Substitute Based SCODE Word Embeddings in Supervised NLP Tasks
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Abstract

We analyze a word embedding method
in supervised tasks. It maps words on
a sphere such that words co-occurring in
similar contexts lie closely. The similarity
of contexts is measured by the distribution
of substitutes that can fill them. We com-
pared word embeddings, including more
recent representations (Huang et al., 2012;
Mikolov et al., 2013), in Named Entity
Recognition (NER), Chunking, and De-
pendency Parsing. We examine our frame-
work in multilingual dependency parsing
as well. The results show that the pro-
posed method achieves as good as or bet-
ter results compared to the other word em-
beddings in the tasks we investigate. It
achieves state-of-the-art results in multi-
lingual dependency parsing. Word embed-
dings in 7 languages from 8 corpora are
available for public use.

1 Introduction

Word embeddings represent each word with a
dense, real valued vector. The dimension of word
embeddings are generally small compared to the
vocabulary size. They do not suffer from sparsity
unlike one-hot representations which have the di-
mensionality of the vocabulary and a single non-
zero entry. They capture semantic and syntactic
similarities (Mikolov et al., 2013). They may help
reduce the dependence on hand-designed features
which are task and language dependent.

We analyze a word embedding method pro-
posed in (Yatbaz et al., 2012), in supervised Natu-
ral Language Processing (NLP) tasks. The method
represents the context of a word by its proba-
ble substitutes. Words with their probable substi-
tutes are fed to a co-occurrence modeling frame-
work (SCODE) (Maron et al., 2010). Words co-
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occurring in similar context are closely embed-
ded on a sphere. These word embeddings achieve
state-of-the-art results in inducing part-of-speech
(POS) tags for several languages (Yatbaz et al.,
2014). However, their use in supervised tasks has
not been well studied so far. This study aims to fill
this gap.

Turian et al. (2010) compared word embeddings
in Named Entity Recognition (NER) and Chunk-
ing. They use word embeddings as auxiliary fea-
tures in existing systems. They improved results in
both tasks compared to the baseline systems. Fol-
lowing this study, we report results in Chunking
and NER benchmarks for SCODE embeddings. In
addition, we examine word embeddings in depen-
dency parsing. We report multilingual dependency
parsing results for SCODE embeddings as well.

SCODE embeddings achieve comparable or
better results compared to the other word embed-
dings. Multilingual results in dependency parsing
also suggest that SCODE embeddings are consis-
tent in achieving good results across different lan-
guages.

2 Related Work

In this section, we introduce word embeddings we
mentioned in this work.

e C&W: Collobert and Weston (2008) intro-
duce a convolutional neural network archi-
tecture that is capable of learning a language
model and generating word embeddings from
unlabeled data. The model can be fine-tuned
for supervised NLP tasks.

e HLBL: Mnih and Hinton (2007) introduce
the log-bilinear language model. It is a feed-
forward neural network with one linear hid-
den layer and a softmax output layer. The
model utilizes linear combination of word
type representations of preceding words to
predict the next word. Mnih and Hinton



(2009) modify this model to reduce com-
putational cost by introducing a hierarchical
structure. The architecture is then named the
hierarchical log-bilinear language model.

GCA NLM: Huang et al. (2012) introduce
an architecture using both local and global
context via a joint training objective. The
training is very similar to (Collobert and We-
ston, 2008). They represent a word context
by taking the weighted average of the repre-
sentations of word types in a fixed size win-
dow around the target word token. Following
(Reisinger and Mooney, 2010), they cluster
word context representations for each word
type to form word prototypes. These proto-
types capture homonymy and polysemy rela-
tions.

LR-MVL: Dhillon et al. (2011) present
a spectral method to induce word embed-
dings. They perform the Canonical Corre-
lation Analysis on the context of a token.
They provide an algorithm to represent a tar-
get word with different vectors depending on
its context. The objective function they de-
fine is convex. Thus, the method is guaran-
teed to converge to the optimal solution.

Skip-Gram NLM: Mikolov et al. (2010)
propose a two neural models to induce word
embeddings. The first architecture is Con-
tinuous Bag-of-Words where the words in a
window of target words is used to classify
the target word. The second one is con-
tinuous Skip-Gram model in which the tar-
get word is used to classify its surrounding
words. Mikolov et al. (2013) show that these
representations reflect syntactic and semantic
regularities.

