Optimizing Instance Selection for Statistical Machine Translation with Feature Decay Algorithms

Ergun Bıçici and Deniz Yuret

Abstract—We introduce FDA5 for efficient parameterization, optimization, and implementation of feature decay algorithms (FDA), a class of instance selection algorithms that use feature decay. FDA increase the diversity of the selected training set by devaluing features (i.e., n-grams) that have already been included. FDA5 decides which instances to select based on three functions used for initializing and decaying feature values and scaling sentence scores controlled with 5 parameters. We present optimization techniques that allow FDA5 to adapt these functions to in-domain and out-of-domain translation tasks for different language pairs. In a transductive learning setting, selection of training instances relevant to the test set can improve the final translation quality. In machine translation experiments performed on the 2 million sentence English-German section of the Europarl corpus, we show that a subset of the training set selected by FDA5 can gain up to 3.22 BLEU points compared to a randomly selected subset of the same size, can gain up to 0.41 BLEU points compared to using all of the available training data using only 15% of it, and can reach within 0.5 BLEU points to the full training set result by using only 2.7% of the full training data. FDA5 peaks at around 8M words or 15% of the full training set.

In an active learning setting, FDA5 minimizes the human effort by identifying the most informative sentences for translation and FDA gains up to 0.45 BLEU points using 3/5 of the available training data compared to using all of it and 1.12 BLEU points compared to random training set. In translation tasks involving English and Turkish, a morphologically rich language, FDA5 can gain up to 11.52 BLEU points compared to a randomly selected subset of the same size, can achieve the same BLEU score using as little as 4% of the data compared to random instance selection, and can exceed the full dataset result by 0.78 BLEU points. FDA5 is able to reduce the time to build a statistical machine translation system to about half with 1M words using only 3% of the space for the phrase table and 8% of the overall space when compared with a baseline system using all of the training data available yet still obtain only 0.58 BLEU points difference with the baseline system in out-of-domain translation.

Index Terms—instance selection; machine translation; transductive learning; information retrieval; domain adaptation

EDICS Category: SLP-SSMT, SLP-SMIR, SLP-LANG, SPE-SPL

I. INTRODUCTION

Statistical machine translation (SMT) makes use of a large number of parallel training sentences, which contain pairs of sentences that are translations of each other, to derive translation tables, estimate parameters, and generate the actual translation. Not all of the parallel training sentences nor the translation table that is generated is used during decoding a given set of test sentences and filtering is usually performed for computational advantage [1].

Word-level translation accuracy is affected by the number of times a word occurs in the parallel training sentences [2]. Koehn and Knight find that about 50 examples per word are required to achieve a performance close to using a dictionary in their experiments. Translation performance can improve as we include multiple possible translations for a given word, which increases the diversity of the training set.

However, it is also common knowledge that the quality and the relevance of the training data have a significant impact on translation performance. With the increased size of the parallel training sentences there is also the added noise, making relevant instance selection important. Phrase-based SMT systems rely heavily on accurately learning word alignments from the given parallel training sentences. Proliferation of the available parallel corpora for training SMT systems can create computational challenges. Proper instance selection plays an important role to obtain an appropriately sized training set with which correct alignments can be learned. In this work, we quantify the effect of training data relevance and diversity and show that by using significantly less training data, we can achieve the same, or in some settings, higher level of translation performance.

Instance selection has been used in statistical machine translation in two ways:

Transductive learning (TL) makes use of test instances, which can sometimes be accessible at training time, to learn specific models tailored towards the test set. Target domain adaptation can be achieved by transductive instance selection. In a transductive learning setting, selection of training instances relevant to the test set improves the translation quality [3], [4].

Active learning (AL) selects a subset of training samples L from the unlabeled dataset U that will benefit a learning algorithm the most [5] without using the test set. Active learning in SMT selects which instances to add to the training set to improve the performance of a baseline system [6] or which to retain for achieving similar performance using fewer instances [7], [8]. Approaches that work without accessing the test set is in this category.

We describe a class of instance selection algorithms called feature decay algorithms (FDA), that aim to maximize the coverage of the target language features while increasing their diversity by weight decay and achieve significant gains in machine translation performance and decrease the training set size. FDA is introduced in [4], [9] and in this paper, we develop FDA5, which extends FDA by generalizing the ideas in earlier work with five parameters that allows better scaling, scoring, and optimization. FDA5 improves the
overall performance and provides greater understanding and analysis of different domains and tasks. The parameterization and optimization mechanisms we introduce with FDA5 allow efficient instance selection with many monolingual and bilingual application scenarios. FDA5 can be used to improve the translation quality (Section VI), for domain adaptation in machine translation [10], and to reduce the size of the SMT model and training time (Section VI-D) or the language model [11], [12]. We discuss current application areas for FDA5 in Section II-A.

FDA5 can be used in both transductive and active learning scenarios. From a transductive learning perspective, we show that FDA5 can gain up to 3.22 BLEU points compared to a similarly sized randomly selected subset of the training set in an in-domain translation task with large parallel corpora and 11.52 BLEU points in a translation task involving English and Turkish, a morphologically rich language, with smaller parallel corpora. At the same time, FDA5 can also gain up to 0.41 BLEU points compared to using all of the available training data using only 15% of it and can reach within 0.5 BLEU points by using only 2.7% of the available training data in English-German out-of-domain (OOD) translation. From an active learning perspective, we show that an SMT system using FDA5 can achieve a given BLEU performance with as little as 4% of the available training data compared to random instance selection, significantly reducing the required human effort in English to Turkish or Turkish to English translation.

In active learning experiments, FDA5 is used for selecting training instances relevant to the training set itself and gains up to 0.45 BLEU points compared to using all of the available training data and 1.12 BLEU points compared to random training set on English-German OOD translation. An implementation of the algorithm is available from the website at http://github.com/ai-ku/fda, which also includes a program for optimizing the parameters of FDA5.

The next section describes the general structure of feature decay algorithms, their computational complexity, and potential application areas. Section III describes related approaches to instance selection, most recast as specific instantiations of the FDA framework. We present a 5 parameter variation of FDA5 in Section IV. Section V presents our datasets, evaluation, optimization, and coverage results together with adaptation to in-domain (ID) and out-of-domain (OOD) translation tasks for different language pairs (English-German and English-Turkish). Section VI presents our translation results in TL and AL scenarios and provide statistics about the computing time and space requirements for FDA5 SMT models. Section VII presents the parallel FDA5 algorithm. We summarize our contributions in the last section.

