
Parsing with Context Embeddings

Ömer Kırnap Berkay Furkan Önder Deniz Yuret

Koç University
Artificial Intelligence Laboratory

İstanbul, Turkey
okirnap,bonder17,dyuret@ku.edu.tr

Abstract

We introduce context embeddings, dense
vectors derived from a language model
that represent the left/right context of a
word instance, and demonstrate that con-
text embeddings significantly improve the
accuracy of our transition based parser.
Our model consists of a bidirectional
LSTM (BiLSTM) based language model
that is pre-trained to predict words in plain
text, and a multi-layer perceptron (MLP)
decision model that uses features from the
language model to predict the correct ac-
tions for an ArcHybrid transition based
parser. We participated in the CoNLL
2017 UD Shared Task as the “Koç Univer-
sity” team and our system was ranked 7th
out of 33 systems that parsed 81 treebanks
in 49 languages.

1 Introduction

Recent studies in parsing natural language has
seen a shift from shallow models that use high di-
mensional, sparse, hand engineered features, e.g.
(Zhang and Nivre, 2011), to deeper models with
dense feature vectors, e.g. (Chen and Manning,
2014). Shallow linear models cannot represent
feature conjunctions that may be useful for parsing
decisions, therefore designers of such models have
to add specific combinations to the feature list by
hand: for example Zhang and Nivre (2011) define
72 hand designed conjunctive combinations of 39
primitive features. Deep models can represent and
automatically learn feature combinations that are
useful for a given task, so the designer only has
to come up with a list of primitive features. Two
questions about feature representation still remain
critical: what parts of the parser state to represent,

and how to represent these (typically discrete) fea-
tures with continuous embedding vectors.

In this work we derive features for the parser
from a bidirectional LSTM language model
trained with pre-tokenized text to predict words in
a sentence using both the left and the right con-
text. In particular we derive word embeddings
and context embeddings from the language model.
Word embeddings represent the general features of
a word type averaged over all its occurrences. Tak-
ing advantage of word embeddings derived from
language models in other applications is common
practice, however, using the same embedding for
every occurrence of an ambiguous word ignores
polysemy and meaning shifts. To mitigate this
problem, we also construct and use context em-
beddings that represent the immediate context of
a word instance. Context embeddings were pre-
viously shown to improve tasks such as part-of-
speech induction (Yatbaz et al., 2012) and word
sense induction (Başkaya et al., 2013). In this
study, we derive context embeddings from the hid-
den states of the forward and backward LSTMs of
the language model that are generated while pre-
dicting a word. These hidden states summarize the
information from the left context and the right con-
text of a word that was useful in predicting it. Our
main contribution is to demonstrate that using con-
text embeddings as features leads to a significant
improvement in parsing performance.

The rest of the paper is organized as follows:
Section 2 introduces basic components of a tran-
sition based neural network parser and describes
related work based on their design choices. Sec-
tion 3 describes the details of our model and train-
ing method. Section 4 discusses our results and
Section 5 summarizes our contributions.

2 Related work

In this section, we describe related work in transi-
tion based neural network parsers in terms of their
design decisions regarding common components.

2.1 Embedding words and features

In neural network parsers, words, part of speech
tags, and other discrete features are represented
with numeric vectors. These vectors can be ini-
tialized and optimized in a number of ways. The
first choice is between binary (one-hot) vectors vs
dense continuous vectors. If dense vectors are to
be used, they can be initialized randomly or trans-
ferred from a model for a related task such as lan-
guage modeling. Finally, once initialized, these
vectors can be fixed or fine-tuned during the train-
ing of the dependency parser.

Chen and Manning (2014) initialize with pre-
trained word vectors from (Collobert et al., 2011)
in English and (Mikolov et al., 2013) in Chinese,
and dense, randomly initialized vectors for POS
tags. Similarly, Dyer et al. (2015) get pre-trained
word embeddings from Bansal et al. (2014) and
use POS tag vectors that are randomly initialized.
Both studies fine-tune the vectors during parser
training.

