Optimizing Instance Selection for Statistical
Machine Translation with Feature Decay Algorithms

Abstract—We introduce FDAS for efficient parameterization,
optimization, and implementation of feature decay algorithms
(FDA), a class of instance selection algorithms that use feature
decay. FDA increase the diversity of the selected training set
by devaluing features (i.e. n-grams) that have already been
included. FDAS decides which instances to select based on three
functions used for initializing and decaying feature values and
scaling sentence scores controlled with 5 parameters. We present
optimization techniques that allow FDAS to adapt these functions
to in-domain and out-of-domain translation tasks for different
language pairs. In a transductive learning setting, selection of
training instances relevant to the test set can improve the
final translation quality. In machine translation experiments
performed on the 2 million sentence English-German section of
the Europarl corpus, we show that a subset of the training set
selected by FDAS can gain up to 3.22 BLEU points compared
to a randomly selected subset of the same size, can gain up
to 0.43 BLEU points compared to using all of the available
training data, and can reach within 0.5 BLEU to the full training
set result by using only 2.7% of the full training data. In an
active learning setting, FDAS minimizes the human effort by
identifying the most informative sentences for translation and
FDA gains up to 0.45 BLEU points compared to using all of
the available training data and 1.12 BLEU points compared to
random training set. In translation tasks involving English and
Turkish, a morphologically rich language, FDAS can gain up to
11.52 BLEU points compared to a randomly selected subset of
the same size, can achieve the same BLEU score using as little
as 4% of the data compared to random instance selection, and
can exceed the full dataset result by 0.78 BLEU.

Index Terms—instance selection; machine translation; trans-
ductive learning; information retrieval
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I. INTRODUCTION

TATISTICAL machine translation (SMT) makes use of a

large number of parallel training sentences, which contain
pairs of sentences that are translations of each other, to derive
translation tables, estimate parameters, and generate the actual
translation. Not all of the parallel training sentences nor the
translation table that is generated is used during decoding a
given set of test sentences and filtering is usually performed
for computational advantage [1].

Previous work shows that the more the training data, the
better the translations become [2]. Word-level translation ac-
curacy is affected by the number of times a word occurs in
the parallel training sentences [3]. Koehn and Knight find that
about 50 examples per word are required to achieve a perfor-
mance close to using a bilingual lexicon in their experiments.
Translation performance can improve as we include multiple
possible translations for a given word, which increases the
diversity of the training set.

However, it is also common knowledge that the quality
and the relevance of the training data have a significant

impact on translation performance. With the increased size
of the parallel training sentences there is also the added
noise, making relevant instance selection important. Phrase-
based SMT systems rely heavily on accurately learning word
alignments from the given parallel training sentences. Proper
instance selection can play an important role in obtaining a
small sized training set with which correct alignments can be
learned. In this work, we quantify the effect of training data
relevance and show that by using significantly less training
data, we can achieve the same, or in some settings, higher
level of translation performance.

Instance selection has been used in statistical machine
translation in two ways:

Transductive learning makes use of test instances, which
can sometimes be accessible at training time, to learn specific
models tailored towards the test set. In a transductive learning
setting, selection of training instances relevant to the test set
improves the final translation quality [4].

Active learning selects a subset of training samples £ from
the unlabeled dataset U/ that will benefit a learning algorithm
the most [5]. Active learning in SMT selects which instances
to add to the training set to improve the performance of a
baseline system [6] or which to retain for achieving similar
performance using fewer instances [7], [8].

We describe a class of instance selection algorithms that
use feature decay, feature decay algorithms (FDA), that aim
to maximize the coverage of the target language features
while decaying their weights and achieve significant gains
in machine translation performance and decrease the training
set size. FDA is introduced in [9] and in this paper, we
develop FDAS, which is an independent extension of FDA
that generalizes the ideas in earlier work with five parameters
that allows better scaling, scoring, and optimization, which
improves the overall performance and provides greater under-
standing of the domains and tasks together with identification
of key differences between them. The parameterization and
optimization mechanisms we introduce with FDAS5 allows ef-
ficient instance selection with many monolingual and bilingual
application scenarios. FDAS can be used in both transductive
and active learning scenarios. From a transductive learning
perspective, we show that FDAS can gain up to 3.22 BLEU
points compared to a similarly sized randomly selected subset
of the training set in an in-domain translation task with
large parallel corpora and 11.52 BLEU points in a translation
task involving English and Turkish, a morphologically rich
language, with smaller parallel corpora. At the same time,
FDAS can also gain up to 0.43 BLEU points compared to
using all of the available training data and can reach within 0.5
BLEU by using only 2.7% of the available training data. From
an active learning perspective, we show that an SMT system



using FDAS can achieve a given BLEU performance with as
little as 4% of the available training data compared to random
instance selection, significantly reducing the required human
effort. In active learning experiments, FDA gains up to 0.45
BLEU points compared to using all of the available training
data and 1.12 BLEU points compared to random training
set. An implementation of the algorithm is available from
the authors’ website at http://xxx.xxx .xxx, which also
includes a program for optimizing the parameters of FDAS.

