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Optimizing Instance Selection for Statistical
Machine Translation with Feature Decay Algorithms

Ergun Biçici and Deniz Yuret

Abstract—We introduce FDA5 for efficient parameterization,
optimization, and implementation of feature decay algorithms
(FDA), a class of instance selection algorithms that use feature
decay. FDA increase the diversity of the selected training set
by devaluing features (i.e. n-grams) that have already been
included. FDA5 decides which instances to select based on three
functions used for initializing and decaying feature values and
scaling sentence scores controlled with 5 parameters. We present
optimization techniques that allow FDA5 to adapt these functions
to in-domain and out-of-domain translation tasks for different
language pairs. In a transductive learning setting, selection of
training instances relevant to the test set can improve the
final translation quality. In machine translation experiments
performed on the 2 million sentence English-German section of
the Europarl corpus, we show that a subset of the training set
selected by FDA5 can gain up to 3.22 BLEU points compared to
a randomly selected subset of the same size, can gain up to 0.41
BLEU points compared to using all of the available training data
using only 15% of it, and can reach within 0.5 BLEU points to the
full training set result by using only 2.7% of the full training data.
FDA5 peaks at around 8M words or 15% of the full training set.
In an active learning setting, FDA5 minimizes the human effort
by identifying the most informative sentences for translation and
FDA gains up to 0.45 BLEU points using 3/5 of the available
training data compared to using all of it and 1.12 BLEU points
compared to random training set. In translation tasks involving
English and Turkish, a morphologically rich language, FDA5 can
gain up to 11.52 BLEU points compared to a randomly selected
subset of the same size, can achieve the same BLEU score using
as little as 4% of the data compared to random instance selection,
and can exceed the full dataset result by 0.78 BLEU points. FDA5
is able to reduce the time to build a statistical machine translation
system to about half with 1M words using only 3% of the space
for the phrase table and 8% of the overall space when compared
with a baseline system using all of the training data available yet
still obtain only 0.58 BLEU points difference with the baseline
system in out-of-domain translation.

Index Terms—instance selection; machine translation; trans-
ductive learning; information retrieval; domain adaptation

EDICS Category: SLP-SSMT, SLP-SMIR, SLP-LANG,
SPE-SPL

I. INTRODUCTION

STATISTICAL machine translation (SMT) makes use of a
large number of parallel training sentences, which contain

pairs of sentences that are translations of each other, to derive
translation tables, estimate parameters, and generate the actual
translation. Not all of the parallel training sentences nor the
translation table that is generated is used during decoding a
given set of test sentences and filtering is usually performed
for computational advantage [1].
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Word-level translation accuracy is affected by the number
of times a word occurs in the parallel training sentences [2].
Koehn and Knight find that about 50 examples per word are
required to achieve a performance close to using a dictionary
in their experiments. Translation performance can improve as
we include multiple possible translations for a given word,
which increases the diversity of the training set.

However, it is also common knowledge that the quality and
the relevance of the training data have a significant impact
on translation performance. With the increased size of the
parallel training sentences there is also the added noise, mak-
ing relevant instance selection important. Phrase-based SMT
systems rely heavily on accurately learning word alignments
from the given parallel training sentences. Proliferation of the
available parallel corpora for training SMT systems can create
computational challenges. Proper instance selection plays an
important role to obtain an appropriately sized training set
with which correct alignments can be learned. In this work,
we quantify the effect of training data relevance and diversity
and show that by using significantly less training data, we
can achieve the same, or in some settings, higher level of
translation performance.

Instance selection has been used in statistical machine
translation in two ways:

Transductive learning (TL) makes use of test instances,
which can sometimes be accessible at training time, to learn
specific models tailored towards the test set. Target domain
adaptation can be achieved by transductive instance selec-
tion. In a transductive learning setting, selection of training
instances relevant to the test set improves the translation
quality [3], [4].

Active learning (AL) selects a subset of training samples
L from the unlabeled dataset U that will benefit a learning
algorithm the most [5] without using the test set. Active
learning in SMT selects which instances to add to the training
set to improve the performance of a baseline system [6] or
which to retain for achieving similar performance using fewer
instances [7], [8]. Approaches that work without accessing the
test set is in this category.

We describe a class of instance selection algorithms called
feature decay algorithms (FDA), that aim to maximize the
coverage of the target language features while increasing their
diversity by weight decay and achieve significant gains in
machine translation performance and decrease the training
set size. FDA is introduced in [4], [9] and in this paper,
we develop FDA5, which extends FDA by generalizing the
ideas in earlier work with five parameters that allows bet-
ter scaling, scoring, and optimization. FDA5 improves the
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overall performance and provides greater understanding and
analysis of different domains and tasks. The parameteriza-
tion and optimization mechanisms we introduce with FDA5
allow efficient instance selection with many monolingual and
bilingual application scenarios. FDA5 can be used to improve
the translation quality (Section VI), for domain adaptation
in machine translation [10], and to reduce the size of the
SMT model and training time (Section VI-D) or the language
model [11], [12]. We discuss current application areas for
FDA5 in Section II-A.