SCODE Word Embeddings: Maron et al.
(2010) introduce the SCODE framework, an
extension of the CODE (Globerson et al.,
2007) framework. Maron et al. (2010) ob-
tains word type representations from co-
occurrence data generated by using neighbors
of words. Yatbaz et al. (2012) extend this
work by generating co-occurrence data using
probable substitutes of words. In Section 3,
we explain this framework in detail. Here, we
review studies extending that work.

Baskaya et al. (2013) used SCODE word em-
beddings for Word Sense Induction. They
achieved the best results in Semeval 2013
Shared Task (Jurgens and Klapaftis, 2013).
(Cirik and Sensoy, 2013) is the first study ex-
ploiting SCODE embeddings in a supervised
setup by using them as word features.

3 Substitute Based SCODE Word
Embeddings

In this section, we summarize our framework
based on (Yatbaz et al., 2012). In Section 3.1,
we explain substitute word distributions. In Sec-
tion 3.2, we explain how substitute word distribu-
tions are discretized. In Section 3.3 we introduce
Spherical Co-Occurrence Data Embedding frame-
work (Maron et al., 2010).

3.1 Substitute Word Distributions

Substitute word distributions are defined as the
probability of observing a word in the context of
the target word. We define the context of a target
word as the sequence of words in the window of
size 2n — 1 centered at the position of the target
word token. The target word is excluded in the
context.

(1)“Steve Martin has already laid his
claim to that .”

For example, in the sentence (1), the context of
the word token ‘laid’, for n = 4, is * Martin has
already — his claim to ° where — specifies the
position of the target word token.

Table 1: Substitute word distribution for “laid” in
sentence (1).

Probability  Substitute Word
0.191 staked
0.161 established
0.125 made
0.096 proved
0.094 rejected

Table 1 illustrates the substitute distribution of
“laid” in (1). There is a row for each word in the
vocabulary. For instance, probability of “estab-
lished” occurring in the position of “laid” is 0.161
in this context.

Let target word token be in the position 0, the
context spans from positions —n+ 1 ton — 1. The



probability of observing each word w in vocabu-
lary in the context of the target word token is cal-
culated as follows:

Pw_pt1...wp...wp—1)(1)
= P(w_pny1)P(w_ni2|w_ni1)
(2)
P(wolwZy 1) Pwi|wl,, ;)
o P(wy—q|wp™?) (3)

In the Equation 1, the right-hand side is propor-
tional to the left-hand side because P(c,,) is in-
dependent of any word w for wg. After using the
chain rule, Equation 2 is obtained from the right-
hand side of Equation 1. By applying n'*-order
Markov assumption, only the closest n — 1 words
in each term of the Equation 2 are needed which
equals to the Equation 3. The Equation 3 is pro-
portional to the Equation 2 because the context of
the target word is fixed, thus, any term that does
not depend on wy is fixed. Equation 3 are trun-
cated or dropped near the boundaries of the sen-
tence. (e.g. if O is the first word of a sentence,
P(w0|w:7ll+1) becomes P(wp)). An n-gram lan-
guage model provides the probabilities required
for Equation 3.

P(wy = w|ey)
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3.2 Discretization of Substitute Word
Distributions

The co-occurrence embedding algorithm we de-
scribe in Section 3.3, requires its input as cate-
gorical variables co-occurring together. We aim to
associate words co-occurring in the same context.
Although substitute word distributions represent
the context of a word, they are categorical prob-
ability distributions. Thus, they should be trans-
formed into a discrete setting.

We sample word types from substitute word dis-
tributions. The number of samples should be cho-
sen carefully, if the number of the samples are too
small, it may fail to capture the characteristics of
the distribution.

Figure 1 is an example of a discretization with
sampling. Substitute words are sampled from sub-
stitute word distributions of sentence (1).

3.3 Spherical Co-Occurrence Data
Embedding

This section shortly reviews the Symmetric In-
teraction Model of the Co-occurrence Data Em-
bedding (CODE) (Globerson et al., 2007) and its

Word Token Substitute Word

Steve Mr
Steve Chris
Martin Coppell
Martin Wilson
has had
has has
already finally
already already
laid made
laid shown
his no
his no
claim response
claim testimony
to to
to to
that fame
that succeed

Figure 1: Sampling twice from the substitute word
distributions of sentence (1).

extension Spherical Co-Occurrence Data Embed-
ding (SCODE) (Maron et al., 2010).