The next section describes the general structure of feature
decay algorithms. Section III describes related approaches to
instance selection, some recast as specific instantiations of
the FDA framework. We present a 5 parameter variation of
FDA called FDAS5 in Section IV and discuss its computational
complexity. Section V presents our datasets, evaluation, op-
timization, and coverage results together with adaptation to
in-domain (ID) and out-of-domain (OOD) translation tasks
for different language pairs (English-German and English-
Turkish). Section VI presents our translation results and Sec-
tion VII presents parallel FDAS algorithm. We summarize our
contributions in the last section.

II. INSTANCE SELECTION WITH FEATURE DECAY

In this section we will describe a class of instance selection
algorithms for machine translation that use feature decay,
which increases the diversity of the training set by devaluing
features (i.e. n-grams) that have already been included. After
reviewing the state of the art in the field, we generalize the
main ideas in a class of feature decay algorithms (FDA) which
allow efficient implementation and parameter optimization.
Our abstraction makes three components of such algorithms
explicit permitting experimentation with their alternatives:

o The initial value of a feature.

o The update of the feature value as instances are added to
the training set.

o The value of a candidate training sentence as a function
of its features.

A feature decay algorithm (FDA) aims to maximize the
coverage of the target language features (such as words,
bigrams, and phrases) for the test set. A target language feature
that does not appear in the selected training instances will
be difficult to produce regardless of the decoding algorithm
(impossible for unigram features). In general we do not know
the target language features, only the source language side
of the test set is available. Unfortunately, selecting a training
instance with a particular source language feature does not
guarantee the coverage of the desired target language feature.
There may be multiple translations of a feature appropriate for
different senses or different contexts. For each source language
feature in the test set, FDA tries to find as many training
instances as possible to increase the chances of covering the
appropriate target language feature. FDA does this by reducing
the value of the features that are already included after picking
each training sentence from the source language. Algorithm 1
gives the pseudo-code for FDA.

The inputs to the algorithm are the source language training
sentences U, the source language features of the test set F,

Algorithm 1: The Feature Decay Algorithm

Input: Training sentences U, test set features JF, and
desired number of training words N.
Data: A queue Q, sentence scores score, feature values
fvalue.
Output: Subset of the training sentences to be used as
the training data £ C U.
1 foreach f € F do
2 Sfvalue(f) + init(f)
3 foreach S € U do
4 score(S) < sentScore(S5)
5 push(Q, S, score(S))
¢ while |[£| < N do
7 S + pop(Q)

8 score(S) < sentScore(S)

9 if score(S) > topval(Q) then
10 L+ LU{S}

1 foreach f € features(S) do
12 fvalue(f) < decay(f)
13 else

14 push(Q, S, score(S))

and the desired number of words NN in the subset £ of the
training set output by the program. We use n-grams up to a
specified n as features in our experiments.

The first foreach loop initializes the value of each test set
feature using init(f) which can use the frequency, length
and other attributes of the n-grams to determine the feature
value.

The second foreach loop initializes the score for each
candidate training sentence using sentScore(.S). This func-
tion uses the length of the sentence and the values of its
features to estimate the utility of adding it to the output. The
sentences are then pushed onto a queue with their scores.

Finally the while loop outputs a subset of the training
sentences L by picking candidate sentences with the highest
scores until the desired number of words N is reached. This
is done by popping the top scoring candidate sentence .S from
the queue at each iteration. After ensuring that S is the best
candidate it is placed in £ and the values of its features are
decreased using decay(f).

Note that as we change the feature values, the sentence
scores in the queue will no longer be correct. However they
will still be valid upper bounds because the feature values
only get smaller. We use an abstract data type called an upper
bound queue (implemented using a binary heap) that maintains
an upper bound on the actual values of its elements [10]. Each
successive pop from an upper bound queue is not guaranteed
to retrieve the element with the largest value, but the remaining
elements are guaranteed to have values smaller than or equal
to the upper bound of the next element.

We thus recalculate the score of each sentence popped in
the while loop because the values of its features may have
changed. We compare the recalculated score of S with the
upper bound of the next best candidate. If the score of S is
equal or better we are sure that it is the top candidate, in which



case we place S in our training set and decay the values of
its features. Otherwise we push S back into the priority queue
with its updated score.

FDA gives us a class of algorithms that use feature decay for
instance selection. By using upper bound queues implemented
as binary heaps, FDA offers a very fast implementation for
different instance selection algorithms. In the next section,
we define various other models by parameterizing its three
functions init, decay, and sentScore. Making the pa-
rameterization explicit allows us to optimize the parameters
to discover better performing variants specialized to specific
translation tasks.

