Assignment 1 Solutions

COMP 2411, Session 1, 2004

Q1: (1)

- $(\neg \neg p \leftrightarrow (p \leftrightarrow (q \lor r)))$
- $(\neg(\neg p \leftrightarrow p) \leftrightarrow (q \lor r))$
- $((\neg(p \to q) \lor (r \lor s)) \to q)$
- $(p \leftrightarrow ((\neg p \lor q) \rightarrow (p \land (q \lor r))))$
- $\bullet \ ((\neg p \lor (q \lor (r \land s))) \leftrightarrow (p \land \neg p))$

(2)

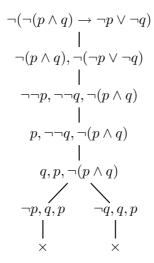
- $\bullet \ \neg \neg p \leftrightarrow p \leftrightarrow q \lor r$
- $\bullet \neg (\neg p \leftrightarrow p) \leftrightarrow q \lor r$
- $\bullet \neg (p \to q) \lor r \lor s \to q$
- $p \leftrightarrow \neg p \lor q \rightarrow p \land (q \lor r)$
- $\bullet \ \neg p \lor q \lor r \land s \leftrightarrow p \land \neg p$

Q2; Let p be a propositional atom and let φ be a formula built from \to and \vee only. If all atoms in φ are given the value true then φ takes the value true. Hence $\neg p$ is not logically equivalent to φ . Hence negation is not definable from \to and \vee only.

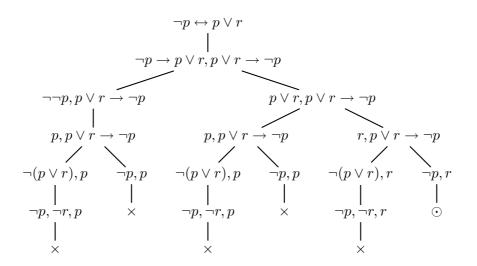
Let p,q be propositional atoms and let φ be a formula built from \neg and \leftrightarrow only. Note that for all formulas $\psi, \chi, \neg(\psi \leftrightarrow \chi)$ is logically equivalent to $\psi \leftrightarrow \neg \chi$. Hence we can without loss of generality assume that negation only applies to atomic formulas in φ . Also note that for all formulas ψ, χ , if χ is given the value true then $\psi \leftrightarrow \chi$ is logically equivalent to ψ , and if χ is given the value false then $\psi \leftrightarrow \chi$ is logically equivalent to $\neg \psi$. Hence if all atoms in φ except p and q are given the value true, then φ becomes logically equivalent to a tautology or to a contradiction or to a formula φ' built from p, q, \leftrightarrow and \neg only, where negation is only applied to atomic formulas. Consider the last case. Since \leftrightarrow is commutative and associative, we can assume that either p does not occur in φ' , or that p occurs only once in φ' , or that if p occurs p times, p then p then p contains a

subformula of the form $p \leftrightarrow \ldots \leftrightarrow p$; we can assume the same for $\neg p$, q and $\neg q$. Since $p \leftrightarrow p$ is valid, if $p \leftrightarrow \ldots \leftrightarrow p$ occurs in φ' for some n > 1 then $p \leftrightarrow \ldots \leftrightarrow p$ can be reduced to a tautology if n is even, and to p if n is odd; the same observation holds for $\neg p$, q and $\neg q$. Finally, since $p \leftrightarrow \neg p$ are $q \leftrightarrow \neg q$ are unsatisfiable, φ' is logically equivalent to a tautology, or to a contradiction, or to p, or to $\neg p$, or to q, or

Q3: Since the following tableau is $\neg (\neg (p \land q) \rightarrow \neg p \lor \neg q)$ is unsatisfiable.



The second formula is true iff p is false and r is true:



Q4: Let formulas φ, ψ be such that $\varphi < \psi$. Let E be the set of propositional atoms that occur in φ or ψ . There exists a partition of E into 2 classes E^+ and E^- such that if all members of E^+ are true and all members of E^- are false then φ gets the value false whereas ψ gets the value true. Let ξ^+ be the conjunction of all members of E^+ and let ξ^- be the conjunction of the negations of the members of E^- . Take a new propositional atom x, and put $\chi = \varphi \lor (\xi^+ \land \xi^- \land x)$. Obviously, $\varphi \models \chi$. When all members of E^+ are true, all members of E^- are false and x is true, φ is false whereas $\xi^+ \land \xi^- \land x$ is true, hence χ is true, hence $\chi \not\models \varphi$. So we have shown that $\varphi < \chi$. Since $\varphi \models \psi$ and $\xi^+ \land \xi^- \models \psi$, we infer that $\chi \models \psi$. When all members of E^+ are true, all members of E^- are false and x is false, both φ and $\xi^+ \land \xi^- \land x$ are false whereas ψ is true, hence $\psi \not\models \chi$. So we have shown that $\chi < \psi$, and we are done.

Q5: Let a set X of formulas be given. If X has no model then it suffices to take $Y = \{p \land \neg p\}$, so suppose that X has a model. If $X = \emptyset$ then it suffices to take $Y = \emptyset$, so suppose $X \neq \emptyset$. Let $(\psi_i)_{i \in \mathbb{N}}$ be an enumeration of X (possibly with repetitions). We inductively define a sequence of sets $(X_i)_{i \in \mathbb{N}}$ as follows. Put $X_0 = \emptyset$. Let $i \in \mathbb{N}$ be given, and suppose that X_i has been defined. If

 $X_i \models \psi_i$ then put $X_{i+1} = X_i$, otherwise put $X_{i+1} = X_i \cup \{\psi_i\}$. Define Z as $\bigcup_{i \in \mathbb{N}} X_i$. If $Z = \emptyset$ then again it suffices to take $Y = \emptyset$, so suppose $Z \neq \emptyset$. If Z is finite then it suffices to take for Y the singleton consisting of the conjunction of the members of Z, so suppose that Z is infinite. Fix an enumeration $(\varphi_i)_{i \in \mathbb{N}}$ of Z. Define Y as $\{\varphi_1, \neg \varphi_1 \lor \varphi_2, \neg \varphi_1 \lor \neg \varphi_2 \lor \varphi_3 \ldots\}$. It is immediately verified that Y has the same models as X. By construction of Z it is possible to make φ_1 false. Moreover, if φ_1 is false then all members of $Y \setminus \{\varphi_1\}$ are true, hence $Y \setminus \{\varphi_1\} \not\models \varphi_1$. Let a nonnull $i \in \mathbb{N}$ be given. By construction of Z it is possible to make $\varphi_1, \ldots, \varphi_i$ true and φ_{i+1} false. If $\varphi_1, \ldots, \varphi_i$ are true and φ_{i+1} is false then $\psi = \neg \varphi_1 \lor \ldots \lor \neg \varphi_i \lor \varphi_{i+1}$ is false whereas all members of $Y \setminus \{\psi\}$ are clearly true, hence $Y \setminus \{\psi\} \not\models \psi$. We conclude that Y is independent.