FDA5 can be used in both transductive and active learning
scenarios. From a transductive learning perspective, we show
that FDA5 can gain up to 3.22 BLEU points compared to a
similarly sized randomly selected subset of the training set in
an in-domain translation task with large parallel corpora and
11.52 BLEU points in a translation task involving English
and Turkish, a morphologically rich language, with smaller
parallel corpora. At the same time, FDA5 can also gain up
to 0.41 BLEU points compared to using all of the available
training data using only 15% of it and can reach within 0.5
BLEU points by using only 2.7% of the available training data
in English-German out-of-domain (OOD) translation. From
an active learning perspective, we show that an SMT system
using FDA5 can achieve a given BLEU performance with as
little as 4% of the available training data compared to random
instance selection, significantly reducing the required human
effort in English to Turkish or Turkish to English translation.
In active learning experiments, FDA5 is used for selecting
training instances relevant to the training set itself and gains
up to 0.45 BLEU points compared to using all of the available
training data and 1.12 BLEU points compared to random
training set on English-German OOD translation. An imple-
mentation of the algorithm is available from the website at
http://github.com/ai-ku/fda, which also includes
a program for optimizing the parameters of FDA5.

The next section describes the general structure of feature
decay algorithms, their computational complexity, and poten-
tial application areas. Section III describes related approaches
to instance selection, most recast as specific instantiations
of the FDA framework. We present a 5 parameter variation
of FDA called FDA5 in Section IV. Section V presents
our datasets, evaluation, optimization, and coverage results
together with adaptation to in-domain (ID) and out-of-domain
(OOD) translation tasks for different language pairs (English-
German and English-Turkish). Section VI presents our transla-
tion results in TL and AL scenarios and provide statistics about
the computing time and space requirements for FDA5 SMT
models. Section VII presents the parallel FDA5 algorithm. We
summarize our contributions in the last section.

II. INSTANCE SELECTION WITH FEATURE DECAY

In this section we will describe a class of instance selection
algorithms for machine translation that use feature decay,
which increases the diversity of the training set by devaluing
features (i.e. n-grams) that have already been included. After
reviewing the state of the art in the field, we generalize the
main ideas in a class of feature decay algorithms (FDA) which

Algorithm 1: The Feature Decay Algorithm
Input: Training sentences U , test set features F , and

desired number of training words N .
Data: A queue Q, sentence scores score, feature values

fvalue.
Output: Subset of the training sentences to be used as

the training data L ⊆ U .
foreach f ∈ F do1

fvalue(f)← init(f)2

S← {}3

foreach S ∈ U do4

score(S)← sentScore(S)5

S← S ∪ 〈score(S), S〉6

heapify(Q,S)7

while |L| < N do8

S ← pop(Q)9

score(S)← sentScore(S)10

if score(S) ≥ topval(Q) then11

L ← L ∪ {S}12

foreach f ∈ features(S) do13

fvalue(f)← decay(f)14

else15

push(Q, S, score(S))16

allow efficient implementation and parameter optimization.
Our abstraction makes three components of such algorithms
explicit permitting experimentation with their alternatives:
• The initial value of a feature.
• The update of the feature value as instances are added to

the training set.
• The value of a candidate training sentence as a function

of its features.
A feature decay algorithm (FDA) aims to maximize the

coverage of the target language features for the test set. Fea-
tures can be constituents such as words, bigrams, and phrases
for allowing relevant retrieval of instances and the feature
values correspond to their importance, which are decayed to
increase diversity. A target language feature that does not
appear in the selected training instances will be difficult to
produce regardless of the decoding algorithm (impossible for
unigram features). In general we do not know the target
language features, only the source language side of the test
set is available. Unfortunately, selecting a training instance
with a particular source language feature does not guarantee
the coverage of the desired target language feature. There may
be multiple translations of a feature appropriate for different
senses or different contexts. For each source language feature
in the test set, FDA tries to find as many training instances as
possible to increase the chances of covering the appropriate
target language feature. FDA does this by reducing the value
of the features that are already included after picking each
training sentence from the source language. Algorithm 1 gives
the pseudo-code for FDA.

The inputs to the algorithm are the source language training
sentences U , the source language features of the test set F ,
and the desired number of words N in the subset L of the
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training set output by the program. We use n-grams up to a
specified n as features in our experiments.

The first foreach loop initializes the value of each test set
feature using init(f) which can use the frequency, length
and other attributes of the n-grams to determine the feature
value. The second foreach loop initializes the score for
each candidate training sentence using sentScore(S). This
function uses the length of the sentence and the values of its
features to estimate the utility of adding it to the output. The
sentences are then pushed onto a queue with their scores.

Finally the while loop outputs a subset of the training
sentences L by picking candidate sentences with the highest
scores until the desired number of words N is reached. This
is done by popping the top scoring candidate sentence S from
the queue at each iteration. After ensuring that S is the best
candidate it is placed in L and the values of its features are
decreased using decay(f).

Note that as we change the feature values, the sentence
scores in the queue will no longer be correct. However they
will still be valid upper bounds because the feature values
only get smaller. We use an abstract data type called an upper
bound queue (implemented using a binary heap) that maintains
an upper bound on the actual values of its elements [13]. Each
successive pop from an upper bound queue is not guaranteed
to retrieve the element with the largest value, but the remaining
elements are guaranteed to have values smaller than or equal
to the upper bound of the next element.

We thus recalculate the score of each sentence popped in
the while loop because the values of its features may have
changed. We compare the recalculated score of S with the
upper bound of the next best candidate. If the score of S is
equal or better we are sure that it is the top candidate, in which
case we place S in our training set and decay the values of
its features. Otherwise we push S back into the priority queue
with its updated score.

FDA gives us a class of algorithms that use feature decay for
instance selection. By using upper bound queues implemented
as binary heaps, FDA offers a very fast implementation for
different instance selection algorithms. In the next section,
we define various other models by parameterizing its three
functions init, decay, and sentScore. Making the pa-
rameterization explicit allows us to optimize the parameters
to discover better performing variants specialized to specific
translation tasks.