We map co-occurrence data generated from the
word types and substitute word distributions de-
scribed in Section 3.2 to d dimensional Euclidean
space.

Let X and Y have a joint distribution such that
X and Y be are categorical variables with finite
cardinality | X | and |Y'|. However we only observe
a set of pairs {x;, y; };~,; drawn IID from the joint
distribution of X and Y. These pairs are summa-
rized by the empirical distributions p(z,y), p(x)
and p(y). Embeddings ¢(z) and (y) can capture
the statistical relationship between the variables
x and y in terms of square of Euclidean distance
2, = ||¢(x) — ¢ (y)||?. In other words, pairs fre-
quently co-occur are embedded closely in d di-
mensional space.

We used the following extended model Maron
et al. (2010) proposed among others in (Globerson
et al., 2007) :

1 2

p(z,y) = —p(2)p(y)e %

7 4

where Z = >° ﬁ(m)ﬁ(y)e‘dgvy is the normal-
ization term. The log-likelihood of the joint dis-
tribution over all embeddings ¢ and 1/ can be de-
scribed as the following:

U, 9) = p(x,y)logp(x,y) Q)
x,y
=> bz, y)(~log Z + log p(x)p(y) — dz.,,) (6)
x,Y
= —log Z + const — Z;ﬁ(az, y)di’y @)

z,y



The gradient of the log-likelihood depends on
the sum of embeddings ¢(x) and ¢ (y), for z € X
and y € Y, and to maximize the log-likelihood,
(Maron et al., 2010) use a gradient-ascent ap-
proach. The gradient is :

o0l(o, _
% — Z 25(x, y)[U(y) — 6(x)] N
5 3 pp) D) — vy
20(6,0) -
ov(y) zz: et = et ©)

2 S BEPW) () — da)e

The first sum in (8) and (9), the gradient of the part
with diy of (5) acts as an attraction force between
the ¢(z) and ¢(y). The second sum in (8) and
(9) , the gradient of — log Z in (5) acts a repulsion
force between the ¢(x) and ¥ (y).

Maron et al. (2010) constrain all embeddings
¢ and 7 to lie on the d dimensional unit sphere,
hence the name SCODE. A coarse approximation
in which all ¢ and % distributed uniformly and
independently on the sphere, enables Z to be ap-
proximated by a constant value. Thus, it does not
require the computation of Z during training.

For the experiments in the work, we use
SCODE with sampling based stochastic gradient
ascent a constant approximation of Z and ran-
domly initialized ¢ and v vectors.

4 Induction of Word Embeddings

This section explains how we induced Substi-
tute Based SCODE Word Embeddings and obtain
other embeddings. We report the details of unla-
beled data used to induce word embeddings. We
present the parameters chosen for induction. We
explain how we obtain other word embeddings.

Unlabeled Data

Word embeddings require large amount of unla-
beled data to efficiently capture syntactic and se-
mantic regularities. The source of the data also
may have an impact on the success of the word
embedding on the labeled data. Thus, we induce
word embeddings using a large unlabeled corpora.

Following (Turian et al., 2010), we used RCV1
corpus containing 190M word tokens (Rose et al.,
2002) corpus. After following the preprocessing
technique described in (Turian et al., 2010), the
corpus has 80M word tokens.

We induce word embeddings for multilingual
experiments explained in Section 5. We generate
embeddings using subsamples of corresponding
Tenten Corpora (Jakubicek et al., 2013) for Czech,
German, Spanish and Swedish and Wikipedia
dump files for Bulgarian, Hungarian. For Turkish,
we used a web corpus (Sak et al., 2008). Table 2
shows the statistics of unlabeled corpora for lan-
guages.

Table 2: Unlabeled Corpora of Different Lan-
guages for Word Embeddings

Language Corpus Number Of Words
Bulgarian ~ Wikipedia 101M
Czech Tenten 140M
English RCV1 80M
German Tenten 180M
Spanish Tenten 106M
Swedish Tenten 113M
Turkish Web Corpus 180M
Parameters

To generate substitute word distributions, we
trained a 4-gram statistical language model (LM)
using SRILM (Stolcke, 2002). We used interpo-
lated Kneser-Ney discounting. We replaced words
observed less than 2 times with an unknown tag.
Table 4 shows the statistics of language model
corpora' for each language. We used FASTSUBS
algorithm (Yuret, 2012) to generate top 100 sub-
stitutes words and their substitute probabilities.