II. INSTANCE SELECTION WITH FEATURE DECAY

In this section we will describe a class of instance selection algorithms for machine translation that use feature decay, which increases the diversity of the training set by devaluing features (i.e. n-grams) that have already been included. After reviewing the state of the art in the field, we generalize the main ideas in a class of feature decay algorithms (FDA) which allow efficient implementation and parameter optimization. Our abstraction makes three components of such algorithms explicit permitting experimentation with their alternatives:

- The initial value of a feature.
- The update of the feature value as instances are added to the training set.
- The value of a candidate training sentence as a function of its features.

A feature decay algorithm (FDA) aims to maximize the coverage of the target language features for the test set. Features can be constituents such as words, bigrams, and phrases for allowing relevant retrieval of instances and the feature values correspond to their importance, which are decayed to increase diversity. A target language feature that does not appear in the selected training instances will be difficult to produce regardless of the decoding algorithm (impossible for unigram features). In general we do not know the target language features, only the source language side of the test set is available. Unfortunately, selecting a training instance with a particular source language feature does not guarantee the coverage of the desired target language feature. There may be multiple translations of a feature appropriate for different senses or different contexts. For each source language feature in the test set, FDA tries to find as many training instances as possible to increase the chances of covering the appropriate target language feature. FDA does this by reducing the value of the features that are already included after picking each training sentence from the source language. Algorithm 1 gives the pseudo-code for FDA.

The inputs to the algorithm are the source language training sentences \mathcal{U}, the source language features of the test set \mathcal{F}, and the desired number of words N in the subset \mathcal{L} of the

<table>
<thead>
<tr>
<th>Algorithm 1: The Feature Decay Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: Training sentences \mathcal{U}, test set features \mathcal{F}, and desired number of training words N.</td>
</tr>
<tr>
<td>Data: A queue \mathcal{Q}, sentence scores score, feature values fvalue.</td>
</tr>
<tr>
<td>Output: Subset of the training sentences to be used as the training data $\mathcal{L} \subseteq \mathcal{U}$.</td>
</tr>
</tbody>
</table>

1. \textbf{foreach} $f \in \mathcal{F}$ \textbf{do}
 2. \text{fvalue}(f) \leftarrow \text{init}(f)$
 3. $\mathcal{S} \leftarrow \{}$
 4. \textbf{foreach} $s \in \mathcal{U}$ \textbf{do}
 5. $\text{score}(S) \leftarrow \text{sentScore}(S)$
 6. $\mathcal{S} \leftarrow \mathcal{S} \cup \langle \text{score}(S), S \rangle$
 7. $\text{heappify}(\mathcal{Q}, \mathcal{S})$
 8. \textbf{while} $|\mathcal{L}| < N$ \textbf{do}
 9. $\mathcal{S} \leftarrow \text{pop}(\mathcal{Q})$
 10. $\text{score}(S) \leftarrow \text{sentScore}(S)$
 11. \textbf{if} $\text{score}(S) \geq \text{topval}(\mathcal{Q})$ \textbf{then}
 12. $\mathcal{L} \leftarrow \mathcal{L} \cup \{S\}$
 13. \textbf{foreach} $f \in \text{features}(S)$ \textbf{do}
 14. $\text{fvalue}(f) \leftarrow \text{decay}(f)$
 15. \textbf{else}
 16. $\text{push}(\mathcal{Q}, S, \text{score}(S))$
training set output by the program. We use n-grams up to a specified \(n \) as features in our experiments.

The first \texttt{foreach} loop initializes the value of each test set feature using \texttt{init}(\(f \)) which can use the frequency, length and other attributes of the n-grams to determine the feature value. The second \texttt{foreach} loop initializes the score for each candidate training sentence using \texttt{sentScore}(\(S \)). This function uses the length of the sentence and the values of its features to estimate the utility of adding it to the output. The sentences are then pushed onto a queue with their scores.

Finally the \texttt{while} loop outputs a subset of the training sentences \(\mathcal{L} \) by picking candidate sentences with the highest scores until the desired number of words \(N \) is reached. This is done by popping the top scoring candidate sentence \(S \) from the queue at each iteration. After ensuring that \(S \) is the best candidate it is placed in \(\mathcal{L} \) and the values of its features are decreased using \texttt{decay}(\(f \)).

Note that as we change the feature values, the sentence scores in the queue will no longer be correct. However they will still be valid upper bounds because the feature values only get smaller. We use an abstract data type called an upper bound queue (implemented using a binary heap) that maintains an upper bound on the actual values of its elements [13]. Each successive \texttt{pop} from an upper bound queue is not guaranteed to retrieve the element with the largest value, but the remaining elements are guaranteed to have values smaller than or equal to the upper bound of the next element.

We thus recalculate the score of each sentence popped in the \texttt{while} loop because the values of its features may have changed. We compare the recalculated score of \(S \) with the upper bound of the next best candidate. If the score of \(S \) is equal or better we are sure that it is the top candidate, in which case we place \(S \) in our training set and decay the values of its features. Otherwise we push \(S \) back into the priority queue with its updated score.

FDA gives us a class of algorithms that use feature decay for instance selection. By using upper bound queues implemented as binary heaps, FDA offers a very fast implementation for different instance selection algorithms. In the next section, we define various other models by parameterizing its three functions \texttt{init}, \texttt{decay}, and \texttt{sentScore}. Making the parameterization explicit allows us to optimize the parameters to discover better performing variants specialized to specific translation tasks.

A. FDA Framework

Biçici and Yuret [4] build the FDA algorithm for training instance selection for machine translation given a training set and a test set. Training sentences are scored as follows where \(C_L(f) \) returns the count of \(f \) in \(\mathcal{L} \):

\[
\text{init}(f) = 1 \\
\text{decay}(f) = \text{init}(f)(1 + C_L(f))^{-1} \\
\text{sentScore}(S) = \sum_{f \in F(S)} \text{value}(f)
\]

FDA is not parameterized and therefore optimization is only done by trying different decaying or initialization functions. Since there is no normalization with the sentence lengths, FDA also tends to select longer sentences, which can make the word alignment task harder. In Section IV, we alleviate these problems with the introduction of FDA5, which parameterizes the contribution of each of these factors when calculating the value of features and the scores for sentences. Parameterization allows better understanding of the translation domains and tasks, improves the performance by adapting to new problems, and gives more control over what kind of instances are to be selected for the training set.