Kiperwasser and Goldberg (2016) start with
random POS embeddings and fine-tuned word em-
beddings from (Dyer et al., 2015) and further opti-
mize all embeddings during parser training. They
also report that initialization with random word
vectors give inferior performance.

In (Alberti et al., 2017), a character-level LSTM
reads each word character by character and the last
hidden state creates a word representation. The
word representation is used as input to a word-
level LSTM whose hidden states constitute the
lookahead representation of each word. Finally,
the lookahead representation is used by a tagger
LSTM trained to predict POS tags. Concatenation
of the lookahead and tagger representations of a
word, together with additional features are used to
represent the word in the parser model.

2.2 Feature extraction

A neural network parser uses a feature extractor
that represents the state of the parser using con-
tinuous embeddings of its various elements. Chen
and Manning (2014); Kiperwasser and Goldberg
(2016); Andor et al. (2016) use POS tag and word
embedding features of the stack’s first and second

words, their right and leftmost children, and the
buffer’s first word. They have done experiments
with different subsets of those features, but they
report their best performance using all of them.
Alberti et al. (2017) extract the tagger features that
are explained in 2.1 for the first and second words
of the stack and the first word of the buffer plus the
lookahead feature of buffer’s first word. They also
use the last two transitions executed by the parser
(including shift and reduce operations) as binary
encoded features in their parser model.

2.3 Decision module
A transition based parser composes the parse of
a sentence by taking a number of parser actions.
We name the component that picks a parser ac-
tion using the extracted features the decision mod-
ule. Chen and Manning (2014) use an MLP deci-
sion module with a hidden size of 200 whose in-
put is a concatenation of word, POS tag, and de-
pendency embeddings. Kuncoro et al. (2016) use
an LSTM as the decision module instead, carrying
internal state between actions. Dyer et al. (2015)
introduce stack-LSTMs, which have the ability to
recover earlier hidden states. They construct the
parser state using three stack-LSTMs, represent-
ing the buffer, the stack, and the action history.
Kiperwasser and Goldberg (2016) train a BiLSTM
whose input is word and POS embeddings and
whose hidden states are fed to an MLP that de-
cides parsing actions.

2.4 Training
Parsing is a structured prediction problem and a
number of training objectives and optimization
methods have been proposed beyond simple like-
lihood maximization of correct parser actions.

Kiperwasser and Goldberg (2016) use dynamic
oracle training proposed in (Goldberg and Nivre,
2012). In dynamic oracle training, the parser takes
predicted actions rather than gold actions which
lets it explore states otherwise not visited. Andor
et al. (2016), use beam training based on (Collins
and Roark, 2004). The objective in beam train-
ing is to maximize the probability of the whole se-
quence rather than a single action. Andor et al.
(2016) use global normalization with beam search
(Collins and Roark, 2004) which normalizes the
total score of the action sequence instead of turn-
ing the score of each action into a probability. This
allows the model to represent a richer set of prob-
ability distributions. They report that their MLP

Figure 1: Processing of the sentence ”Economic news had little effect on financial markets” by the
bidirectional LSTM language model. Word embeddings are generated by the character LSTM. Each
word is predicted (e.g. ”news”) by feeding the adjacent hidden states (e.g. ”hf2” and ”hb8”) to a softmax
layer.

based globally normalized parser performs better
than locally normalized recurrent models.

3 Model

Our parser uses a bidirectional language model
to generate word and context embeddings, an
ArcHybrid transition system (Kuhlmann et al.,
2011) to construct a parse tree, and a simple MLP
decision module to pick the right parser actions.
These components are detailed below. The model
was implemented and trained using the Knet deep
learning package in Julia (Yuret, 2016) and the
source code is publicly available at https://
github.com/CoNLL-UD-2017.