A. FDA Framework

Bigcici and Yuret [9] discover the FDA algorithm for training
instance selection for machine translation given a training set
and a test set in a transductive learning framework (hence
[TL]). Training sentences are scored as follows:

decay(f) init(f)(1+ Cr)
init(f) = 1
sentScore(S) = Z Svalue(f) (1)
JEF(S)

FDA is not parameterized and therefore optimization is only
done by trying different decaying or initialization functions.
Since there is no normalization with the sentence lengths,
FDA also tends to select longer sentences to maximize the
TCOV, which can make the word alignment task harder. In
Section IV, we alleviate these problems with the introduction
of FDAS, which parameterizes the contribution of each of
these factors into consideration when calculating the value of
features and the scores for sentences. Parameterization allows
better understanding of the translation domains and tasks,
improves the performance by adapting to new problems, and
gives more control over what kind of instances are to be
selected for the training set.

FDA is applied on many learning tasks which require
diverse and relevant retrieval of training instances. FDA is
very useful for MT since coverage and diversity are both
important for building high performance SMT systems and
the coverage of target features is correlated with the translation
performance [9]. Recently, parallel FDA significantly reduces
the time to deploy accurate MT systems to half a day and
still achieve state-of-the-art SMT performance [11]. The same
work also shows that if parallel FDA is used for selecting
instances for the language model (LM) corpus using the FDA
selected training target side as the test set, the relevancy of
the LM corpus selected can reach up to 86% reduction in
the number of OOV tokens and up to 74% reduction in the
perplexity. FDA score is also used as an indicator of the
expected translation quality [12], [13] for quality estimation in
translation. Referential translation machines use FDA during
monolingual retrieval of reference training sentences for mak-
ing semantic similarity judgments [14] and grading student
answers [15].

III. RELATED WORK AND FDA

In this section, we review the state of the art in the field of
instance selection for machine translation. We recast some al-
gorithms in the FDA framework and describe their differences
using the three functions init, decay, and sentScore.
We also categorize the related work into transductive learning
(TL) and active learning (AL) approaches as described in
the introduction depending on their emphasis in the original
publication. In Section IV, we introduce FDAS, a variant of
the FDA algorithm with five parameters that generalize many
of the ideas introduced in earlier work.

N-gram coverage [AL]: Eck et al. [7] reduce the training set
size by selecting a smaller subset after sorting the training data
using a scoring function (hence [AL]). They try to maximize
n-gram feature coverage when selecting training instances:

init(f) = Culf)
decay(f) = (Ce(f)>070:init(f))
sentScore(S) = |—;| Z fvalue(f) (2)
fEF(S)

sentScore(S) scores sentence S, F(S) gives the set of
features found in .S, Cy; and C return the count of f in U/ and
L respectively. The NGRAM scorer sums over unseen n-grams
to increase the coverage of the training set. The denominator
involving the length of the sentence takes the translation cost
of the sentence into account. They do not use the test set when
selecting training instances but rather use previously selected
training data to identify the covered n-gram features.

TF-IDF [TL]: Li et al. [4] use TF-IDF (term frequency -
inverse document frequency) information retrieval technique
based cosine score to select a subset of the parallel training
sentences close to the test set for SMT training (hence [TL]).
They outperform the baseline system when the top 500 training
instances per test sentence are selected. The terms used in their
TF-IDF measure correspond to words where this work focuses
on n-gram feature coverage. When the combination of the top
N selected sentences are used as the training set, they show
increase in the performance at the beginning and decrease
when 2000 sentences are selected for each test sentence. TF-
IDF does not involve decay of feature values. If T is the test
set and C'r-(f) is the count of feature f in the test set, TF-IDF
instance selection can be described in FDA terms as:

init(f) = Cr(f)log(IT1/Cr(f))?
decay(f) = init(f) (no decay)
ngp(s)fval“e(f)
ts S) = 3
2eneSeorel) = I rers loa(TI/Or (NP
DWDS [AL]: Density weighted diversity sampling

(DWDS) [8] selects sentences containing the n-gram features
in the unlabeled dataset ¢/ while increasing the diversity
among the sentences selected, £ (labeled) to improve SMT
performance (hence [AL]). DWDS increases the score of a
sentence with increasing frequency of its n-grams found in



U and decreases with increasing frequency in the already
selected set of sentences, £, in favor of diversity. Let Py (z)
denote the probability of feature = in U and C,(z) denote
its count in £, then DWDS scores as:

_ Yser(s) Pul) e—aCr(z)
- F(S)]
 Yaers) L@ € F(L))
AR [E(S)]
sentScore(S) = Cm, @

where F'(S) stores the features of S, I(.) is an indicator
function, and « is a decay parameter. d(,S) denotes the density
of S proportional to the probability of its features in U/
and inversely proportional to their counts in £ and u(S) its
uncertainty, measuring the percentage of new features in S.
DWDS tries to select sentences containing similar features in
U with high diversity. In their experiments, they selected 1000
training instances in each iteration and retrained.

