Assignment 1

COMP 2411, Session 1, 2004

Starred questions are harder.

Q1 (2 marks): For each of the following formulas, (1) restore parentheses and (2) remove as many parentheses as possible.

- $\bullet \neg \neg p \leftrightarrow (p \leftrightarrow q \lor r)$
- $\bullet \neg (\neg p \leftrightarrow p) \leftrightarrow q \lor r$
- $\bullet \neg (p \to q) \lor r \lor s \to q$
- $p \leftrightarrow (\neg p \lor q) \rightarrow (p \land (q \lor r))$
- $((\neg p \lor q \lor r \land s) \leftrightarrow (p \land \neg p))$

Q2 (2 marks): Verify that not all boolean operators are definable from \rightarrow and \vee only.

Same question with \neg and \leftrightarrow . (Hint: Let φ be a formula built from two atomic formulas p and q using \neg and \leftrightarrow only. Using properties of \leftrightarrow , see how φ can be simplified, and shown to be logically equivalent to one of a few simple formulas where p and q occur at most once.)

Q3 (2 marks): Using semantic tableaux, show that $\neg(p \land q) \rightarrow \neg p \lor \neg q$ is valid.

Using semantic tableaux, find all assignments of truth values to p and r that make $\neg p \leftrightarrow p \lor r$ true.

Q4 (*) (2 marks): Given two propositional formulas φ, ψ , write $\varphi < \psi$ iff $\varphi \to \psi$ is valid but $\psi \to \varphi$ is not. For example $p \land q < p$ and $p \leftrightarrow q . Show that for all formulas <math>\varphi, \psi$ with $\varphi < \psi$, there exists a formula χ with $\varphi < \chi < \psi$. For example, if $\varphi = p \land q \land r$ and $\psi = r$ then you can take $\chi = p \land r$. (Hint: try to find a formula ξ such that you can 'squeeze' $\varphi \lor \xi$ between φ and ψ .)

Q5 (*) (2 marks): Say that a set X of formulas is independent iff for all $\varphi \in X$, $X \setminus \{\varphi\} \not\models \varphi$. For example, $\{p,q,r\}$ is independent but $\{p,p \land q,r\}$ is not, because $\{p \land q,r\} \models p$. Show that for all sets X of formulas, there is a set Y of formulas such that Y is independent and X and Y have the same models. For example, if $X = \{p, p \land q, r\}$ you can take $Y = \{p \land q, r\}$. (Hint: if X is enumerated as $\{\psi_1, \psi_2, \psi_3 \ldots\}$ you might first want to 'throw away' all formulas in the enumeration that are logically implied by the previous ones.)