B. Computational Complexity

The average computational complexity of FDA is in \(O(|\mathcal{F}| + |\mathcal{U}| + N \log |\mathcal{U}|) \): the first \texttt{foreach} has complexity \(|\mathcal{F}|\), the second \texttt{foreach} and \texttt{heapify} has complexity \(|\mathcal{U}|\), and the while loop is in \(O(N \log |\mathcal{U}|) \) in the best case. We empirically observe that the average complexity is in \(O(N \log |\mathcal{U}|) \). Figure 1 shows that the number of times the while loop iterates with respect to the number of words already selected for OOD and ID. The number of iterations in the while loop converges to 1.2 \((n = 2)\) and 1.3 \((n = 3)\) per word for OOD and 1.7 \((n = 2)\) and 1.5 \((n = 3)\) per word for ID instance selection using optimized parameters.

C. Application Areas

FDA is applied on many learning tasks which require diverse and relevant retrieval of training instances [4], [11], [14], [15], [12], [16], [17], [10]. FDA is built mainly for machine translation as coverage and diversity are both important for building high performance SMT systems and the coverage of target features is correlated with the translation performance [4]. Parallel FDA makes it feasible to train SMT systems in the presence of large parallel corpora and significantly reduces the time to deploy accurate machine
translation systems from weeks to half a day and still achieve state-of-the-art performance [11, 12]. In Section VI-D, we show that even without parallelization, FDA5 is able to reduce the time to build an SMT system by half with 1M words using only 3% of space for the phrase table and 8% of the overall space when compared with a baseline system using all of the training data available yet still obtain only 0.58 BLEU points difference with the baseline system in OOD translation. Bičić [11] also shows that if parallel FDA is used for selecting instances for the language model (LM) corpus using the FDA selected training set target side as the test set, we can achieve up to 86% reduction in the number of OOV tokens and up to 74% reduction in the perplexity. Supporting results are obtained using parallel FDA5 [12].

FDA is impacting SMT competitions, where the increased size of the available parallel corpora for instance by crawling the web is creating computational scalability problems [18], [19]. FDA is used for SMT training data selection in WMT13 [15], for selecting the training set in the medical translation task [20] and the tuning set in the German-English translation task [21], for SMT post-processing data selection to achieve the top results in the French-English and English-German translation tasks [22], domain specific corpus selection in feature-rich translation models [23] in WMT14. Parallel FDA5 [12] improves the performance by 3.7 BLEU points averaged over all language pairs when compared with parallel FDA but the average difference to the top constrained submission is increased to 3.49 BLEU points in WMT14 when compared with 2.88 BLEU points in WMT13, which may be due to the selection of domain specific test set in WMT14\(^1\) rather than a task specific test set. FDA5 provides a significant contribution to researchers and professionals working in machine translation and allows a shift from general purpose SMT systems to task adaptive SMT solutions.

Domain adaptation for machine translation with FDA [10] can increase target language 2-gram coverage by 22%, gain up to 3.55 BLEU points compared to random selection, and learn the test set distribution among the domains with a correlation of 0.99. When Moses SMT systems [1] are built using FDA selected 10K training sentences, \(F_1\) [9] results close to the baselines that use up to 2M sentences are obtained and when 50K FDA selected training sentences are used, 1 \(F_1\) point better results than the baselines are obtained.

Referential translation machines use FDA during monolingual or bilingual retrieval of reference training sentences and achieve top performance when predicting the quality of translations [14], [16] at WMT14 [19] and predicting monolingual cross-level semantic similarity [17], [24], good performance when evaluating the semantic relatedness of sentences and their entailment [17], [25], and when judging the semantic similarity of sentences [17], [26] at SemEval-2014 [27]. FDA score is also used as an indicator of the expected translation quality [14], [16].

\(^{1}\)WMT14 test set contains 10,000 sentences, only 3000 of which are used for testing, which can make TL application of FDA5 harder.

III. RELATED WORK AND FDA

In this section, we review the state of the art in the field of instance selection for machine translation. We recast some algorithms in the FDA framework and describe their differences using the three functions \(\text{init}, \text{decay}, \text{and } \text{sentScore}\). We also categorize the related work into transductive learning (TL) and active learning (AL) approaches as described in the introduction depending on their emphasis in the original publication. In Section IV, we introduce FDA5, a variant of the FDA algorithm with five parameters that generalize many of the ideas introduced in earlier work.

N-gram coverage (AL): Eck et al. [7] reduce the training set size by selecting a subset after sorting the training data using a scoring function (hence AL) maximizing n-gram feature coverage (NGRAM):

\[
\text{init}(f) = C_U(f) \\
\text{decay}(f) = (C_L(f) > 0 \ ? \ 0 : \text{init}(f)) \\
\text{sentScore}(S) = \frac{1}{|S|} \sum_{f \in F(S)} \text{fvalue}(f)
\]

TF-IDF (TL): Lü et al. [3] use tf-idf (term frequency - inverse document frequency) based cosine score to select a subset of the parallel training sentences close to the test set for SMT training (hence TL). They outperform the baseline system when the top 500 training instances per test sentence are selected. The terms used in their TF-IDF measure correspond to words where this work focuses on n-gram feature coverage. When the combination of the top \(N\) selected sentences are used as the training set, they show increase in the performance at the beginning and decrease when 2000 sentences are selected for each test sentence. TF-IDF does not involve decay of feature values. If \(T\) is the test set and \(C_T(f)\) is the count of feature \(f\) in the test set, TF-IDF instance selection can be described in FDA terms as:

\[
\text{init}(f) = C_T(f)\log(|T|/C_T(f))^2 \\
\text{decay}(f) = \text{init}(f) \ (\text{no decay}) \\
\text{sentScore}(S) = \frac{\sum_{f \in F(S)} \text{fvalue}(f)}{\sqrt{\sum_{f \in F(S)} \log(|T|/C_T(f))^2}}
\]