A. FDA Framework

Biçici and Yuret [4] build the FDA algorithm for training
instance selection for machine translation given a training set
and a test set. Training sentences are scored as follows where
CL(f) returns the count of f in L:

init(f) = 1

decay(f) = init(f)(1 + CL(f))
−1

sentScore(S) =
∑

f∈F (S)

fvalue(f) (1)

FDA is not parameterized and therefore optimization is only
done by trying different decaying or initialization functions.
Since there is no normalization with the sentence lengths,
FDA also tends to select longer sentences, which can make the
word alignment task harder. In Section IV, we alleviate these
problems with the introduction of FDA5, which parameterizes
the contribution of each of these factors when calculating the
value of features and the scores for sentences. Parameterization
allows better understanding of the translation domains and
tasks, improves the performance by adapting to new problems,
and gives more control over what kind of instances are to be
selected for the training set.

B. Computational Complexity

The average computational complexity of FDA is in
O(|F|+ |U|+N log |U|): the first foreach has complexity
|F|, the second foreach and heapify has complexity
|U|, and the while loop is in O(N log |U|) in the best case.
We empirically observe that the average complexity is in
O(N log |U|). Figure 1 shows that the number of times the
while loop iterates with respect to the number of words already
selected for OOD and ID. The number of iterations in the
while loop converges to 1.2 (n = 2) and 1.3 (n = 3) per word
for OOD and 1.7 (n = 2) and 1.5 (n = 3) per word for ID
instance selection using optimized parameters.
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Fig. 1. Number of iterations in the while loop of FDA5 converges to one
per word for OOD and two per word for ID instance selection. x-axis is the
number of words in L and the y-axis is the number of iterations per word.

C. Application Areas

FDA is applied on many learning tasks which require
diverse and relevant retrieval of training instances [4], [11],
[14], [15], [12], [16], [17], [10]. FDA is built mainly for
machine translation as coverage and diversity are both im-
portant for building high performance SMT systems and the
coverage of target features is correlated with the translation
performance [4]. Parallel FDA makes it feasible to train
SMT systems in the presence of large parallel corpora and
significantly reduces the time to deploy accurate machine
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translation systems from weeks to half a day and still achieve
state-of-the-art performance [11], [12]. In Section VI-D, we
show that even without parallelization, FDA5 is able to reduce
the time to build an SMT system by half with 1M words
using only 3% of space for the phrase table and 8% of the
overall space when compared with a baseline system using
all of the training data available yet still obtain only 0.58
BLEU points difference with the baseline system in OOD
translation. Biçici [11] also shows that if parallel FDA is used
for selecting instances for the language model (LM) corpus
using the FDA selected training set target side as the test set,
we can achieve up to 86% reduction in the number of OOV
tokens and up to 74% reduction in the perplexity. Supporting
results are obtained using parallel FDA5 [12].

FDA is impacting SMT competitions, where the increased
size of the available parallel corpora for instance by crawling
the web is creating computational scalability problems [18],
[19]. FDA is used for SMT training data selection in
WMT13 [15], for selecting the training set in the medical
translation task [20] and the tuning set in the German-
English translation task [21], for SMT post-processing data
selection to achieve the top results in the French-English and
English-German translation tasks [22], domain specific corpus
selection in feature-rich translation models [23] in WMT14.
Parallel FDA5 [12] improves the performance by 3.7 BLEU
points averaged over all language pairs when compared with
parallel FDA but the average difference to the top constrained
submission is increased to 3.49 BLEU points in WMT14
when compared with 2.88 BLEU points in WMT13, which
may be due to the selection of domain specific test set in
WMT141 rather than a task specific test set. FDA5 provides
a significant contribution to researchers and professionals
working in machine translation and allows a shift from general
purpose SMT systems to task adaptive SMT solutions.

Domain adaptation for machine translation with FDA [10]
can increase target language 2-gram coverage by 22%, gain
up to 3.55 BLEU points compared to random selection, and
learn the test sample distribution among two domains with a
correlation of 0.99. When Moses SMT systems [1] are built
using FDA selected 10K training sentences, F1 [9] results
close to the baselines that use up to 2M sentences are obtained
and when 50K FDA selected training sentences are used, 1 F1

point better results than the baselines are obtained.

Referential translation machines use FDA during monolin-
gual or bilingual retrieval of reference training sentences and
achieve top performance when predicting the quality of trans-
lations [14], [16] at WMT14 [19] and predicting monolingual
cross-level semantic similarity [17], [24], good performance
when evaluating the semantic relatedness of sentences and
their entailment [17], [25], and when judging the semantic
similarity of sentences [17], [26] at SemEval-2014 [27]. FDA
score is also used as an indicator of the expected translation
quality [14], [16].

1WMT14 test set contains 10,000 sentences, only 3000 of which are used
for testing, which can make TL application of FDA5 harder.

III. RELATED WORK AND FDA

In this section, we review the state of the art in the field of
instance selection for machine translation. We recast some al-
gorithms in the FDA framework and describe their differences
using the three functions init, decay, and sentScore.
We also categorize the related work into transductive learning
(TL) and active learning (AL) approaches as described in
the introduction depending on their emphasis in the original
publication. In Section IV, we introduce FDA5, a variant of
the FDA algorithm with five parameters that generalize many
of the ideas introduced in earlier work.