Perplexity [AL]: Perplexity of the training instance as
well as inter-SMT-system disagreement are also used to se-
lect training data for translation models [16]. The increased
difficulty in translating a parallel sentence as measured by
the disagreements among translations obtained by a com-
mittee of translation models or its novelty as found by the
perplexity adds to its importance for improving the SMT
model’s performance (hence [AL]). A sentence having high
perplexity (a rare sentence) in £ and low perplexity (a common
sentence) in U is considered as a candidate for addition.
SMT performance improvements can be achieved by training
over some initial parallel training data together with selected
subsets of additional training data instead of training with all
of the available training data. Moore and Lewis [17] select
training data for language models (LM) using the difference
of the cross-entropy of ID and OOD training data:

Hip(s) — Hoop(s)-

Axelrod et al. [18] use a bilingual cross-entropy difference
score for selecting training data for SMT:

Pami(s,1) = Hip(s) = Hoop(s) + Hip(t) = Hoop(t), ()

where S, T stand for the source and target languages, and
(s,t) is a training sentence pair being scored.

IV. THE FDAS5 ALGORITHM

In this section we introduce a five parameter instance
selection algorithm called FDAS. Explicitly parameterizing
the three FDA functions init, decay, and sentScore
allows us to (1) efficiently replicate and generalize over some
of the ideas from earlier work, (2) optimize the parameters
for any new ID or OOD target translation domain to achieve
better performance, (3) control the type of instances that
are selected from the training data, and (4) understand the
target translation domains and tasks better. An implementation
of the algorithm is available from the authors’ website at
http://XXX.XXX.XXX.

The FDAS init function, which computes the initial value
of a feature f can be parameterized to take into account
the number of tokens in the feature |f|, and its log inverse
frequency using the parameters [ and ¢ respectively. Features
that do not appear in the test set are considered to have zero
value.

init(f) = log(Ul/Cu(H)IfI (6)

The FDAS decay function, which is used to compute the
reduced values of features after they have been included Cr
times in the output £ can implement polynomial or exponential
decay using the parameters c and d:

decay(f) = init(f)(1+ Cg)~cd°- (7)

The FDAS5 sentScore function calculates the total score
for a sentence as a sum of its feature values and can be scaled
by a sentence-length factor using the parameter s:

sentScore(S) = ﬁ Z Svalue(f) 8)

FEF(S)

These five parameters, together with the maximum feature
n-gram length n, determine the value of each sentence and
the instance selection behavior of FDAS. The default values
d=1c=s=1=1=0 give every feature the same value
and perform no decay or scaling.

A. Computational Complexity

The computational complexity of FDAS is in
O(mM log M), where M is the number of instances in
the training data and m is the number of instances selected
with m < M, which is dominated by the while loop.
However, the average number of iterations depends on the
sentence scores and the more the weight of a feature is
decayed, the less it effects the score and hence the ordering,
which makes the diversity more important. The number of
iterations is also effected by the parameter values, which
effect the scores. We investigate the computational cost of
FDAS by the average number of iterations in the main loop.
Figure 1 shows the number of times the while loop iterates
with respect to the number of words already selected for
OOD and ID. The number of iterations in the while loop
converges to one per word for OOD and two per word for ID
instance selection using optimized parameters.

V. DATASETS, EVALUATION, AND OPTIMIZATION

We present the experimental settings for our results in three
parts: datasets, evaluation, and optimization. FDAS parameter
optimization converges to very different values for different
language pairs and even for in-domain and out-of-domain
translation tasks. Section V-A describes the datasets we use.
BLEU is an expensive metric to judge the performance of a
training set, therefore we use target language bigram coverage
(TCOV) as an alternative metric in some experiments as
described in Section V-B. Section V-C describes how we
obtain the optimal parameters for FDAS and analyzes the
sensitivity of results to each parameter. Finally, Section V-D
introduces genetic algorithms as an alternative optimization
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Fig. 1. Number of iterations in the while loop of FDAS converges to one

per word for OOD and two per word for ID instance selection.

method for searching for the parameters of FDAS, which
reduces the computational overhead, and empirically achieves
similar results. We use n-gram features.