We keep each word with its original capitaliza-
tion. We sampled 100 substitutes per instance.
The SCODE normalization constant was set to
0.166. For multilingual experiments we used 25
dimension word embeddings. We observe no sig-
nificant improvements in scores when we change
the number of dimensions for SCODE embed-
dings.

Other Word Embeddings

We downloaded word embeddings from corre-
sponding studies?**(Turian et al., 2010; Dhillon et
al., 2011; Huang et al., 2012). We should note
that we do not use the context-aware word em-
beddings of (Dhillon et al., 2011). These word

"We should note that LM corpora differ from the word
embedding corpora. The first one is used to learn an LM
which is then used for generating substitute words on the
word embedding corpora.

Zhttp://metaoptimize.com/projects/wordreprs/

3http://www.cis.upenn.edu/ ungar/eigenwords/

*http://g00.gl/ZXv0Ot



Table 3: Word token coverage for word embeddings.

Chunking NER Dependency Parsing
Word Embeddings | Training Development  Test | Training & Development  Test OOD | Training  Test
C&W 0.9800 0.9832  0.9764 0.9402  0.9359  0.9631 0.9835 0.9856
HLBL 0.9654 0.9675  0.9621 0.9549 09503 0.9777 0.9691 0.9674
GCA NLM 0.8230 0.8271  0.8139 0.6971  0.6760 0.8208 0.8322 0.8270
LR-MVL 0.9806 0.9839 09778 0.9422  0.9380 0.9637 0.9841 0.9862
Skip-Gram NLM 0.9848 0.9877  0.9827 09117 09075 0.9614 0.9833 0.9852
SCODE 0.9848 0.9877  0.9827 09117 0.9075 0.9614 0.9833 0.9852

Table 4: Unlabeled Corpora for Language Mod-
eling

Language Corpus Number Of Words
Bulgarian =~ Wikipedia 850M
Czech Tenten 1.79B
English ukWac 2B
German Tenten 1.8B
Spanish Tenten 24B
Swedish Tenten 113M
Turkish Web Corpus 1.8B

embeddings are scaled with parameter o0 = 0.1,
since Turian et al. (2010) have shown that word
embeddings achieve their optima at this value. We
use 50-dimension of each word embeddings in all
comparisons.

To induce Skip-Gram NLM embeddings, we
ran the code provided on the website® of (Mikolov
et al., 2010; Mikolov et al., 2013) on the RCV1
corpus. We used Skip-Gram model with default
parameters. We changed words occurring less than
2 times with an unknown tag. The performance of
Skip-Gram NLM and SCODE word embeddings
do not improve with scaling, thus, we use them
without scaling.

We report word token coverage for word em-
beddings in Table 3. For each task, an unknown
word in the training or test phase is replaced with
the word embedding of unknown tag. Thus, the
word embedding method with high coverage suf-
fers less from unknown words, which in turn ef-
fects its success. Table 3 shows the word to-
ken coverage for each task and their correspond-
ing datasets. GCA NLM has the lowest coverage
in all tasks, which may explain its level of perfor-
mance.

S Experiments

In this section, we detail the experiments. We in-
troduce tasks in which we compared word embed-
dings, the data used, and parameter choices made.

>https://code.google.com/p/word2vec/

We report results for each task.

Chunking

We used CoNLL-2000 Shared task Chunking as
the first benchmark (Tjong Kim Sang and Buch-
holz, 2000). The data is from Penn Treebank
which is a newswire text from Wall Street Journal
(Marcus et al., 1999). The training set contains
8.9K sentences. The development set contains 1K
sentences and the test set has 2K.

Table 5: Features Used In CRF Chunker

e Word features: w; for ¢ in {-2,-1,0,+41,42}, w; A wit1
for ¢ in {-1,0}

e Tag features: w; for 4 in {-2,-1,0,+1,+2}, t; A t;41 for
71in {-2,-1,0,+1},. ti Atiy1 Atipo foriin {-2,-1,0}.

e Embedding features: e;[d] for i in {-2,-1,0,+1,+2},
where d ranges over the dimensions of the embedding
€;.

