model
M, . She generates data y and obtains (6, | y), based on prior 7,(6,). A second experimenter analyses
the same data using a different model M,; he obtains m,(0,|y), using prior m,(#,). Later the
experimenters wish to compare their models—which is better supported by the data? The PBF is the
relevant comparison: surely we do not require that the experimenters return to their prior densities for
0;, given their information about the particular value of 0, that actually applied in this experiment, nor
that they generate independent data from a new experiment, to settle the issue of which model is better
supported by the previous experiment.

Dr Fearn misrepresents my references to subjective priors. I have no objection to the subjective Bayesian
approach. If one has subjective (individual) priors ;(6;), whether these are based on experimental data
or are agreed assumptions for the client, then the calculation of the (prior) Bayes factor is a formal
probability result. The question is not its correctness, but its appropriateness for inference. Bayesians
point out the unreasonableness of Neyman-Pearson post-data averaging over the sample space, with
respect to samples which might have been observed, but were not. But the same type of averaging is
used in the ordinary Bayes factor. Before the data are obtained, w;(0;) is the distribution of 6,, but,
once the sample value of 6; is generated and the data y observed, averaging over values of 6, which
might have generated y, but did not, is no longer appropriate. As Professor Dawid notes, with extensive
data we are effectively observing 0j=9j. The PBF uses this information, averaging over the values of
0, near 9, which could have generated the data, not those which could not. Professor Dawid underlines
the arbitrariness of the ordinary prior mean of the likelihood, which is changed in large samples by
the factor 7rj(9j)/ 7r;‘ (9,) by a change of prior from () to 7r}" (6). The PBF is invariant to this change.
Prior Bayes factors cannot use diffuse priors; PBFs can. The claims of ‘absurd’ or ‘dangerous’ results,
from ‘using the data twice’, are philosophical statements that are not supported by evidence.

In conclusion, PBFs stand as a general framework or paradigm for model comparisons, i.e. for
parametric statistical inference. If a Bayes-non-Bayes compromise is necessary, they provide one.
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