A. Datasets

We performed optimization and sensitivity analysis for the
parameters used in the FDAS algorithm and obtained coverage
results on the English (en) to German (de) language pair using
the parallel training sentences provided by [19] (WMT’12).
The English-German section of the Europarl corpus contains
about 2 million sentences (55 million English, 52.5 million
German words). Both the development set and the test set
contain 3003 sentences (73K English, 72.6K German words)
in this out-of-domain (OOD) translation task. We also cre-
ated in-domain (ID) development and test sets composed of
1000 sentences (27K English, 26K German words) each by
randomly sampling the training data. For ID experiments the
development and test sets were removed from the training
data. The target language training sets were used to build the
language models required. We used the development sets to
perform parameter optimization and sensitivity analysis and
the test sets to perform feature coverage and BLEU evaluation.
en-de language pair provides ID and OOD translation tasks
with abundant and large parallel corpora.

Additionally, we perform optimization and obtain results on
the English to Turkish (tr) and Turkish to English language
pairs using the parallel training sentences provided by EU
project Bologna !, which contains course syllabi documenta-
tion from different universities in Turkey. The parallel corpus
contains 352K training sentences (3.2 million English, 2.7
million Turkish words) and additional 1200 sentences each
for development and test sets (14K English, 12K Turkish
words). This language pair provides a translation task in a
constrained domain with smaller parallel corpora and a harder
one with Turkish being a morphologically rich language with
scarce parallel corpora resources. The development and test

Uhttp://www.bologna-translation.eu/

sets are extracted randomly from the training set and hence
this translation task is also in-domain.

B. Evaluation

Computing the BLEU score for each training set evaluated
during optimization of instance selection is computationally
expensive. Therefore we chose to use target language bigram
coverage (TCOV) as a surrogate measure. TCOV measures the
percentage of unique target language bigrams in the test/dev
set included in a given training set. Note that FDA makes all
instance selection decisions based on the source language and
has no access to target language data. However the quality
of the final translations depends on whether the correct target
language phrases make it into the phrase table which motivates
the TCOV measure.
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Fig. 2. Target language bigram coverage (TCOV) vs. BLEU scores from the
in-domain experiments in this study showing the correlation between the two
measures.

Figure 2 shows the empirical correlation between TCOV
and BLEU on a scatter plot of a number of experiments we
have performed in this study on in-domain datasets. The out-
of-domain results are similar.
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Fig. 3. Training set size vs. target language (TCOV) and source language
(SCOV) bigram coverage for the optimized FDAS instance selection on in-
domain data.

Figure 3 shows the evolution of target and source language
bigram coverage as more data is added to the training set by an
optimized FDAS algorithm on ID data. SCOV is maximized



out at 94.29% at around 0.5 million words of training data (less
than 1% of the whole dataset). After this point there are no
new source language features FDAS can add to the dataset, but
as new sentences are added, the fvalue for the same features
are updated based on their initial value and the decay rate. As
we can see, this continues to improve TCOV until it reaches
88.06% with the full dataset. For out-of-domain experiments
the curves have a similar shape, reaching 74.52% SCOV and
64.37% TCOV with the full dataset.
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Fig. 4. Instance selection quality by the consistency of the newly selected
training instances as measured by SCOV (top) and TCOV (bottom) for OOD.
Average changes in SCOV and TCOV are depicted as instances are selected.

We measure the instance selection quality of the selection
models as more instances are selected by the consistency of the
SCOV and TCOV levels. Figure 4 measures the added value
after each 73K source word additions (the size of the OOD
test set) by looking at the relevancy and diversity as quantified
by the SCOV and the TCOV obtained in an averaged window
of 5 items for OOD experiments. We observe that FDAS out-
performs both DWDS and NGRAM by consistently selecting
instances with high source and target coverage.

C. Optimal Parameters for FDAS

We searched the parameter space of FDAS using a com-
bination of grid search and the DHC optimization algorithm
[20] to find values that optimized TCOV on the development
set using 1 million words of training data. For in-domain data,

we found an optimum at d = 1, ¢ = 2.296, s = 1.1, i = 0,
l =0, n =23 giving a TCOV value of 0.6731 and for out-of-
domain, we found an optimum at d = 1, ¢ = 0.25, s = 0.8,
1 =15.2552, 1 = —0.4, n = 2 giving a TCOV value of 0.4196.
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Fig. 5. c-d grid for in-domain data with shades of gray representing TCOV
at 1M words with points not within 1% of the optimum value painted black.
Other parameters are setton =3,s =1,i=1=0.

Early on we discovered that using trigrams (n = 3), as
well as words and bigrams, benefits the ID results but not
OOD results, even though in both cases we evaluate the output
using TCOV which uses bigrams. Figure 5 shows that many
combinations of the polynomial (c) and exponential (d) decay
parameters give very similar results. With the exception of the
black region at the upper left (c = 0,d = 1, no decay) all
points in the grid are within 1% TCOV of the optimum.
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Figure 6 shows that a larger decay rate is better for ID
experiments compared to OOD experiments. As we see in
Figure 7, OOD results are more sensitive to the initial values
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domain experiments (initial ¢ = 2.3,s = 1.1,% = [ = 0), the second row shows results from out of domain experiments (initial ¢ = 0.25,s = 0.8,7 =
5.2552,1 = —0.4). The n-gram order is n = 3 for in domain, n = 2 for out of domain, and d = 1 (no exponential decay) for both sets of experiments.

of features (preferring shorter and less frequent features) and
less on decay rate. In fact with no decay ID results get
significantly worse, but OOD results stay within 1% of the
optimum. Figure 6 also shows that a sentence normalization
with s ~ 1 is necessary for both ID and OOD performance.