3.1 Language Model
We trained bidirectional language models to ex-
tract word and context embeddings using the
Wikipedia data sets provided by task organizers
(Ginter et al., 2017) and tokenized with UDPipe
(Straka et al., 2016). Our language models con-
sist of two parts: a character based unidirectional
LSTM to produce word embeddings, and a word
based bidirectional LSTM to predict words and
produce context embeddings. First, each word of a
sentence is padded in the beginning and the end by

a start character and an end character respectively.
Next, the character based LSTM reads each word
left to right and the final hidden layer is used as
the word embedding. This step is repeated until all
the words of an input sentence is mapped to dense
embedding vectors. Next, those word embeddings
become inputs to the BiLSTM, which tries to pre-
dict each word based on its left and right contexts.
A context embedding for a word is created by con-
catenating the hidden vectors of the forward and
backward LSTMs used in predicting that word.

Figure 1 depicts the language model processing
an example sentence. The unidirectional charac-
ter LSTM produces the word embeddings (shown
for the word ”Economic” in the Figure) which are
fed as input to the bidirectional word LSTM. The
bidirectional LSTM predicts a given word using
the adjacent forward and backward hidden states
at that position (e.g. the word “news” is predicted
using “hf2” and “hb8”).

The parser uses both word embeddings pro-
duced by the character LSTM (350 dimensions)
and the context embeddings produced by the word
LSTM (300+300 dimensions) as features. We did
not fine-tune the LM weights during parser train-
ing.

https://github.com/CoNLL-UD-2017
https://github.com/CoNLL-UD-2017

The character and word LSTMs were trained
end-to-end using backpropagation through time
(Werbos, 1990) using Adam (Kingma and Ba,
2014) with default parameters and with gradients
clipped at 5.0. Sentences that are longer than 28
words were skipped during LM training. In addi-
tion, if a word is longer than 65 characters, only
the first 65 characters were used and the rest was
ignored. The output vocabulary was restricted to
the most frequent 20K words of each language.
The training was stopped if there was no signifi-
cant improvement in out-of-sample perplexity dur-
ing the last 1M words. Table 3 includes the per-
plexity of each bidirectional language model we
used.

3.2 The ArcHybrid transition system
We used the ArcHybrid transition system
(Kuhlmann et al., 2011) in our model where the
state of the parser c = (σ, β,A), consists of a
stack of tree fragments σ, a buffer of unused
words β and a set A of dependency arcs. The
initial state has an empty stack and dependency
set and all words start in the buffer. The system
has 3 types of transitions:

• shift(σ, b|β,A) = (σ|b, β,A)

• leftd(σ|s, b|β,A) = (σ, b|β,A ∪ {(b, d, s)})

• rightd(σ|s|t, β, A) = (σ|s, β,A∪{(s, d, t)})

where | denotes concatenation and (b, d, s) is a de-
pendency arc between b (head) and s (modifier)
with label d. The parser stops when the buffer
is empty and there is a single word in the stack,
which is assumed to be the root.

3.3 Features

Abbrev Feature
c context embedding
v word embedding
p universal POS tag
d distance to the next word
a number of left children
b number of right children
A set of left dependency labels
B set of right dependency labels
L dependency label of current word

Table 1: Possible features for each word

Table 1 lists the potential features our model
is able to extract for each word. Context and

word embeddings come from the language model.
The 17 universal POS tags are mapped to 128 di-
mensional embedding vectors and the 37 univer-
sal dependency labels are mapped to 32 dimen-
sional embedding vectors. These are initialized
randomly and trained with the parser. To represent
sets of dependency labels we simply add the em-
beddings of each element in the set. Each distinct
left/right child count and distance is represented
using a randomly initialized 16 dimensional em-
bedding vector trained with the parser. Counts and
distances larger than 10 were truncated to 10.

This leaves the question of which words to use
and which of their features to extract. The tran-
sition system informs feature selection: ArcHy-
brid transitions directly effect the top word in the
buffer and the top two words in the stack. Figure 2
lists the features that are actually extracted by our
model to represent each parser state. s0, s1, . . .
are stack words, n0, n1, . . . are buffer words, s1r
and s0r are the rightmost children of the top two
stack words, n0l is the leftmost child of the top
buffer word. The letters below each word are the
features extracted for that word (using the notation
in Table 1). Nonexistent features (e.g. the depen-
dency label of n0l when n0 does not have any left
children) are represented with vectors of zeros.

s1
cvpabAB

s0r
L

s1r
L

n0
cvpAa

n1
cvp

s0
cvpabABd

n0l
L

Figure 2: Features used by our model. See the text
and Table 1 for an explanation of the notations.