DWDS (AL): Density weighted diversity sampling (DWDS) [8] selects sentences containing the n-gram features in the unlabeled dataset \(U\) while increasing the diversity in \(L\) (hence AL). DWDS increases the score of a sentence with increasing frequency of its n-grams found in \(U\) and
decreases with increasing frequency in the already selected set of sentences, \(\mathcal{L} \), in favor of diversity. DWDS scores as:

\[
\begin{align*}
\text{init}(f) &= C_{\mathcal{U}}(f)/|\mathcal{U}| \\
\text{decay}(f) &= \text{init}(f)e^{-\alpha C_{\mathcal{L}}(f)} \\
d(S) &= \frac{\sum_{f \in F(S)} \text{decay}(f)}{|F(S)|} \\
u(S) &= \frac{\sum_{f \in F(S)} I(f \notin F(\mathcal{L}))}{|F(S)|} \\
\text{sentScore}(S) &= \frac{2d(S)u(S)}{d(S) + u(S)}
\end{align*}
\]

where \(\text{init}(f) \) uses the probability of feature \(f \) in \(\mathcal{U} \), \(F(\mathcal{S}) \) stores the features of \(S \), \(I(.) \) is an indicator function, and \(\alpha \) is a decay parameter. \(d(S) \) denotes the density of \(S \) proportional to the probability of its features in \(\mathcal{U} \) and inversely proportional to their counts in \(\mathcal{L} \) and \(u(S) \) its uncertainty, measuring the percentage of new features in \(S \). DWDS tries to select sentences containing similar features in \(\mathcal{U} \) with high diversity. In their experiments, they selected 1000 training instances in each iteration and retrained.

Perplexity (AL): Perplexity according to a LM trained on the already selected training set and inter-SMT-system disagreement as measured by relative translation errors between translations obtained by a committee of translation models can be used to select training data (hence AL) [28]. A sentence having high perplexity (a rare sentence) in \(\mathcal{L} \) and low perplexity (a common sentence) in \(\mathcal{U} \) is considered as a candidate for addition.

Model weighting (TL): Some domain adaptation models work with separate training and language models to obtain mixture translation models by linear combination of translation and language model probabilities with weights based on LM probabilities over training corpora split according to their genre [29] or by weighing the counts in the maximum likelihood estimation of phrase translation probabilities [30] to obtain BLEU improvements (hence TL).

IV. THE FDA5 ALGORITHM

In this section we introduce a five parameter instance selection algorithm called FDA5. Explicitly parameterizing the three FDA functions \(\text{init}, \text{decay}, \text{and sentScore} \) allows us to (1) efficiently replicate and generalize over some of the ideas from earlier work, (2) optimize the parameters for any new ID or OOD target translation domain to achieve better performance, (3) control the type of instances that are selected from the training data, and (4) understand the target translation domains and tasks better.

The FDA5 \(\text{init} \) function, which computes the initial value of a feature \(f \) can be parameterized to take into account the number of tokens in the feature \(|f| \), and its log inverse frequency using the parameters \(l \) and \(i \) respectively. Features that do not appear in the test set are considered to have zero value and \(C_{\mathcal{U}}(f) \) is set to 1 if the feature is not found in \(\mathcal{U} \).

\[
\text{init}(f) = \log(|\mathcal{U}|/C_{\mathcal{U}}(f))^i |f|^l
\]

The FDA5 \(\text{decay} \) function, which is used to compute the reduced values of features after they have been included \(C_{\mathcal{L}} \) times in the output \(\mathcal{L} \), can implement polynomial or exponential decay using the parameters \(c \) and \(d \):

\[
\text{decay}(f) = \text{init}(f)(1 + C_{\mathcal{L}}(f))^{-cdC_{\mathcal{L}}(f)}
\]

The FDA5 \(\text{sentScore} \) function calculates the total score for a sentence as a sum of its feature values and can be scaled by a sentence-length factor using the parameter \(s \):

\[
\text{sentScore}(S) = \frac{1}{|S|^{s}} \sum_{f \in F(S)} \text{fvalue}(f)
\]

These five parameters, together with the maximum feature n-gram length \(n \), determine the value of each sentence and the instance selection behavior of FDA5. The default values \(d = 1, c = s = i = l = 0 \) give every feature the same value and perform no decay or scaling.

V. DATASETS, EVALUATION, AND OPTIMIZATION

We present the experimental settings for our results in three parts: datasets, evaluation, and optimization. FDA5 parameter optimization converges to very different values for different language pairs and even for in-domain and out-of-domain translation tasks. Section V-A describes the datasets we use. BLEU is an expensive metric to judge the performance of a training set, therefore we use target language bigram coverage (TCOV) as an alternative metric in some experiments as described in Section V-B. Section V-C describes how we obtain the optimal parameters for FDA5 and analyzes the sensitivity of results to each parameter. Finally, Section V-D introduces genetic algorithms as an alternative optimization method for searching for the parameters of FDA5, which reduces the computational overhead, and empirically achieves similar results. We use n-gram features.

A. Datasets

We performed optimization and sensitivity analysis for the parameters used in the FDA5 algorithm and obtained coverage results on the English (en) to German (de) language pair using the parallel training sentences provided by [31] (WMT’12). The English-German section of the Europarl corpus contains about 2 million sentences (55 million English, 52.5 million German words). Both the development set and the test set contain 3003 sentences (73K English, 72.6K German words) in this out-of-domain (OOD) translation task. We also created in-domain (ID) development and test sets composed of 1000 sentences (27K English, 26K German words) each by randomly sampling the training data. For ID experiments the development and test sets were removed from the training data. The language model is built using the ID target language training data and is fixed for all experiments. We used the development sets to perform parameter optimization and sensitivity analysis and the test sets to perform feature coverage and BLEU evaluation. en-de language pair provides ID and OOD translation tasks with abundant and large parallel corpora.
Additionally, we perform optimization and obtain results on the English to Turkish (tr) and Turkish to English language pairs using the parallel training sentences provided by EU project Bologna\(^2\), which contains course syllabi documentation from different universities in Turkey. The parallel corpus contains 352K training sentences (3.2 million English, 2.7 million Turkish words) and additional 1200 sentences each for development and test sets (14K English, 12K Turkish words). This language pair provides a translation task in a constrained domain with smaller parallel corpora and a harder one with Turkish being a morphologically rich language with scarce parallel corpora resources. The development and test sets are extracted randomly from the training set and hence this translation task is also in-domain. Both English-German and English-Turkish translation tasks are relatively harder than translation between closer language pairs due to compounding. Turkish has additional complexity due to different orderings of compounds than English and German and to being a morphologically rich language.