Figure 7 plots sensitivity of TCOV with respect to changes
in the optimal parameter settings we learned. We observe
several key differences between ID and OOD results:

o Longer features (n = 3) benefit ID more than OOD.

o Initial values (init) are important for OOD, which
prefers short and infrequent features, but not for ID.

o A fast decay rate (c > 1) is crucial for ID, which falters
with no decay, whereas a low decay (¢ < 1) is optimal
for OOD, which does OK even with no decay (c = 0).

 Various combinations of exponential (d < 1) and poly-
nomial (¢ > 0) decay give similar results, but at the end
we found polynomial decay was slightly better.

o Sentence normalization (s & 1) is important for ID but
more so for OOD.

D. Optimization with Genetic Algorithms

Searching the parameter space of FDAS requires a combi-
nation of computationally expenvise grid search and several
DHC optimization steps to be run, requiring several days
to be spent for finding optimal parameters for a given N,
the number of words. This section introduces an alternative
method, evolution strategy (ES) for optimization, which can
find the optimal or very close to the optimal solution for
this complex optimization problem in the order of hours.
Evolution strategy [21] is a variant of genetic algorithms where
real valued parameter populations evolve towards the optimal
solution after several generations of mutations.

By using ES, we can empirically obtain good results in a
couple of hours, which allows us to perform optimization for
any given N, the desired number of training words. Figure 8
plots the changes in the parameter values as the parameters

— = un 0 a

Parameter Values

training set size (source words) le7

Fig. 8.  Changes in parameter values optimized with ES for OOD with
increasing training set size.

of FDAS is optimized with ES for increasing N for the OOD
translation task. We select the parameters with n for which
the optimization leads to higher TCOV value. ES finds very
close parameters to the parameters we found for 1M words
using DHC and grid search in the previous section: d = 1.0,
c = 0387, s = 0.9251, ¢ = 5.0, and [ = 1.498. As
the training set size increase, optimal value for [ decrease
and ¢ increase showing a preference towards including longer
and rarer features. d, ¢, and s vary around 1 with d and ¢
being closely related yet both with positive values, showing
that both exponential and polynomial decay are important
for better selection of the training set. The mean values for
the parameters after optimization are given in Table I. Most
translation tasks prefer n = 3 more than n = 2 except
for OOD. OOD prefers more exponential decay and less
polynomial decay than others and shortest and rarest features.
For active learning experiments (Section VI-C), we obtain the
largest sentence and feature length and log inverse penalties.



o n d c s i 1

en-de (ID) 290 0932 1.607 1.033 1.882 -2.617
en-de (OOD) 235 0968 0.729 0961 3.073 -0.517
en-tr 3.00 0870 1.844 0.962 2.072 -2.038
tr-en 291 0455 1992 0.123 2.584 -3.025
en-de (ID AL) 2.55 0.658 1.086 1.037 3.338 1.310
en-de (OOD AL)| 2.6 0.767 0.977 1.020 3.427 0.980

TABLE I

MEAN PARAMETER VALUES FOR DIFFERENT TRANSLATION TASKS.

VI. MACHINE TRANSLATION PERFORMANCE

In this section, we provide a comparison of FDAS5 machine
translation performance with related work in English-German
(Section VI-A), English-Turkish (en-tr), and Turkish-English
(tr-en) (Section VI-B) translation tasks. We compare FDAS
with a random instance selection baseline and other related
methods in terms of the BLEU score. We optimize FDAS
parameters for each N with evolution strategy, which turns out
to achieve close performance to the full optimization with grid
search and DHC. The baseline performance using all of the
available training corpora are 22.55 BLEU for ID and 13.82
BLEU for OOD translation tasks and 24.45 BLEU for en-tr
and 29.61 BLEU for tr-en translation tasks.