3.4 Decision module

We use a simple MLP with a single hidden layer
of 2048 units to choose parser actions. The em-
beddings of each feature are concatenated to pro-
vide the input to the decision module, which re-
sults in a 4664 dimensional input vector. Note that
word and context embeddings come from the lan-
guage model and are fixed, whereas the other em-
beddings are randomly initialized and trained with
the MLP.

The output of the MLP is a 73 dimensional soft-
max layer. These represent the shift, 36 left and 36
right (labeled) actions of the parser: there are no
actions for the “root” label.

To train the MLP we used Adam with a dropout
rate of 0.5. We train 5 to 30 epochs, quitting with
the best model when the dev score does not im-
prove for 5 epochs.

3.5 Training

We followed different procedures for training lan-
guages that had training and development data,
languages that did not have development data, and
surprise languages that only had a small amount of
sample data. We detail our methodology below.

3.5.1 Languages with training and
development data

For most languages, a substantial amount of train-
ing data with gold parses along with development
data were supplied. In this case we first trained
our language models using the additional raw data
(Ginter et al., 2017) provided by CoNLL 2017 UD
Shared Task Organizers as described in 3.1. Next,
the decision module (MLP part) is trained as de-
scribed in 3.5 using the context and word embed-
dings from the language model as fixed inputs.
The development data was used to determine when
to stop training.

3.5.2 Languages without development data
For languages with no development data, we used
5 fold cross validation on the training data to deter-
mine the number of epochs for training. The MLP
model is trained on each fold for up to 30 epochs
during the 5 fold cross validation. If the LAS score
on the test split does not improve for 5 epochs,
training is stopped and the number of epochs to
reach the best score is recorded. In the final step,
the MLP model is trained using the whole train-
ing data for a number of epochs determined by the
average of the 5 splits.

3.5.3 Surprise languages
The surprise languages did not come with raw data
to train a language model, so we decided to use
unlexicalized parsers for them. An unlexicalized
model in our case is simply one that does not use
the “c” and “v” features in Figure 2, i.e. no word
and context embeddings. The surprise languages
also did not have enough training data to train a
parser. We decided that an unlexicalized parser
trained on a related language may perform better
than one trained on the small amount of sample
data we had for each surprise language. We trained
unlexicalized parsers for most of the languages

Language Parent Language LAS
North Sami Estonian 60.48
Buryat Turkish 47.68
Kurmanji Bulgarian 46.87
Upper Sorbian Croatian 65.98

Table 2: Parent models used for parsing surprise
languages and LAS scores obtained after pre-train
and finetuning.

provided in the task and tried them as “parent”
languages for each surprise language. An unlex-
icalized model trained on the parent language was
finetuned for the surprise language with its small
amount of sample data. Table 2 lists the parent
language used for each surprise language and the
LAS score achieved on the sample data provided
using 5-fold cross validation.1

4 Results and Discussion

We submitted our system to CoNLL 2017 UD
Shared Task as the “Koç University” team and our
scoring can be found under official CoNLL 2017
UD Shared Task website2 replicated here in Ta-
ble 3. All our experiments are done with UD ver-
sion 2.0 datasets (Nivre et al., 2017). In this sec-
tion we discuss our best/worst results relative to
other task participants, and analyze the benefit of
using context vectors.

4.1 Best and worst results

Looking at our best/worst results may give insights
into the strengths and weaknesses of our approach.
Relative to other participants, Finnish, Hungarian,
and Turkish are among our best languages: all ag-
glutinative languages with complex morphology.
This may be due to our character based language
model which can capture morphological features
when constructing word vectors. Our worst results
are in ancient languages: Ancient Greek, Gothic,
Old Church Slavonic. We believe this is due to
lack of raw text to construct high quality language
models. Finally, our results for languages with
large treebanks (Syntagrus and Czech) are also
relatively worse than languages with smaller tree-
banks. A large treebank may offset the advantage

1 Note that for two ancient languages, Gothic and Old
Church Slavonic, our LM training was not successful, and
we used unlexicalized models for them like the surprise lan-
guages.