B. Evaluation

Computing the BLEU score for each training set evaluated during optimization of instance selection is computationally expensive. Therefore we chose to use TCOV as a surrogate measure. TCOV measures the percentage of unique target language bigrams in the test/dev set included in a given training set. Note that FDA makes all instance selection decisions based on the source language and has no access to target language data. However the quality of the final translations depends on whether the correct target language phrases make it into the phrase table which motivates the TCOV measure.

Figure 2 shows the empirical correlation between TCOV and BLEU on a scatter plot of a number of experiments we have performed in this study on in-domain datasets. The out-of-domain results are similar.

Figure 3 shows the evolution of target and source language bigram coverage as more data is added to the training set by an optimized FDA5 algorithm on ID data. Source language bigram coverage (SCOV) is maxed out at 94.29% at around 0.5 million words of training data (less than 1% of the whole dataset). After this point there are no new source language features FDA5 can add to the dataset, but as new sentences are added, the \(f_{value}\) for the same features are updated based on their initial value and the decay rate. As we can see, this continues to improve TCOV until it reaches 88.06% with the full dataset. For out-of-domain experiments the curves have a similar shape, reaching 74.52% SCOV and 64.37% TCOV with the full dataset.

We measure the instance selection quality of the selection models as more instances are selected by the marginal value of the SCOV and TCOV levels. Figure 4 measures the added value after each 73K source word additions (the size of the OOD test set) by looking at the relevancy and diversity as quantified by the SCOV and the TCOV obtained in an averaged window of 5 items for OOD experiments. We observe that FDA5 outperforms both DWDS and NGRAM by consistently selecting instances with high source and target coverage.

C. Optimal Parameters for FDA5

We searched the parameter space of FDA5 using a combination of grid search and the DHC optimization algorithm [32] to find values that optimized TCOV on the development set using 1 million words of training data. For in-domain data, we found an optimum at \(d = 1, c = 2.296, s = 1.1, i = 0, l = 0, n = 3\) giving a TCOV value of 0.6731 and for out-of-domain, we found an optimum at \(d = 1, c = 0.25, s = 0.8, i = 5.2552, l = -0.4, n = 2\) giving a TCOV value of 0.4196.

Early on we discovered that using trigrams (\(n = 3\)), as well as words and bigrams, benefits the ID results but not OOD results, even though in both cases we evaluate the output using TCOV which uses bigrams. Figure 5 shows that many combinations of the polynomial (\(c\)) and exponential (\(d\)) decay parameters give very similar results. With the exception of the black region at the upper left (\(c = 0, d = 1\), no decay) all points in the grid are within 1% TCOV of the optimum.

Figure 6 shows that a larger decay rate is better for ID experiments compared to OOD experiments. In fact with no

\(^2\)http://www.bologna-translation.eu/
Fig. 7. Sensitivity of target language bigram coverage (y-axes) to changes in the parameters \(c, s, i,\) and \(l\) (x-axes). The first row shows results from in domain experiments (initial \(c = 2.3, s = 1.1, i = l = 0\), the second row shows results from out of domain experiments (initial \(c = 0.25, s = 0.8, i = 5.2552, l = -0.4\)). The n-gram order is \(n = 3\) for in domain, \(n = 2\) for out of domain, and \(d = 1\) (no exponential decay) for both sets of experiments.

decay ID results get significantly worse, but OOD results stay within 1% of the optimum. Figure 6 also shows that a sentence normalization with \(s \approx 1\) is necessary for both ID and OOD performance.

Figure 7 plots sensitivity of TCOV with respect to changes in the optimal parameter settings we learned. As we see in Figure 7, OOD results are more sensitive to the initial values of features (preferring shorter and less frequent features) and less on decay rate. We observe several key differences between ID and OOD results:

- Longer features \((n = 3)\) benefit ID more than OOD.
- Initial values (init) are important for OOD, which prefers short and infrequent features, but not for ID.
- A fast decay rate \((c > 1)\) is crucial for ID, which falters with no decay, whereas a low decay \((c < 1)\) is optimal for OOD, which does OK even with no decay \((c = 0)\).
- Various combinations of exponential \((d < 1)\) and polynomial \((c > 0)\) decay give similar results, but at the end we found polynomial decay was slightly better.
- Sentence normalization \((s \approx 1)\) is important for ID but more so for OOD.

D. Optimization with Genetic Algorithms

Searching the parameter space of FDA5 requires a combination of computationally expensive grid search and several DHC optimization steps to be run for finding optimal parameters for a given \(N\). This section introduces an alternative method, evolution strategy (ES) for optimization, which can find the optimal or very close to the optimal solution for this complex optimization problem in the order of hours. Evolution strategy [33] is a variant of genetic algorithms where real valued parameter populations evolve towards the optimal solution after several generations of mutations.

By using ES, we can empirically obtain good results in a couple of hours, which allows us to perform optimization for any given \(N\), the desired number of training words. Figure 8 plots the changes in the parameter values as the parameters of FDA5 is optimized with ES for increasing \(N\) for the OOD translation task. We select the parameters with \(n\) for which the optimization leads to higher TCOV value. ES finds very close parameters to the parameters we found for 1M words using DHC and grid search in the previous section: \(d = 1.0, c = 0.387, s = 0.9251, i = 5.0,\) and \(l = 1.498\). As the training set size increases, the optimal value for \(l\) decreases and \(i\) increases showing a preference towards including longer and rarer features. \(d, c,\) and \(s\) vary around 1 with \(d\) and \(c\) being closely related yet both with positive values, showing that both exponential and polynomial decay are important for better selection of the training set. The mean values for the parameters after optimization for different translation tasks as \(N\) vary are given in Table I. Most translation tasks prefer \(n = 3\) more than \(n = 2\) except for OOD. OOD prefers more exponential decay and less polynomial decay than others and shortest and rarest features. For active learning experiments (Section VI-C), we obtain the largest sentence and feature length and log inverse parameters. If we optimize SCOV instead of TCOV, we obtain 4% lower TCOV performance and different parameter settings for 1M words.