We used publicly available implementation of
(Turian et al., 2010). It is a CRF based chunker
using features described in Table 5. The only hy-
perparameters of the model was L2-regularization
o which is optimal at 2. After successfully repli-
cating results in that work®, we ran experiments
for new word embeddings.

In Table 6, we report Fl-score of word em-
beddings and the score of the baseline chun-
ker that is not using word embeddings. They
all improve baseline chunker, however, improve-
ment is marginal for all of them. The best score
is achieved by SCODE embeddings trained on
RCV1 corpus.

Named Entity Recognition

The second benchmark is CoNLL-2003 shared
task Named Entity Recognition (Tjong Kim Sang
and De Meulder, 2003). The data is extracted
from RCV1 Corpus. Training, development, and

SWe report our replication of results for word embeddings
which differs from (Dhillon et al., 2011).



Table 6: Chunking Results for Word Embeddings.
The ones in bold font are the highest scores in their
columns.

Word Embeddings Development Score  Test Score
Baseline 0.9416 0.9379
C&W 0.9466 0.9410
HLBL 0.9463 0.9400
GCA NLM 0.9425 0.9402
LR-MVL 0.9458 0.9416
Skip-Gram NLM 0.9400 0.9402
SCODE 0.9430 0.9429

test set contains 14K, 3.3K and 3.5 sentences.
Annotated named entities are location, organiza-
tion and miscellaneous names. (Tjong Kim Sang
and De Meulder, 2003) details the number of
named entities and data preprocessing. In addi-
tion, (Turian et al., 2010) evaluated word embed-
dings on an out-of-domain (OOD) data containing
2.4K sentences (Chinchor, 1997).

Table 7: Features Used In Regularized Averaged
Perceptron. Word embeddings are used the same
way as in Table 5.

e Previous two predictions y;—1 and y;—2

e Current word x;

e r; word type information : all-capitalized, is-
capitalized, all-digits, alphanumeric etc.

e Prefixes and suffixes of x;, if the word contains hy-
phens,then the tokens between the hyphens

e Tokens in the window

(Ti—2, Tim1, Ti, Tig1, Tit2)

C =

o Capitalization pattern in the window ¢

e Conjunction of ¢ amd y;_1

We used publicly available implementation of
(Turian et al., 2010). It is a regularized averaged
perceptron model using features described in Ta-
ble 7. After we replicated results of that work, we
ran the same experiments for new word embed-
dings. It is important to note that, unlike (Turian
et al., 2010), we did not use any non-local features
or gazetteers because we wanted to measure the
performance gain of word embeddings alone. The
only hyperparameter is the number of epochs for
the perceptron. The perceptron stops when there is
no improvement for 10 epochs on the development
set. The best epoch on development set is used for
the final model.

Table 8 summarizes the result of NER exper-

iments. The first three rows from (Turian et al.,
2010), report the baseline and the best results for
C&W and HLBL embeddings. The baseline sys-
tem does not use word embeddings as features. All
of the word embeddings significantly improve the
baseline system. SCODE embeddings trained on
RCV1 corpus achieves the best score on test set
and Out of Domain Test (OOD) set. Note that
RCV1 corpus is the superset of NER training and
test data. Thus, C&W, HLBL and SCODE on
RCV1 embeddings are from the same data source.

Table 8: NER Results for Word Embeddings. The
ones in bold fonts are the highest scores in their
columns.

Word Embeddings Development Test [010)))

Baseline 0.9003 0.8439 0.6748
C&W 200-dim 0.9246 0.8796 0.7551
HLBL 100-dim 0.9200 0.8813 0.7525
C&W 0.9227 0.8793  0.7574
HLBL 09146 0.8705 0.7293
GCA NLM 0.9 0.8467 0.6752
LR-MVL 09171 0.8683 0.7323
Skip-Gram NLM 0.9095 0.8647 0.7194
SCODE 0.9207 0.8835 0.7739

Dependency Parsing

We chose CoNLL-2008 data (Surdeanu et al.,
2008) as the benchmark to compare word embed-
dings in English Dependency Parsing. For com-
putational reasons, we fixed the training set to
the first SK sentences of CONLL 2008 English
dataset. However, we conducted experiments us-
ing full training set with SCODE embeddings.
For multilingual experiments, we chose CoNLL-
2006 Shared Task languages Bulgarian, Spanish,
Czech, German, Swedish, and Turkish (Buchholz
and Marsi, 2006).