2
http://universaldependencies.org/conll17/

results.html

 http://universaldependencies.org/conll17/results.html
 http://universaldependencies.org/conll17/results.html

Language LM Perp. Rank LAS Language LM Perp. Rank LAS
ar 99.21 13 66.14 hsb Not used 17 50.25
ar pud 99.21 12 44.97 hu 27.83 4 69.55
bg 25.60 9 84.95 id 52.64 9 75.54
bxr Not used 14 24.96 it 27.97 10 86.45
ca 18.49 10 86.09 it pud 27.97 10 84.52
cs 37.65 20 81.55 ja 29.14 18 72.67
cs cac 44.87 15 82.91 ja pud 29.14 15 76.27
cs cltt 52.64 10 73.88 kk 715.23 17 22.34
cs pud 37.65 20 78.57 kmr Not used 4 42.11
cu Not used 26 58.63 ko 34.60 8 71.70
da 30.28 7 76.39 la 111.51 10 47.08
de 33.98 11 72.44 la ittb 59.28 16 76.15
de pud 33.98 6 70.96 la proiel 130.01 13 59.36
el 20.14 7 81.35 lv 37.81 6 63.63
en 44.50 15 75.96 nl 32.43 11 70.24
en lines 40.79 10 74.39 nl lassysmall 35.62 8 80.85
en ParTUT 51.57 11 75.71 no bokmaal 34.38 12 83.73
en pud 44.50 11 79.51 no nynorsk 31.03 9 82.72
es 26.33 7 83.34 pl 27.97 9 80.84
es ancora 26.33 9 85.63 pt 24.11 9 82.92
es pud 26.33 8 78.74 pt br 33.6 10 86.7
et 45.77 6 62.04 pt pud 24.11 6 75.02
eu 39.92 8 71.47 ro 21.02 7 81.48
fa 63.29 12 79.56 ru 26.99 7 77.11
fi 29.36 5 77.72 ru pud 26.99 3 71.2
fi ftb 41.03 11 75.37 ru syntagrus 29.36 20 85.24
fi pud 29.36 4 82.37 sk 21.99 7 76.46
fr 18.76 9 81.30 sl sst 194.75 8 49.56
fr ParTUT 14.60 7 80.22 sme Not used 4 37.93
fr pud 18.76 6 76.04 sv 40.42 9 78.31
fr sequoia 16.75 7 81.97 sv lines 34.21 7 75.71
ga 56.32 8 63.22 sv pud 40.42 6 72.36
gl 28.70 5 80.27 tr 57.31 6 56.8
gl treegal 32.32 4 69.13 tr pud 57.31 6 34.65
got Not used 24 56.81 ug 866.74 21 31.59
grc 116.72 23 49.31 uk 36.16 6 63.76
grc proiel 227.78 22 61.70 ur 105.38 11 77.64
he 78.75 10 58.98 vi 91.67 13 38.3
hi 37.36 10 87.23 zh 92.01 19 57.15
hi pud 37.36 9 51.49 hr 33.29 7 79.22

Table 3: Our official results in CoNLL 2017 UD Shared Task

of extra information we capture from a language
model trained on raw text. Our simple MLP model
trained with a static oracle is probably not compet-
itive on large datasets. Whether our pre-trained
language model and context embeddings would
boost the scores of more sophisticated approaches
(e.g. stack-LSTMs or global normalization) is an
open question.

4.2 Impact of context vectors

Feats Hungarian En-ParTUT Latvian
p 63.6 76.6 55.9
v 73.5 75.9 63
c 72.2 76 63.5
v-c 76 79 67.6
p-c 78 82.5 70.6
p-v 76.6 80.8 67.7
p-fb 74.7 79.7 66.3
p-v-c 79.3 83.2 74.2

Table 4: Feature comparison results on three
languages. p=postag, v=word-vector, c=context-
vector, fb=Facebook-vector.