N-gram coverage (AL): Eck et al. [7] reduce the training set
size by selecting a subset after sorting the training data using
a scoring function (hence AL) maximizing n-gram feature
coverage (NGRAM):

init(f) = CU (f)

decay(f) = (CL(f) > 0 ? 0 : init(f))

sentScore(S) =
1

|S|
∑

f∈F (S)

fvalue(f) (2)

sentScore(S) scores sentence S, F (S) gives the set of
features found in S, and CU (f) return the count of f in U .
The NGRAM scorer sums over unseen n-grams to increase
the coverage of the training set. The denominator involving
the length of the sentence takes the translation cost of the
sentence into account. They do not use the test set when
selecting training instances but rather use previously selected
training data to identify the covered n-gram features.

TF-IDF (TL): Lü et al. [3] use tf-idf (term frequency -
inverse document frequency) based cosine score to select a
subset of the parallel training sentences close to the test set
for SMT training (hence TL). They outperform the baseline
system when the top 500 training instances per test sen-
tence are selected. The terms used in their TF-IDF measure
correspond to words where this work focuses on n-gram
feature coverage. When the combination of the top N selected
sentences are used as the training set, they show increase in
the performance at the beginning and decrease when 2000
sentences are selected for each test sentence. TF-IDF does
not involve decay of feature values. If T is the test set and
CT (f) is the count of feature f in the test set, TF-IDF instance
selection can be described in FDA terms as:

init(f) = CT (f) log(|T |/CT (f))2

decay(f) = init(f) (no decay)

sentScore(S) =

∑
f∈F (S) fvalue(f)√∑

f∈F (S) log(|T |/CT (f))2
(3)

DWDS (AL): Density weighted diversity sampling
(DWDS) [8] selects sentences containing the n-gram features
in the unlabeled dataset U while increasing the diversity
in L (hence AL). DWDS increases the score of a sentence
with increasing frequency of its n-grams found in U and
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decreases with increasing frequency in the already selected
set of sentences, L, in favor of diversity. DWDS scores as:

init(f) = CU (f)/|U|
decay(f) = init(f)e−αCL(f)

d(S) =

∑
f∈F (S) decay(f)

|F (S)|

u(S) =

∑
f∈F (S) I(f 6∈ F (L))

|F (S)|

sentScore(S) =
2 d(S)u(S)

d(S) + u(S)
(4)

where init(f) uses the probability of feature f in U , F (S)
stores the features of S, I(.) is an indicator function, and α is a
decay parameter. d(S) denotes the density of S proportional to
the probability of its features in U and inversely proportional
to their counts in L and u(S) its uncertainty, measuring
the percentage of new features in S. DWDS tries to select
sentences containing similar features in U with high diversity.
In their experiments, they selected 1000 training instances in
each iteration and retrained.

Perplexity (AL): Perplexity according to a LM trained
on the already selected training set and inter-SMT-system
disagreement as measured by relative translation errors be-
tween translations obtained by a committee of translation
models can be used to select training data (hence AL) [28].
A sentence having high perplexity (a rare sentence) in L and
low perplexity (a common sentence) in U is considered as a
candidate for addition.

Model weighting (TL): Some domain adaptation models
work with separate training and language models to obtain
mixture translation models by linear combination of trans-
lation and language model probabilities with weights based
on LM probabilities over training corpora split according to
their genre [29] or by weighing the counts in the maximum
likelihood estimation of phrase translation probabilities [30]
to obtain BLEU improvements (hence TL).

IV. THE FDA5 ALGORITHM

In this section we introduce a five parameter instance
selection algorithm called FDA5. Explicitly parameterizing the
three FDA functions init, decay, and sentScore allows
us to (1) efficiently replicate and generalize over some of the
ideas from earlier work, (2) optimize the parameters for any
new ID or OOD target translation domain to achieve better
performance, (3) control the type of instances that are selected
from the training data, and (4) understand the target translation
domains and tasks better.

The FDA5 init function, which computes the initial value
of a feature f can be parameterized to take into account
the number of tokens in the feature |f |, and its log inverse
frequency using the parameters l and i respectively. Features
that do not appear in the test set are considered to have zero
value and CU (f) is set to 1 if the feature is not found in U .

init(f) = log(|U|/CU (f))i |f |l (5)

The FDA5 decay function, which is used to compute
the reduced values of features after they have been included
CL times in the output L, can implement polynomial or
exponential decay using the parameters c and d:

decay(f) = init(f)(1 + CL(f))
−cdCL(f) (6)

The FDA5 sentScore function calculates the total score
for a sentence as a sum of its feature values and can be scaled
by a sentence-length factor using the parameter s:

sentScore(S) =
1

|S|s
∑

f∈F (S)

fvalue(f) (7)

These five parameters, together with the maximum feature
n-gram length n, determine the value of each sentence and
the instance selection behavior of FDA5. The default values
d = 1, c = s = i = l = 0 give every feature the same value
and perform no decay or scaling.

V. DATASETS, EVALUATION, AND OPTIMIZATION

We present the experimental settings for our results in three
parts: datasets, evaluation, and optimization. FDA5 parameter
optimization converges to very different values for different
language pairs and even for in-domain and out-of-domain
translation tasks. Section V-A describes the datasets we use.
BLEU is an expensive metric to judge the performance of a
training set, therefore we use target language bigram coverage
(TCOV) as an alternative metric in some experiments as
described in Section V-B. Section V-C describes how we
obtain the optimal parameters for FDA5 and analyzes the
sensitivity of results to each parameter. Finally, Section V-D
introduces genetic algorithms as an alternative optimization
method for searching for the parameters of FDA5, which
reduces the computational overhead, and empirically achieves
similar results. We use n-gram features.