BLEU gain data ratio | % of data for BLEU—0.5
wrt. RAND ALL RAND ALL
ID +3.22  +40.01 178 11%
00D +2.09  +0.43 1/11.3 2.7%
en-tr +11.23  +0.78 1723 8%
tr-en +11.52  40.0 1/23 19%
ID AL +0.38 +0.0 172 43%
OOD AL | +1.12  +0.45 1/6 5%
TABLE II

SUMMARY OF FDAS5’S TRANSLATION PERFORMANCE. POSSIBLE BLEU
GAINS WITH RESPECT TO USING ALL OF THE TRAINING DATA (ALL) OR
TO RANDOM BASELINE (RAND) ARE GIVEN IN THE FIRST TWO COLUMNS.
THE NEXT COLUMN LIST THE RATIO OF THE FDAS TRAINING DATA TO
RAND TRAINING DATA TO REACH THE SAME BLEU PERFORMANCE. THE
LAST COLUMN IS THE PERCENTAGE OF ALL THE TRAINING DATA
REQUIRED FOR REACHING WITHIN 0.5 BLEU TO ALL PERFORMANCE.

As we demonstrate in the following subsections, FDAS
achieves significant gains in the translation performance. The
summary of FDAS5’s translation results are given in Table II.
FDAS can gain up to 11.52 BLEU points compared to a
randomly selected training set of the same size, or achieve
similar BLEU performance using up to 23 times less data.
FDAS can also gain up to 0.43 BLEU points compared to
using all of the available training data and can reach within
0.5 BLEU by using only 2.7% of the available training data
for OOD translation. The gains reach 0.78 BLEU points for
the en—tr translation task. Larger BLEU gains and smaller
selected training data for reaching high BLEU scores in the
OOD and en—tr translation tasks with Turkish being a higher
vocabulary language, indicate that FDAS performs especially
well in harder translation tasks. In active learning experiments,
FDA gains up to 0.45 BLEU points compared to using all of
the available training data and 1.12 BLEU points compared to
random training set.

A. English-German Results

We obtained translation results on the English (en) to
German (de) language pair using the parallel training sentences
as described in Section V-A. Figure 9 compares the optimized
FDAS5 instance selection with a random instance selection
baseline and other instance selection methods for a range of
training set sizes in terms of BLEU score for ID and OOD
experiments. The first figure gives training set size vs BLEU
for the 27K word in-domain test set where the training data is
selected from the 55M word WMT12 en—de parallel training
set (filtered to exclude the dev and test sentences). The second
figure presents a similar comparison for the official 73K word
out-of-domain test data and subsets of the WMT12 en—de
training set.

FDAS5 optimized for in-domain data (the top line labeled
FDAS) gains up to 3.22 BLEU points compared to a randomly
selected training set (line with labeled RAND) of the same
size, or to reach the same BLEU performance as FDAS, ran-
dom instance selection needs up to 8 times more data. FDAS
optimized for out-of-domain data (the top line labeled FDAS
on the right figure) gains up to 2.09 BLEU points compared
to a randomly selected training set (line labeled RAND) of the
same size, or to reach the same BLEU performance as FDAS,
random instance selection needs up to 11.3 times more data.

All other methods with the exception of DWDS give per-
formances significantly below FDAS, and in the case of in-
domain data, even below random instance selection for small
training sets. Optimized FDAS outperforms DWDS in both
the in-domain experiments (up to 0.37 BLEU points) and
in the out-of-domain experiments (up to 0.35 BLEU points).
These results indicate that methods that do not use exponential
feature decay or that do not take into account the test set
features such as NGRAM do not perform as well as the ones
that do.

D O0OD
Model bigrams | wps | TCOV | bigrams | wps | TCOV
FDAS 346K 19 .68 426K 24 42
DWDS 351K 20 .67 412K 19 42
NGRAM 517K 21 57 514K 17 37
RAND 349K 25 .61 347K 25 .34
TABLE III

STATISTICS OF THE TARGET £ FOR ID AND OOD TEST SETS USING 106
TARGET WORDS. BIGRAMS LIST THE UNIQUE 2-GRAMS FOUND AND WPS
IS THE NUMBER OF WORDS PER SENTENCE.

The statistics of £ obtained with the instance selection
techniques differ from each other as given in Table III, where
108 source training words are selected for ID and OOD test
sets. FDAS achieves top coverage along with DWDS and
achieves better TCOV using fewer unique bigrams in ID.
NGRAM is not able to discriminate between sentences well
and a large number of sentences of the same length get the
same score when the unseen n-grams belong to the same
frequency class. NGRAM obtains the largest number of unique
target bigrams.

Both FDAS and other instance selection methods converge
to the same BLEU result at the end when using the full 55M
word training set. However FDAS reaches within 0.5 BLEU
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all of the training set). The first figure gives training set size vs. BLEU for ID experiments and the second figure gives the results for OOD experiments.

of this result using less than 11% of the data for in-domain
and less than 2.7% of the data for out-of-domain data. FDAS
peaks at around 12M words or 20% of the full training set,
for both sets of experiments exceeding the full dataset result
by 0.43 BLEU for out-of-domain data.