To analyze the impact of context vectors and
other embeddings on parsing performance, we
performed experiments on three corpora (Hungar-
ian, English-ParTUT, Latvian) with different fea-
ture combinations. These corpora were chosen for
their relatively small sizes to allow quick experi-
mentation. We tried eight different feature combi-
nations on each language. In each setting, we used
a different subset of context, word, and postag
embeddings. The ”p-fb” setting uses postag em-
beddings and Facebook’s pre-trained word embed-
dings (Bojanowski et al., 2016) instead of the ones
from our language model. We can make some
observations consistent across all three languages
based on the results in Table 4:

• Word vectors from our BiLSTM language
model perform slightly better than Facebook
vectors (p-v vs p-fb).

• Both part-of-speech tags and context vectors
have significant contributions (comparing v
with p-v or v-c).

• Context vectors seem to provide independent
information on top of part-of-speech tags that
significantly boosts parser accuracy (p-v vs
p-v-c).

5 Contributions

We introduced a transition based neural network
parser that uses word and context embeddings
derived from a bidirectional language model as
features. Our experiments suggest that context
embeddings can have a significant positive im-
pact on parsing accuracy. Our source code is
publicly available at https://github.com/
CoNLL-UD-2017.

Acknowledgments

This work was supported by the Scientific
and Technological Research Council of Turkey
(TÜBİTAK) grants 114E628 and 215E201.

References
Chris Alberti, Daniel Andor, Ivan Bogatyy, Michael

Collins, Dan Gillick, Lingpeng Kong, Terry
Koo, Ji Ma, Mark Omernick, Slav Petrov,
Chayut Thanapirom, Zora Tung, and David
Weiss. 2017. Syntaxnet models for the conll
2017 shared task. CoRR abs/1703.04929.
http://arxiv.org/abs/1703.04929.

Daniel Andor, Chris Alberti, David Weiss, Aliaksei
Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally nor-
malized transition-based neural networks. CoRR
abs/1603.06042. http://arxiv.org/abs/1603.06042.

Mohit Bansal, Kevin Gimpel, and Karen Livescu.
2014. Tailoring continuous word representations for
dependency parsing. In ACL (2). pages 809–815.

Osman Başkaya, Enis Sert, Volkan Cirik, and Deniz
Yuret. 2013. Ai-ku: Using substitute vectors
and co-occurrence modeling for word sense induc-
tion and disambiguation. In Second Joint Con-
ference on Lexical and Computational Semantics
(*SEM), Volume 2: Proceedings of the Seventh In-
ternational Workshop on Semantic Evaluation (Se-
mEval 2013). Association for Computational Lin-
guistics, Atlanta, Georgia, USA, pages 300–306.
http://www.aclweb.org/anthology/S13-2050.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606 .

Danqi Chen and Christopher D Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In EMNLP. pages 740–750.

Michael Collins and Brian Roark. 2004. Incremental
parsing with the perceptron algorithm. In Proceed-
ings of the 42nd Annual Meeting on Association for
Computational Linguistics. Association for Compu-
tational Linguistics, page 111.

https://github.com/CoNLL-UD-2017
https://github.com/CoNLL-UD-2017
http://arxiv.org/abs/1703.04929
http://arxiv.org/abs/1703.04929
http://arxiv.org/abs/1703.04929
http://arxiv.org/abs/1603.06042
http://arxiv.org/abs/1603.06042
http://arxiv.org/abs/1603.06042
http://www.aclweb.org/anthology/S13-2050
http://www.aclweb.org/anthology/S13-2050
http://www.aclweb.org/anthology/S13-2050
http://www.aclweb.org/anthology/S13-2050

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research
12(Aug):2493–2537.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long
short-term memory. CoRR abs/1505.08075.
http://arxiv.org/abs/1505.08075.