A. Datasets

We performed optimization and sensitivity analysis for the
parameters used in the FDA5 algorithm and obtained coverage
results on the English (en) to German (de) language pair using
the parallel training sentences provided by [31] (WMT’12).
The English-German section of the Europarl corpus contains
about 2 million sentences (55 million English, 52.5 million
German words). Both the development set and the test set
contain 3003 sentences (73K English, 72.6K German words)
in this out-of-domain (OOD) translation task. We also cre-
ated in-domain (ID) development and test sets composed of
1000 sentences (27K English, 26K German words) each by
randomly sampling the training data. For ID experiments the
development and test sets were removed from the training
data. The language model is built using the ID target language
training data and is fixed for all experiments. We used the
development sets to perform parameter optimization and sensi-
tivity analysis and the test sets to perform feature coverage and
BLEU evaluation. en-de language pair provides ID and OOD
translation tasks with abundant and large parallel corpora.
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Additionally, we perform optimization and obtain results on
the English to Turkish (tr) and Turkish to English language
pairs using the parallel training sentences provided by EU
project Bologna2, which contains course syllabi documentation
from different universities in Turkey. The parallel corpus
contains 352K training sentences (3.2 million English, 2.7
million Turkish words) and additional 1200 sentences each
for development and test sets (14K English, 12K Turkish
words). This language pair provides a translation task in a
constrained domain with smaller parallel corpora and a harder
one with Turkish being a morphologically rich language with
scarce parallel corpora resources. The development and test
sets are extracted randomly from the training set and hence
this translation task is also in-domain. Both English-German
and English-Turkish translation tasks are relatively harder than
translation between closer language pairs due to compounding.
Turkish has additional complexity due to different orderings
of compounds than English and German and to being a
morphologically rich language.

B. Evaluation

Computing the BLEU score for each training set evaluated
during optimization of instance selection is computationally
expensive. Therefore we chose to use TCOV as a surrogate
measure. TCOV measures the percentage of unique target lan-
guage bigrams in the test/dev set included in a given training
set. Note that FDA makes all instance selection decisions
based on the source language and has no access to target
language data. However the quality of the final translations
depends on whether the correct target language phrases make
it into the phrase table which motivates the TCOV measure.
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Fig. 2. Target language bigram coverage (TCOV) vs. BLEU scores from the
in-domain experiments in this study showing the correlation between the two
measures.

Figure 2 shows the empirical correlation between TCOV
and BLEU on a scatter plot of a number of experiments we
have performed in this study on in-domain datasets. The out-
of-domain results are similar.

Figure 3 shows the evolution of target and source language
bigram coverage as more data is added to the training set by
an optimized FDA5 algorithm on ID data. Source language

2http://www.bologna-translation.eu/
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Fig. 3. Training set size vs. target language (TCOV) and source language
(SCOV) bigram coverage for the optimized FDA5 instance selection on in-
domain data.

bigram coverage (SCOV) is maxed out at 94.29% at around
0.5 million words of training data (less than 1% of the whole
dataset). After this point there are no new source language
features FDA5 can add to the dataset, but as new sentences
are added, the fvalue for the same features are updated based
on their initial value and the decay rate. As we can see, this
continues to improve TCOV until it reaches 88.06% with the
full dataset. For out-of-domain experiments the curves have
a similar shape, reaching 74.52% SCOV and 64.37% TCOV
with the full dataset.

We measure the instance selection quality of the selec-
tion models as more instances are selected by the marginal
value of the SCOV and TCOV levels. Figure 4 measures
the added value after each 73K source word additions (the
size of the OOD test set) by looking at the relevancy and
diversity as quantified by the SCOV and the TCOV obtained
in an averaged window of 5 items for OOD experiments. We
observe that FDA5 outperforms both DWDS and NGRAM by
consistently selecting instances with high source and target
coverage.

C. Optimal Parameters for FDA5

We searched the parameter space of FDA5 using a com-
bination of grid search and the DHC optimization algorithm
[32] to find values that optimized TCOV on the development
set using 1 million words of training data. For in-domain data,
we found an optimum at d = 1, c = 2.296, s = 1.1, i = 0,
l = 0, n = 3 giving a TCOV value of 0.6731 and for out-of-
domain, we found an optimum at d = 1, c = 0.25, s = 0.8,
i = 5.2552, l = −0.4, n = 2 giving a TCOV value of 0.4196.

Early on we discovered that using trigrams (n = 3), as
well as words and bigrams, benefits the ID results but not
OOD results, even though in both cases we evaluate the output
using TCOV which uses bigrams. Figure 5 shows that many
combinations of the polynomial (c) and exponential (d) decay
parameters give very similar results. With the exception of the
black region at the upper left (c = 0, d = 1, no decay) all
points in the grid are within 1% TCOV of the optimum.

Figure 6 shows that a larger decay rate is better for ID
experiments compared to OOD experiments. In fact with no
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decay ID results get significantly worse, but OOD results stay
within 1% of the optimum. Figure 6 also shows that a sentence
normalization with s ≈ 1 is necessary for both ID and OOD
performance.