<table>
<thead>
<tr>
<th>(\mu)</th>
<th>(n)</th>
<th>(d)</th>
<th>(c)</th>
<th>(s)</th>
<th>(i)</th>
<th>(l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>en-de (ID)</td>
<td>2.90</td>
<td>0.932</td>
<td>1.607</td>
<td>1.033</td>
<td>1.882</td>
<td>-2.617</td>
</tr>
<tr>
<td>en-de (OOD)</td>
<td>2.35</td>
<td>0.968</td>
<td>0.729</td>
<td>0.961</td>
<td>3.073</td>
<td>-0.517</td>
</tr>
<tr>
<td>en-tr</td>
<td>3.00</td>
<td>0.870</td>
<td>1.844</td>
<td>0.962</td>
<td>2.072</td>
<td>-2.038</td>
</tr>
<tr>
<td>fr-en</td>
<td>2.91</td>
<td>0.455</td>
<td>1.992</td>
<td>0.123</td>
<td>2.584</td>
<td>-3.025</td>
</tr>
<tr>
<td>en-de (ID AL)</td>
<td>2.55</td>
<td>0.658</td>
<td>1.086</td>
<td>1.037</td>
<td>3.338</td>
<td>1.310</td>
</tr>
<tr>
<td>en-de (OOD AL)</td>
<td>2.6</td>
<td>0.767</td>
<td>0.977</td>
<td>1.020</td>
<td>3.427</td>
<td>0.980</td>
</tr>
</tbody>
</table>

TABLE I

MEAN PARAMETER VALUES FOR DIFFERENT TRANSLATION TASKS.

VI. Machine Translation Performance

In this section, we provide a comparison of FDA5 machine translation performance with related work in English-German (Section VI-A), English-Turkish (en-tr), and Turkish-English...
Fig. 4. Instance selection quality by the marginal value of the newly selected training instances as measured by SCOV (top) and TCOV (bottom) for OOD. Average changes in SCOV and TCOV are depicted as instances are selected.

Fig. 5. c-d grid for in-domain data with shades of gray representing TCOV at 1M words with points not within 1% of the optimum value painted black. Other parameters are set to \(n = 3, s = 1, i = l = 0\).

Fig. 6. c-s grids for ID (top) and OOD (bottom) datasets. Shades of gray represent TCOV at 1M words with points that are not within 1% of the optimum value painted black. Other parameters are set to \(n = 3, d = 1, i = l = 0\) for ID and \(n = 2, d = 1, i = 5.2552, l = -0.4\) for OOD.

Fig. 7. Parameter Values

Fig. 8. Changes in parameter values optimized with ES for OOD with increasing training set size.

(tr-en) (Section VI-B) translation tasks. We compare FDA5 with a random instance selection baseline and other related methods in terms of the BLEU score. We optimize FDA5 parameters for each N with evolution strategy, which turns out to achieve close performance to the full optimization with grid search and DHC. The baseline performance in BLEU points using all of the available training corpora is 22.55 for ID and 13.82 for OOD translation tasks and 24.45 for en-tr and 29.61 for tr-en translation tasks.

As we demonstrate in the following subsections, FDA5 achieves significant gains in the translation performance. The summary of FDA5’s translation results are given in Table II. FDA5 can gain up to 11.52 BLEU points compared to a randomly selected training set of the same size, or achieve similar BLEU performance using up to 23 times less data. FDA5 can also gain up to 0.41 BLEU points compared to using all of the available training data using only 15% of it and can reach within 0.5 BLEU points by using only 2.7% of the available training data for OOD translation. The gains
These results indicate that methods that do not use exponential out-of-domain test data and subsets of the WMT12 en→de parallel training set sizes in terms of BLEU score for ID and OOD experiments. The first figure gives training set size vs BLEU for the 27K word in-domain test set where the training data is selected from the 55M word WMT12 en→de parallel training set (filtered to exclude the dev and test sentences). The second figure presents a similar comparison for the official 73K word in-domain test set where the training data is selected from the 55M word WMT12 en→de parallel training set.

FDA5 optimized for in-domain data (the top line labeled FDA5) gains up to 3.22 BLEU points compared to a randomly selected training set (line labeled with RAND) of the same size, or to reach the same BLEU performance as FDA5, random instance selection needs up to 8 times more data. FDA5 optimized for out-of-domain data (the top line labeled FDA5 on the right figure) gains up to 2.09 BLEU points compared to a randomly selected training set (line labeled RAND) of the same size, or to reach the same BLEU performance as FDA5, random instance selection needs up to 11.3 times more data.

All other methods with the exception of DWDS give performances significantly below FDA5, and in the case of in-domain data, even below random instance selection for small training sets. Optimized FDA5 outperforms DWDS in both the in-domain experiments (up to 0.37 BLEU points) and in the out-of-domain experiments (up to 0.35 BLEU points). These results indicate that methods that do not use exponential feature decay or that do not take into account the test set features such as NGRAM do not perform as well as the ones that do.

The statistics of \mathcal{L} obtained with the instance selection techniques differ from each other as given in Table III, where 10th source training words are selected for ID and OOD test sets. FDA5 achieves top coverage along with DWDS and achieves better TCOV using fewer unique bigrams in ID. NGRAM is not able to discriminate between sentences well and a large number of sentences of the same length get the same score when the unseen n-grams belong to the same frequency class. NGRAM obtains the largest number of unique target bigrams.

Both FDA5 and other instance selection methods converge to the same BLEU result at the end when using the full 55M word training set. However FDA5 reaches within 0.5 BLEU points of this result using less than 11% of the data for in-domain and less than 2.7% of the data for out-of-domain data. FDA5 peaks at around 8M words or 15% of the full training set, for both sets of experiments exceeding the full dataset result by 0.41 BLEU points for out-of-domain data.

Table II

Summary of FDA5’s Translation Performance. Possible BLEU gains with respect to using all of the training data (ALL) or to random baseline (RAND) are given in the first two columns. The next column lists the ratio of the FDA5 training data to RAND training data to reach the same BLEU performance. The last column is the percentage of the training data required for reaching within 0.5 BLEU points to ALL performance.