B. English-Turkish and Turkish-English Results

We obtained translation results on the English (en) to
Turkish (tr) language pair using the parallel training sentences
as described in Section V-A. Figure 10 compares the optimized
FDAS instance selection with a random instance selection
baseline for a range of training set sizes in terms of BLEU
score. The first figure gives results in the en—tr translation
task and the second one in the tr—en translation task.

In the en—tr translation task, FDAS5 gains up to 11.23
BLEU points compared to a randomly selected training set
of the same size, or to reach the same BLEU performance as
FDAS, random instance selection needs up to 23 times more
data. In tr—en direction, FDAS5 gains up to 11.52 BLEU points
compared to a randomly selected training set of the same size,
or to reach the same BLEU performance as FDAS, random
instance selection again needs up to 23 times more data.

However FDAS reaches within 0.5 BLEU to the BLEU
result obtained using the full training set using about 8% of the
data for en—tr and about 19% of the data for tr—en. FDAS
exceeds the full dataset result by 0.78 BLEU for en—tr.

C. Active Learning Results

We obtained translation results when using FDAS in an
active learning setting where we use the training set features as
the test set features for selecting training instances. Figure 11
compares the FDAS instance selection optimized according to
the training set with a random instance selection baseline for
a range of training set sizes in terms of BLEU score for ID
AL and OOD AL translation tasks. FDA in OOD AL gains
up to 0.45 BLEU points compared to using all of the training
data and 1.12 BLEU points compared to random training set.

Algorithm 2: Parallel FDA5
Input: U/, F, and N.
Output: £ C U.

1 U < shuffle(l)

2 U, M + split(U,N)
3L+ {}h S+ {}

4 foreach U; ¢ U do

5 £i7Si<*FDA5(Z/{i,f7M)
6 add(L,L;)

7 add(S,S;:)

8 L+ merge(L,S)

Previous work on AL could not achieve better results than
baseline system results [7] whereas our results show that better
BLEU results are possible with using FDAS in AL setting for
OOD translation task.

VII. PARALLEL FDAS

FDAS obtains a sorting of the training instances accord-
ing to the weights of the test set features. Any change in
the instance selection order results with a new scoring and
ordering of the instances, making parallelization of the FDAS
algorithm difficult; but we can follow the approach in [11]
to improve the scalability and the diversity further. Parallel
FDAS (Algorithm VII) first shuffles the training sentences,
U and runs individual FDAS models on the multiple splits
from which equal number of sentences, M, are selected.
merge combines k sorted lists, £;, into one sorted list in
O(Mklogk) using their scores, S;, where Mk is the total
number of elements in all of the input lists. > Parallel FDAS
achieves close performance to FDAS in terms of the target
2-gram feature coverage. Parallel FDAS makes FDAS more
scalable to domains with large training corpora and allows

2 [22], question 6.5-9. Merging k sorted lists into one sorted list using a
min-heap for k-way merging.
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rapid deployment of SMT systems. By selecting from random
splits of the original corpus, we work with different n-gram
feature distributions in each split and prevent weights become
negligible, which can enhance the diversity.

VIII. CONTRIBUTIONS

We have introduced feature decay algorithms (FDA), a class
of instance selection algorithms for machine translation that
use feature decay, which generalize some of the ideas from
related work, and allow optimization and efficient implemen-
tation. We describe some of the best performing instance
selection algorithms as special cases of FDA.

We define a 5 parameter FDA instantiation called FDAS,
and optimized its parameters on in-domain and out-of-domain
translation tasks in different language pairs showing that differ-
ent feature values and decay rates are appropriate for different
tasks. We use target language bigram coverage (TCOV) for
evaluation during optimization for efficiency and show that it

correlates well with BLEU. We show that the average amount
of exponential and polynomial decaying we perform with the
optimal parameters are the same for translating from English
to German and very close to the amount for translating from
English to Turkish. The average amount of decaying and
scaling is less when translating from Turkish to English where
much longer and more common features are prefered.

FDAS significantly outperforms other instance selection
methods we have implemented except to a lesser degree for
DWDS, which is another special case of FDA. A comparison
with random instance selection shows that FDAS can gain
up to 3.22 BLEU points for English-German and up to
11.52 BLEU points for English-Turkish translation tasks at
the same training set size achieving significant performance
improvement, or can achieve a comparable BLEU result using
as little as 4% of the data achieving significant reductions
in the training set size. In the English-German translation
tasks we have tested, FDAS performance peaks at less than



20% of the training set exceeding the result with the full
training set by 0.43 BLEU for out-of-domain test set and can
reach within 0.5 BLEU by using only 2.7% of the available
training data. Also, in the English to Turkish translation task,
FDAS performance exceeds the result with the full training
set by 0.78 BLEU. These results show that a smaller but
more relevant subset of the training set can give us better
accuracy in statistical machine translation. An implementation
of the algorithm is available from the authors’ website at
http://xxx.xxx.xxx, which also includes a program for
optimizing the parameters of FDAS.
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