Figure 7 plots sensitivity of TCOV with respect to changes
in the optimal parameter settings we learned. As we see in
Figure 7, OOD results are more sensitive to the initial values
of features (preferring shorter and less frequent features) and
less on decay rate. We observe several key differences between
ID and OOD results:
• Longer features (n = 3) benefit ID more than OOD.
• Initial values (init) are important for OOD, which

prefers short and infrequent features, but not for ID.
• A fast decay rate (c > 1) is crucial for ID, which falters

with no decay, whereas a low decay (c < 1) is optimal
for OOD, which does OK even with no decay (c = 0).

• Various combinations of exponential (d < 1) and poly-
nomial (c > 0) decay give similar results, but at the end
we found polynomial decay was slightly better.

• Sentence normalization (s ≈ 1) is important for ID but
more so for OOD.

D. Optimization with Genetic Algorithms

Searching the parameter space of FDA5 requires a combina-
tion of computationally expenvise grid search and several DHC
optimization steps to be run for finding optimal parameters
for a given N. This section introduces an alternative method,
evolution strategy (ES) for optimization, which can find the
optimal or very close to the optimal solution for this complex
optimization problem in the order of hours. Evolution strat-
egy [33] is a variant of genetic algorithms where real valued
parameter populations evolve towards the optimal solution
after several generations of mutations.

By using ES, we can empirically obtain good results in a
couple of hours, which allows us to perform optimization for
any given N, the desired number of training words. Figure 8

plots the changes in the parameter values as the parameters
of FDA5 is optimized with ES for increasing N for the OOD
translation task. We select the parameters with n for which
the optimization leads to higher TCOV value. ES finds very
close parameters to the parameters we found for 1M words
using DHC and grid search in the previous section: d = 1.0,
c = 0.387, s = 0.9251, i = 5.0, and l = 1.498. As the
training set size increases, the optimal value for l decreases
and i increases showing a preference towards including longer
and rarer features. d, c, and s vary around 1 with d and c
being closely related yet both with positive values, showing
that both exponential and polynomial decay are important for
better selection of the training set. The mean values for the
parameters after optimization for different translation tasks as
N vary are given in Table I. Most translation tasks prefer
n = 3 more than n = 2 except for OOD. OOD prefers more
exponential decay and less polynomial decay than others and
shortest and rarest features. For active learning experiments
(Section VI-C), we obtain the largest sentence and feature
length and log inverse parameters. If we optimize SCOV
instead of TCOV, we obtain 4% lower TCOV performance
and different parameter settings for 1M words.

µ n d c s i l
en-de (ID) 2.90 0.932 1.607 1.033 1.882 -2.617
en-de (OOD) 2.35 0.968 0.729 0.961 3.073 -0.517
en-tr 3.00 0.870 1.844 0.962 2.072 -2.038
tr-en 2.91 0.455 1.992 0.123 2.584 -3.025
en-de (ID AL) 2.55 0.658 1.086 1.037 3.338 1.310
en-de (OOD AL) 2.6 0.767 0.977 1.020 3.427 0.980

TABLE I
MEAN PARAMETER VALUES FOR DIFFERENT TRANSLATION TASKS.

VI. MACHINE TRANSLATION PERFORMANCE

In this section, we provide a comparison of FDA5 machine
translation performance with related work in English-German
(Section VI-A), English-Turkish (en-tr), and Turkish-English
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(tr-en) (Section VI-B) translation tasks. We compare FDA5
with a random instance selection baseline and other related
methods in terms of the BLEU score. We optimize FDA5
parameters for each N with evolution strategy, which turns out
to achieve close performance to the full optimization with grid
search and DHC. The baseline performance in BLEU points
using all of the available training corpora is 22.55 for ID and
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Fig. 8. Changes in parameter values optimized with ES for OOD with
increasing training set size.

13.82 for OOD translation tasks and 24.45 for en-tr and 29.61
for tr-en translation tasks.

As we demonstrate in the following subsections, FDA5
achieves significant gains in the translation performance. The
summary of FDA5’s translation results are given in Table II.
FDA5 can gain up to 11.52 BLEU points compared to a
randomly selected training set of the same size, or achieve
similar BLEU performance using up to 23 times less data.
FDA5 can also gain up to 0.41 BLEU points compared to
using all of the available training data using only 15% of it
and can reach within 0.5 BLEU points by using only 2.7%
of the available training data for OOD translation. The gains
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% data for
BLEU points gain data ratio BLEU points −0.5

wrt. RAND ALL RAND ALL ALL
ID +3.22 +0.01 1/8 6/7 11%
OOD +2.09 +0.41 1/11.3 1/7 2.7%
en-tr +11.23 +0.78 1/23 2/3 8%
tr-en +11.52 +0.0 1/23 1/1 19%
ID AL +0.38 +0.0 1/2 1/1 43%
OOD AL +1.12 +0.45 1/6 3/5 5%

TABLE II
SUMMARY OF FDA5’S TRANSLATION PERFORMANCE. POSSIBLE BLEU
GAINS WITH RESPECT TO USING ALL OF THE TRAINING DATA (ALL) OR

TO RANDOM BASELINE (RAND) ARE GIVEN IN THE FIRST TWO COLUMNS.
THE NEXT COLUMN LIST THE RATIO OF THE FDA5 TRAINING DATA TO

RAND TRAINING DATA TO REACH THE SAME BLEU PERFORMANCE. THE
LAST COLUMN IS THE PERCENTAGE OF THE TRAINING DATA REQUIRED

FOR REACHING WITHIN 0.5 BLEU POINTS TO ALL PERFORMANCE.

reach 0.78 BLEU points for the en→tr translation task. Larger
BLEU gains and smaller selected training data for reaching
high BLEU scores in the OOD and en→tr translation tasks
with Turkish being a higher vocabulary language, indicate
that FDA5 performs especially well in harder translation tasks.
In active learning experiments, FDA gains up to 0.45 BLEU
points compared to using all of the available training data and
1.12 BLEU points compared to random training set.