<table>
<thead>
<tr>
<th>wrt.</th>
<th>BLEU points gain</th>
<th>data ratio</th>
<th>% data for BLEU points −0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>+3.22</td>
<td>+0.01</td>
<td>1/8</td>
</tr>
<tr>
<td>OOD</td>
<td>+2.09</td>
<td>+0.41</td>
<td>1/11.3</td>
</tr>
<tr>
<td>en-tr</td>
<td>+11.23</td>
<td>+0.78</td>
<td>1/23</td>
</tr>
<tr>
<td>tr-en</td>
<td>+11.52</td>
<td>+0.00</td>
<td>1/23</td>
</tr>
</tbody>
</table>

Table III

Statistics of the Target \mathcal{L} for ID and OOD Test Sets using 10th Target Words. Bigrams list the unique 2-grams found and WPS is the number of words per sentence.

<table>
<thead>
<tr>
<th>Model</th>
<th>bigrams</th>
<th>ID</th>
<th>TCOV</th>
<th>OOD</th>
<th>bigrams</th>
<th>TCOV</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDA5</td>
<td>346K</td>
<td>19</td>
<td>.68</td>
<td>426K</td>
<td>24</td>
<td>.42</td>
</tr>
<tr>
<td>DWDS</td>
<td>351K</td>
<td>20</td>
<td>.67</td>
<td>412K</td>
<td>19</td>
<td>.42</td>
</tr>
<tr>
<td>NGRAM</td>
<td>317K</td>
<td>21</td>
<td>.57</td>
<td>514K</td>
<td>17</td>
<td>.37</td>
</tr>
<tr>
<td>RAND</td>
<td>349K</td>
<td>25</td>
<td>.61</td>
<td>347K</td>
<td>25</td>
<td>.34</td>
</tr>
</tbody>
</table>

A. English-German Results

We obtained translation results on the English to German language pair using the parallel training sentences as described in Section V-A. Figure 9 compares the optimized FDA5 instance selection with a random instance selection baseline and other instance selection methods for a range of training set sizes in terms of BLEU score for ID and OOD experiments. The first figure gives training set size vs BLEU for the 27K word in-domain test set where the training data is selected from the 55M word WMT12 en→de parallel training set. The second figure presents a similar comparison for the official 73K word out-of-domain test data and subsets of the WMT12 en→de training set.

FDA5 optimized for in-domain data (the top line labeled FDA5) gains up to 3.22 BLEU points compared to a randomly selected training set (line labeled with RAND) of the same size, or to reach the same BLEU performance as FDA5, random instance selection needs up to 8 times more data. FDA5 optimized for out-of-domain data (the top line labeled FDA5 on the right figure) gains up to 2.09 BLEU points compared to a randomly selected training set (line labeled RAND) of the same size, or to reach the same BLEU performance as FDA5, random instance selection needs up to 11.3 times more data.

All other methods with the exception of DWDS give performances significantly below FDA5, and in the case of in-domain data, even below random instance selection for small training sets. Optimized FDA5 outperforms DWDS in both the in-domain experiments (up to 0.37 BLEU points) and in the out-of-domain experiments (up to 0.35 BLEU points). These results indicate that methods that do not use exponential feature decay or that do not take into account the test set

B. English-Turkish and Turkish-English Results

We obtained translation results on the English to Turkish language pair using the parallel training sentences as described in Section V-A. Figure 10 compares the optimized FDA5 instance selection with a random instance selection baseline for a range of training set sizes in terms of BLEU score. The first figure gives results in the en→tr translation task and the second one in the tr→en translation task.

In the en→tr translation task, FDA5 gains up to 11.23 BLEU points compared to a randomly selected training set of the same size, or to reach the same BLEU performance as FDA5, random instance selection needs up to 23 times more data. In tr→en direction, FDA5 gains up to 11.52 BLEU points compared to a randomly selected training set of the same size, or to reach the same BLEU performance as FDA5, random instance selection again needs up to 23 times more data. FDA5 reaches within 0.5 BLEU points to the BLEU result obtained using the full training set using about 8% of the data for en→tr and about 19% of the data for tr→en. FDA5 exceeds the full dataset result by 0.78 BLEU points for en→tr.

C. Active Learning Results

We obtained translation results when using FDA5 in an active learning setting where we use the training set features as \mathcal{F} for selecting training instances. Figure 11 compares the
FDA5 instance selection optimized according to the training set with a random instance selection baseline for a range of training set sizes in terms of BLEU score for ID AL and OOD AL translation tasks. FDA in OOD AL gains up to 0.45 BLEU points compared to using all of the training data and 1.12 BLEU points compared to random training set. Previous work on AL could not achieve better results than baseline system results [7] whereas our results show that better BLEU results are possible with using FDA5 in AL setting for OOD translation task.

D. Computing Time and SMT Model Space

This section presents statistics about computing time and space requirements for optimization and selection with FDA5 and SMT model training with Moses in the OOD translation task. FDA5 achieves significant reductions in computing time and space for building SMT models. Table IV lists the computing time for AL and TL tasks for three different training set sizes together with the size of the space occupied by the obtained phrase table and the overall SMT model. FDA5 optimization results are obtained using 8 cores and selection using 1 core with 2 Ghz and 8 MB cache each. Moses SMT results are obtained using 4 cores with 2 Ghz and 25 MB cache each.

The TL results show that we spend about half the time for building an FDA5 SMT model with 1M words and 3% of space for the phrase table and 8% of the overall space when compared with a baseline system, ALL, using all of the training data available yet obtain only 0.58 BLEU points difference with the baseline system. The AL results show that we spend about 25% of the time for building an FDA5 SMT model with 1M words and 3% of space for the phrase table and 6% of the overall space when compared with ALL yet obtain only 1.34 BLEU points difference with the baseline system. FDA5 selected training data not only effects the training time but also tuning time when building SMT models. Building
Fig. 11. A comparison of optimized FDA5 in active learning setting with baseline random instance selection (straight line corresponds to the BLEU using all of the training set). The first figure gives training set size vs. BLEU for ID AL experiments and the second figure gives the results for OOD AL experiments.