We used a framework (Lei et al., 2014) that is
capable of incorporating word embeddings in de-
pendency parsing. It reduces the dimensionality of
head-modifier feature vectors by learning a tensor
of low rank. The model is able to combine features
from state-of-the-art parsers MST Parser (McDon-
ald et al., 2005) and Turbo Parser (Martins et al.,
2013) as well as low-rank tensor features which
includes word embeddings. Features used in the
model is listed in Table 9.

There are two hyperparameters v and r. The
first one balances tensor features and traditional
MST/Turbo features. The second one is the rank
of the tensor. We set the hyperparameters v =
0.3 and » = 50 and ran third-order model to get



Table 9: Features Used In Low-Rank Tensor
based Dependency Parser

e Unigram Features: for current word x; form,lemma
and POS tag of z; ;—1,i+2, morphology of z;, bias

e Bigram Features : previous and current POS tag, the
current and next POS tag, current POS and lemma, cur-
rent lemma and morphology

e Trigram Features: POS tag of the previous, current, and
next word.

e Embedding features: e;[d] for ¢ in {-1,0,+1}, where d
ranges over the dimensions of the embedding e;.

comparable result in that work.

Table 10 shows the Unlabeled Accuracy Scores
for word embeddings and the baseline parser
which is not using word embeddings. Each
word embedding shows improvements over base-
line parser. However, improvements are marginal,
similar to Chunking results. SCODE embeddings
trained on RCV1 corpus achieve the best scores
among others.

Table 10: Dependency Parsing Results for ConLL
2008 English Data for Word Embeddings. The
ones in bold font are the highest scores in their
columns.

Word Embeddings Training Score  Test Score
Baseline 0.9447 0.8976
C&W 0.9332 0.9007
HLBL 0.9459 0.9013
GCA NLM 0.9140 0.8985
LR-MVL 0.9308 0.9016
Skip-Gram NLM 0.9397 0.9014
SCODE 0.9444 0.9028

We report Multilingual Dependency Parsing
scores in Table 11. In the first column, the results
reported in (Lei et al., 2014) is listed. In the sec-
ond column, the state-of-the-art results before (Lei
et al., 2014). In the third column, the parser using
the SCODE embeddings are listed. SCODE em-
beddings improve parsers for 6 out of 7 languages
and achieve the best results for 5 out of 7 of them.

6 Conclusion

We analyzed SCODE word embeddings in super-
vised NLP tasks. SCODE word embeddings are
previously used in unsupervised part of speech
tagging (Yatbaz et al., 2012; Cirik, 2013; Yatbaz
et al., 2014) and word sense induction (Baskaya
et al., 2013). Their first use in a supervised set-

Table 11: Dependency Parsing Results for ConLL
2006 Languages for SCODE Embeddings. En-
glish results are from ConLL 2008. The ones in
bold font are the highest scores in their rows.

Language Baseline State-of-The-Art SCODE Embeddings
Bulgarian 0.9350 0.9402 0.9413
Czech 0.9050 0.9032 0.9038
English 0.9302 0.9322 0.9344
German 0.9197 0.9241 0.9233
Spanish 0.8800 0.8796 0.8823
Swedish 0.9100 0.9162 0.9165
Turkish 0.7684 0.7755 0.7783

ting was in dependency parsing (Cirik and Sen-
soy, 2013), however, results were inconclusive.
Lei et al. (2014) successfully make use of SCODE
embeddings as additional features in dependency
parsing.

We compared SCODE word embeddings with
existing word embeddings in Chunking, NER, and
Dependency Parsing. For all these benchmarks,
we used publicly available implementations. They
all are near state-of-the-art solutions in these tasks.
SCODE word embeddings are at least good as
other word embeddings or achieved better results.

We analyzed SCODE embeddings in multilin-
gual Dependency Parsing. SCODE embeddings
are consistent in improving the baseline systems.
Note that other word embeddings are not studied
in multilingual settings yet. SCODE word embed-
dings and the code used in generating embeddings
in this work is publicly available’.
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