A. English-German Results

We obtained translation results on the English to German
language pair using the parallel training sentences as described
in Section V-A. Figure 9 compares the optimized FDA5
instance selection with a random instance selection baseline
and other instance selection methods for a range of training
set sizes in terms of BLEU score for ID and OOD experiments.
The first figure gives training set size vs BLEU for the 27K
word in-domain test set where the training data is selected
from the 55M word WMT12 en→de parallel training set
(filtered to exclude the dev and test sentences). The second
figure presents a similar comparison for the official 73K word
out-of-domain test data and subsets of the WMT12 en→de
training set.

FDA5 optimized for in-domain data (the top line labeled
FDA5) gains up to 3.22 BLEU points compared to a randomly
selected training set (line labeled with RAND) of the same
size, or to reach the same BLEU performance as FDA5, ran-
dom instance selection needs up to 8 times more data. FDA5
optimized for out-of-domain data (the top line labeled FDA5
on the right figure) gains up to 2.09 BLEU points compared
to a randomly selected training set (line labeled RAND) of the
same size, or to reach the same BLEU performance as FDA5,
random instance selection needs up to 11.3 times more data.

All other methods with the exception of DWDS give per-
formances significantly below FDA5, and in the case of in-
domain data, even below random instance selection for small
training sets. Optimized FDA5 outperforms DWDS in both
the in-domain experiments (up to 0.37 BLEU points) and
in the out-of-domain experiments (up to 0.35 BLEU points).
These results indicate that methods that do not use exponential
feature decay or that do not take into account the test set

features such as NGRAM do not perform as well as the ones
that do.

ID OOD
Model bigrams wps TCOV bigrams wps TCOV
FDA5 346K 19 .68 426K 24 .42
DWDS 351K 20 .67 412K 19 .42

NGRAM 517K 21 .57 514K 17 .37
RAND 349K 25 .61 347K 25 .34

TABLE III
STATISTICS OF THE TARGET L FOR ID AND OOD TEST SETS USING 106

TARGET WORDS. BIGRAMS LIST THE UNIQUE 2-GRAMS FOUND AND WPS
IS THE NUMBER OF WORDS PER SENTENCE.

The statistics of L obtained with the instance selection
techniques differ from each other as given in Table III, where
106 source training words are selected for ID and OOD test
sets. FDA5 achieves top coverage along with DWDS and
achieves better TCOV using fewer unique bigrams in ID.
NGRAM is not able to discriminate between sentences well
and a large number of sentences of the same length get the
same score when the unseen n-grams belong to the same
frequency class. NGRAM obtains the largest number of unique
target bigrams.

Both FDA5 and other instance selection methods converge
to the same BLEU result at the end when using the full 55M
word training set. However FDA5 reaches within 0.5 BLEU
points of this result using less than 11% of the data for in-
domain and less than 2.7% of the data for out-of-domain data.
FDA5 peaks at around 8M words or 15% of the full training
set, for both sets of experiments exceeding the full dataset
result by 0.41 BLEU points for out-of-domain data.

B. English-Turkish and Turkish-English Results

We obtained translation results on the English to Turkish
language pair using the parallel training sentences as described
in Section V-A. Figure 10 compares the optimized FDA5
instance selection with a random instance selection baseline
for a range of training set sizes in terms of BLEU score. The
first figure gives results in the en→tr translation task and the
second one in the tr→en translation task.

In the en→tr translation task, FDA5 gains up to 11.23
BLEU points compared to a randomly selected training set
of the same size, or to reach the same BLEU performance as
FDA5, random instance selection needs up to 23 times more
data. In tr→en direction, FDA5 gains up to 11.52 BLEU points
compared to a randomly selected training set of the same size,
or to reach the same BLEU performance as FDA5, random
instance selection again needs up to 23 times more data. FDA5
reaches within 0.5 BLEU points to the BLEU result obtained
using the full training set using about 8% of the data for en→tr
and about 19% of the data for tr→en. FDA5 exceeds the full
dataset result by 0.78 BLEU points for en→tr.

C. Active Learning Results

We obtained translation results when using FDA5 in an
active learning setting where we use the training set features
as F for selecting training instances. Figure 11 compares the
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Fig. 10. A comparison of optimized FDA5 with baseline random instance selection (straight line corresponds to the BLEU using all of the training set).
The first figure gives training set size vs. BLEU for English-Turkish experiments and the second figure gives the results for Turkish-English experiments.

FDA5 instance selection optimized according to the training
set with a random instance selection baseline for a range of
training set sizes in terms of BLEU score for ID AL and
OOD AL translation tasks. FDA in OOD AL gains up to 0.45
BLEU points compared to using all of the training data and
1.12 BLEU points compared to random training set. Previous
work on AL could not achieve better results than baseline
system results [7] whereas our results show that better BLEU
results are possible with using FDA5 in AL setting for OOD
translation task.

D. Computing Time and SMT Model Space

This section presents statistics about computing time and
space requirements for optimization and selection with FDA5
and SMT model training with Moses in the OOD translation
task. FDA5 achieves significant reductions in computing time
and space for building SMT models. Table IV lists the com-
puting time for AL and TL tasks for three different training

set sizes together with the size of the space occupied by
the obtained phrase table and the overall SMT model. FDA5
optimization results are obtained using 8 cores and selection
using 1 core with 2 Ghz and 8 MB cache each. Moses SMT
results are obtained using 4 cores with 2 Ghz and 25 MB
cache each.