<table>
<thead>
<tr>
<th>Size</th>
<th>Setting</th>
<th>Optimization</th>
<th>Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>1M</td>
<td>TL</td>
<td>205</td>
<td>1.3</td>
</tr>
<tr>
<td>1M</td>
<td>AL</td>
<td>299</td>
<td>2.9</td>
</tr>
<tr>
<td>47M</td>
<td>AL</td>
<td>410</td>
<td>8.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Size</th>
<th>Setting</th>
<th>Training</th>
<th>Time Tuning</th>
<th>Overall Phrase Table</th>
<th>Overall Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>93K</td>
<td>TL</td>
<td>3</td>
<td>286</td>
<td>148</td>
<td>5 MB</td>
</tr>
<tr>
<td>93K</td>
<td>AL</td>
<td>5</td>
<td>125</td>
<td>148</td>
<td>5 MB</td>
</tr>
<tr>
<td>1M</td>
<td>TL</td>
<td>20</td>
<td>704</td>
<td>148</td>
<td>73 MB</td>
</tr>
<tr>
<td>1M</td>
<td>AL</td>
<td>23</td>
<td>109</td>
<td>148</td>
<td>82 MB</td>
</tr>
<tr>
<td>47M</td>
<td>TL</td>
<td>606</td>
<td>845</td>
<td>1533</td>
<td>2300 MB</td>
</tr>
<tr>
<td>47M</td>
<td>AL</td>
<td>666</td>
<td>375</td>
<td>1073</td>
<td>2334 MB</td>
</tr>
<tr>
<td>ALL</td>
<td>U</td>
<td>986</td>
<td>990</td>
<td>1831</td>
<td>2564 MB</td>
</tr>
</tbody>
</table>

TABLE IV
Computing time (minutes) for optimization and selection with FDA5 in the OOD translation task and Moses SMT model building time (minutes) and space (MB) for the phrase table and for the overall model (excluding the LM).

Algorithm 2: Parallel FDA5

Input: \(\mathcal{U}, \mathcal{F}, \text{and } N\).

Output: \(\mathcal{L} \subseteq \mathcal{U}\).

1. \(\mathcal{U} \leftarrow \text{shuffle}(\mathcal{U})\)
2. \(\mathcal{U}, \mathcal{M} \leftarrow \text{split}(\mathcal{U}, N)\)
3. \(\mathcal{L} \leftarrow \{\}\)
4. foreach \(\mathcal{U}_i \in \mathcal{U}\) do
5. \((\mathcal{L}_i, s_i) \leftarrow \text{FDA5}(\mathcal{U}_i, \mathcal{F}, \mathcal{M})\)
6. \(\mathcal{L} \leftarrow \mathcal{L} \cup (\mathcal{L}_i, s_i)\)
7. \(\mathcal{L} \leftarrow \text{merge}(\mathcal{L})\)

SMT models with AL FDA5 require about 10% more training time but significantly less tuning time, finishing up to 7 times earlier.

VII. PARALLEL FDA5

FDA5 obtains a sorting of the training instances based on the values of the test set features. Any change in the instance selection order results with a new scoring and ordering of the instances, making parallelization of the FDA5 algorithm difficult; but we can follow the approach in [11] to improve the scalability and the diversity further. Parallel FDA5 (Algorithm 2) first shuffles the training sentences, \(\mathcal{U}\) and runs individual FDA5 models on the multiple splits from which equal number of sentences, \(M\), are selected. merge combines \(k\) sorted arrays, \(\mathcal{L}_i\), into one sorted array in \(O(Mk \log k)\) using their scores, \(s_i\), where \(Mk\) is the total number of elements in all of the input arrays.\(^3\) Parallel FDA5 achieves close performance to FDA5 in terms of the target 2-gram feature coverage. Parallel FDA5 makes FDA5 more scalable to domains with large training corpora and allows rapid deployment of SMT systems. By selecting from random splits of the original corpus, we work with different n-gram feature distributions in each split and prevent feature values from becoming negligible, which can enhance the diversity.

VIII. CONTRIBUTIONS

We have introduced feature decay algorithms (FDA), a class of instance selection algorithms for machine translation that use feature decay, which generalize some of the ideas from related work, and allow optimization and efficient implementation. We describe some of the best performing instance selection algorithms as special cases of FDA.

We build a 5 parameter FDA instantiation called FDA5, and optimize its parameters on in-domain and out-of-domain translation tasks in different language pairs showing that different feature values and decay rates are appropriate for different tasks. We use target language bigram coverage (TCOV) for evaluation during optimization for efficiency and show that it correlates well with BLEU. We show that the average amount of exponential and polynomial decaying we perform with the optimal parameters are the same for translating from English to German and very close to the amount for translating from English to Turkish. The average amount of decaying and

\(^3\) [34], question 6.5-9. Merging \(k\) sorted lists into one sorted list using a min-heap for \(k\)-way merging.
scaling is less when translating from Turkish to English where much longer and more common features are preferred.

FDA5 outperforms other instance selection methods and the FDA5 framework can recast most of the instance selection models. A comparison with random instance selection shows that FDA5 can gain up to 3.22 BLEU points for English-German and up to 11.52 BLEU points for English-Turkish translation tasks at the same training set size achieving significant performance improvement, or can achieve a comparable BLEU result using as little as 4% of the data achieving significant reductions in the training set size. In the English-German translation tasks we have tested, FDA5 performance peaks at less than 15% of the full training set exceeding the result with the full training set by 0.41 BLEU points for out-of-domain test set and can reach within 0.5 BLEU points by using only 2.7% of the available training data. Also, in the English to Turkish translation task, FDA5 performance exceeds the result with the full training set by 0.78 BLEU points. FDA5 is able to reduce the time to build an SMT system by half with 1M words using only 3% of space for the phrase table and 8% of the overall space when compared with a baseline system using all of the training data available yet still obtain only 0.58 BLEU points difference with the baseline system in out-of-domain translation. These results show that a smaller but more relevant subset of the training set can give us better accuracy in statistical machine translation. An implementation of the algorithm is available from the website at http://github.com/ai-ku/fda, which also includes a program for optimizing the parameters of FDA5.

ACKNOWLEDGMENTS

We would like to thank anonymous reviewers of TASLP for their very useful comments and suggestions. We also thank Koç University for the provision of computational facilities and support.

REFERENCES