Filip Ginter, Jan Hajič, Juhani Luotolahti, Milan
Straka, and Daniel Zeman. 2017. CoNLL 2017
shared task - automatically annotated raw texts
and word embeddings. LINDAT/CLARIN
digital library at the Institute of Formal
and Applied Linguistics, Charles University.
http://hdl.handle.net/11234/1-1989.

Yoav Goldberg and Joakim Nivre. 2012. A dynamic
oracle for arc-eager dependency parsing. In COL-
ING. pages 959–976.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidi-
rectional LSTM feature representations. CoRR
abs/1603.04351. http://arxiv.org/abs/1603.04351.

Marco Kuhlmann, Carlos Gómez-Rodrı́guez, and Gior-
gio Satta. 2011. Dynamic programming algorithms
for transition-based dependency parsers. In Pro-
ceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies-Volume 1. Association for Com-
putational Linguistics, pages 673–682.

Adhiguna Kuncoro, Yuichiro Sawai, Kevin Duh,
and Yuji Matsumoto. 2016. Dependency pars-
ing with lstms: An empirical evaluation. CoRR
abs/1604.06529. http://arxiv.org/abs/1604.06529.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems. pages 3111–3119.

Joakim Nivre et al. 2017. Universal Dependencies
2.0. LINDAT/CLARIN digital library at the Insti-
tute of Formal and Applied Linguistics, Charles Uni-
versity, Prague, http://hdl.handle.net/
11234/1-1983. http://hdl.handle.net/11234/1-
1983.

Milan Straka, Jan Hajič, and Jana Straková. 2016. UD-
Pipe: trainable pipeline for processing CoNLL-U
files performing tokenization, morphological anal-
ysis, POS tagging and parsing. In Proceedings
of the 10th International Conference on Language
Resources and Evaluation (LREC 2016). European
Language Resources Association, Portoro, Slovenia.

Paul J Werbos. 1990. Backpropagation through time:
what it does and how to do it. Proceedings of the
IEEE 78(10):1550–1560.

Mehmet Ali Yatbaz, Enis Sert, and Deniz Yuret.
2012. Learning syntactic categories using
paradigmatic representations of word context.
In Proceedings of the 2012 Conference on
Empirical Methods in Natural Language Pro-
cessing (EMNLP-CONLL 2012). Association
for Computational Linguistics, Jeju, Korea.
http://denizyuret.blogspot.com/2012/05/learning-
syntactic-categories-using.html.

Deniz Yuret. 2016. Knet: beginning deep learning with
100 lines of julia. In Machine Learning Systems
Workshop at NIPS 2016.

Yue Zhang and Joakim Nivre. 2011. Transition-based
dependency parsing with rich non-local features. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies: short papers-Volume 2. Asso-
ciation for Computational Linguistics, pages 188–
193.

http://arxiv.org/abs/1505.08075
http://arxiv.org/abs/1505.08075
http://arxiv.org/abs/1505.08075
http://arxiv.org/abs/1505.08075
http://hdl.handle.net/11234/1-1989
http://hdl.handle.net/11234/1-1989
http://hdl.handle.net/11234/1-1989
http://hdl.handle.net/11234/1-1989
http://arxiv.org/abs/1603.04351
http://arxiv.org/abs/1603.04351
http://arxiv.org/abs/1603.04351
http://arxiv.org/abs/1603.04351
http://arxiv.org/abs/1604.06529
http://arxiv.org/abs/1604.06529
http://arxiv.org/abs/1604.06529
http://hdl.handle.net/11234/1-1983
http://hdl.handle.net/11234/1-1983
http://hdl.handle.net/11234/1-1983
http://hdl.handle.net/11234/1-1983
http://hdl.handle.net/11234/1-1983
http://hdl.handle.net/11234/1-1983
http://denizyuret.blogspot.com/2012/05/learning-syntactic-categories-using.html
http://denizyuret.blogspot.com/2012/05/learning-syntactic-categories-using.html
http://denizyuret.blogspot.com/2012/05/learning-syntactic-categories-using.html
http://denizyuret.blogspot.com/2012/05/learning-syntactic-categories-using.html