The TL results show that we spend about half the time
for building an FDA5 SMT model with 1M words and 3%
of space for the phrase table and 8% of the overall space
when compared with a baseline system, ALL, using all of
the training data available yet obtain only 0.58 BLEU points
difference with the baseline system. The AL results show that
we spend about 25% of the time for building an FDA5 SMT
model with 1M words and 3% of space for the phrase table and
6% of the overall space when compared with ALL yet obtain
only 1.34 BLEU points difference with the baseline system.
FDA5 selected training data not only effects the training time
but also tuning time when building SMT models. Building
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FDA5
Size Setting Optimization Selection
1M TL 205 1.3
1M AL 299 2.9
47M AL 410 8.9

Moses
Time Space

Size Setting Training Tuning Overall Phrase Table Overall
93K TL 3 286 299 5 MB 851 MB
93K AL 5 125 148 5 MB 422 MB
1M TL 20 704 737 73 MB 2036 MB
1M AL 23 109 148 82 MB 1365 MB

47M TL 606 845 1533 2300 MB 22506 MB
47M AL 666 375 1073 2334 MB 22193 MB
ALL - 798 998 1831 2564 MB 24585 MB

TABLE IV
COMPUTING TIME (MINUTES) FOR OPTIMIZATION AND SELECTION WITH

FDA5 IN THE OOD TRANSLATION TASK AND MOSES SMT MODEL
BUILDING TIME (MINUTES) AND SPACE (MB) FOR THE PHRASE TABLE

AND FOR THE OVERALL MODEL (EXCLUDING THE LM).

Algorithm 2: Parallel FDA5
Input: U , F , and N .
Output: L ⊆ U .
U ← shuffle(U)1

UUU ,M ← split(U , N)2

L← {}3

foreach Ui ∈ UUU do4

〈Li, si〉 ← FDA5(Ui,F ,M)5

L← L ∪ 〈Li, si〉6

L ← merge(L)7

SMT models with AL FDA5 require about 10% more training
time but significantly less tuning time, finishing up to 7 times
earlier.

VII. PARALLEL FDA5

FDA5 obtains a sorting of the training instances based
on the values of the test set features. Any change in the
instance selection order results with a new scoring and or-

dering of the instances, making parallelization of the FDA5
algorithm difficult; but we can follow the approach in [11]
to improve the scalability and the diversity further. Parallel
FDA5 (Algorithm 2) first shuffles the training sentences,
U and runs individual FDA5 models on the multiple splits
from which equal number of sentences, M , are selected.
merge combines k sorted arrays, Li, into one sorted array
in O(Mk log k) using their scores, si, where Mk is the total
number of elements in all of the input arrays.3 Parallel FDA5
achieves close performance to FDA5 in terms of the target
2-gram feature coverage. Parallel FDA5 makes FDA5 more
scalable to domains with large training corpora and allows
rapid deployment of SMT systems. By selecting from random
splits of the original corpus, we work with different n-gram
feature distributions in each split and prevent feature values
from becoming negligible, which can enhance the diversity.

VIII. CONTRIBUTIONS

We have introduced feature decay algorithms (FDA), a class
of instance selection algorithms for machine translation that
use feature decay, which generalize some of the ideas from
related work, and allow optimization and efficient implemen-
tation. We describe some of the best performing instance
selection algorithms as special cases of FDA.

We build a 5 parameter FDA instantiation called FDA5, and
optimize its parameters on in-domain and out-of-domain trans-
lation tasks in different language pairs showing that different
feature values and decay rates are appropriate for different
tasks. We use target language bigram coverage (TCOV) for
evaluation during optimization for efficiency and show that it
correlates well with BLEU. We show that the average amount
of exponential and polynomial decaying we perform with the
optimal parameters are the same for translating from English
to German and very close to the amount for translating from
English to Turkish. The average amount of decaying and

3 [34], question 6.5-9. Merging k sorted lists into one sorted list using a
min-heap for k-way merging.
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scaling is less when translating from Turkish to English where
much longer and more common features are prefered.

FDA5 outperforms other instance selection methods and the
FDA5 framework can recast most of the instance selection
models. A comparison with random instance selection shows
that FDA5 can gain up to 3.22 BLEU points for English-
German and up to 11.52 BLEU points for English-Turkish
translation tasks at the same training set size achieving signif-
icant performance improvement, or can achieve a comparable
BLEU result using as little as 4% of the data achieving
significant reductions in the training set size. In the English-
German translation tasks we have tested, FDA5 performance
peaks at less than 15% of the full training set exceeding the
result with the full training set by 0.41 BLEU points for out-
of-domain test set and can reach within 0.5 BLEU points
by using only 2.7% of the available training data. Also, in
the English to Turkish translation task, FDA5 performance
exceeds the result with the full training set by 0.78 BLEU
points. FDA5 is able to reduce the time to build an SMT
system by half with 1M words using only 3% of space for the
phrase table and 8% of the overall space when compared with
a baseline system using all of the training data available yet
still obtain only 0.58 BLEU points difference with the baseline
system in out-of-domain translation. These results show that
a smaller but more relevant subset of the training set can give
us better accuracy in statistical machine translation. An im-
plementation of the algorithm is available from the website at
http://github.com/ai-ku/fda, which also includes
a program for optimizing the parameters of FDA5.
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