
Assignment 2

COMP 2411, Session 1, 2004

Starred questions are harder.

Q1 (2 marks): Using Natural deduction, show that ¬(ϕ→ ψ) is a logical consequence of {ϕ∧¬ψ}.
You have to use Natural deduction, not truth tables or semantic tableaux.

Q2 (2 marks): Consider the Hilbert-style proof system studied in lectures where Axiom 3 is replaced
by:

¬ϕ→ϕ→ψ

(with still modus ponens as the only inference rule). Call H the resulting proof system. Show
that every logical consequence that can be proved in H can also be proved in intuitionistic logic.
(Actually, H is equivalent to intuitionistic logic.)

Q3 (⋆) (2 marks): Using Natural deduction, show that (ϕ → ψ) ∨ (ψ → ϕ) is valid. You have to
use Natural deduction, not truth tables or semantic tableaux.

For questions 4 and 5, place your complete solution for both problems (a modified version of the
provided assignment2.pl) in a single file and submit this file using the following command:

$ give ass2p2 assignment2.pl

The file for the assignment can be downloaded from:

http://www/~cs2411/assignments/assignment2.pl

Your assignment solution will be tested using the version of SWI-Prolog installed on the lab com-
puters on the submission day. All marks for questions 4 and 5 will be from machine marking.

Q4 (2 marks): You will probably spend more time reading this question than answering it. . .

Consider the following alternative syntax for propositional formulas, given by the smallest set F
such that:

• all literals belong to F ;

• for all (possible empty) finite subsets D of F ,
∨
D and

∧
D belong to F .

For instance p, ¬p,
∨
{p,¬q, r},

∧
{p,

∨
{p,¬r},

∨
∅} are all members of F . Note that this particular

syntax imposes that negation be only applied to propositional atoms.

1



Semantically,
∨
D represents the disjunction of the members of D and

∧
D represents the conjunc-

tion of the members of D. Hence:

• a member of F of the form
∨
D is true iff some member of D is true;

• a member of F of the form
∧
D is true iff all members of D are true.

For instance,
∨
{p,¬q, r} is true iff p is true or q is false or r is true;

∧
{p,¬q, r} is true iff p is true

and q is false and r is true. Note that in particular,
∨

∅ is unsatisfiable (it represents False) and∧
∅ is valid (it represents True).

We inductively define for all ϕ ∈ F a member of ∼ ϕ of F as follows:

• if ϕ is a propositional atom then ∼ ϕ = ¬ϕ;

• if ϕ is of the form ¬ψ then ∼ ϕ = ψ (note that ψ is necessarily a propositional atom);

• if ϕ is of the form
∨
D then ∼ ϕ =

∧
{∼ ψ |ψ ∈ D};

• if ϕ is of the form
∧
D then ∼ ϕ =

∨
{∼ ψ |ψ ∈ D}.

For instance, ∼
∧
{p,

∨
{p,¬r},

∨
∅} =

∨
{¬p,

∧
{¬p, r},

∧
∅}.

We use the usual binary boolean operators as abbreviations. A member of F is an abbreviation
for itself. Let ϕ,ψ ∈ F have abbreviations ϕ⋆, ψ⋆, respectively. Then:

• ϕ⋆ ∨ ψ⋆ and ψ⋆ ∨ ϕ⋆ are abbreviations for
∨
{ϕ,ψ} (e.g., p ∨ p is an abbreviation for

∨
{p});

• ϕ⋆ ∧ ψ⋆ and ψ⋆ ∧ ϕ⋆ are abbreviations for
∧
{ϕ,ψ} (e.g., p ∧ p is an abbreviation for

∧
{p});

• ϕ⋆ → ψ⋆ is an abbreviation for the formula ∼ ϕ ∨ ψ is an abbreviation of;

• ϕ⋆ ↔ ψ⋆ is an abbreviation for the formula (ϕ→ ψ) ∧ (ψ → ϕ) is an abbreviation of.

The file assignment2.pl contains a (big) fragment of a (small) Prolog program that contains
a partially defined procedure standardize/2. The goal standardize(+AbbreviatedFormula,

-Formula) is meant to succeed iff AbbreviatedFormula (provided as input) is an abbreviation
of Formula (obtained as output). The file assignment2.pl also contains a totally defined proce-
dure standardize test(+AbbreviatedFormula, -Formula) to test the previous procedure and
print out Formula over many lines with appropriate indenting to better reflect its structure (the
procedures for writing Formula are also totally defined).

The program already has some rewriting rules for AbbreviatedFormula. For instance you can
already ask the following queries and get the following answers:

2



?- standardize_test(\/ [p, q, r, s]).

\/ [p, q, r, s]

Yes

?- standardize_test(\/ [p1 v q1 v r1, p2 v q2 v r2, p3 v q3 v r3, p4 v q4 v r4]).

\/ [\/ [p1,

\/ [q1, r1]],

\/ [p2,

\/ [q2, r2]],

\/ [p3,

\/ [q3, r3]],

\/ [p4,

\/ [q4, r4]]]

Yes

Complete the implementation of standardize(+AbbreviatedFormula, -Formula) to make the
program work with AbbreviatedFormula representing an arbitrary abbreviation of a member of
F . Your program could produce for instance:

?- standardize_test(\/ [p1, /\ [p2, ~p3]]).

\/ [p1,

/\ [p2, ~p3 ]]

Yes

?- standardize_test(p -> r).

\/ [r, ~p ]

Yes

?- standardize_test((~p -> ~q) -> q -> p).

\/ [/\ [q, ~p ],

\/ [p, ~q ]]

Yes

?- standardize_test(~ ~p <-> (p <-> q v r)).

/\ [\/ [p,

\/ [/\ [p,

/\ [~q, ~r ]],

/\ [~p,

\/ [q, r]]]],

\/ [/\ [\/ [p,

/\ [~q, ~r ]],

\/ [~p,

\/ [q, r]]],

~p]]

Yes

3



Observe that in this program, ~ represents (without risk of confusion) both ¬ and ∼.

Your program will be tested using the standardize test predicate.

Q5 (⋆) (2 marks): The previous syntax significantly simplifies the construction of semantic tableaux.
The end of assignment2.pl contains a procedure tableau test/1 that tests the systematic con-
struction of semantic tableaux for formulas converted to that syntax. It also contains a procedure
write tableau. Here are two possible queries and outputs that illustrate the former procedure.

:- tableau_test((p -> q) -> (r v p ) -> (r v q)).

\/ [/\ [p, ~q], \/ [/\ [~p, ~r], \/ [q, r]]]

/\ [p, ~q]

p, ~q Open

\/ [/\ [~p, ~r], \/ [q, r]]

/\ [~p, ~r]

~p, ~r Open

\/ [q, r]

q Open

r Open

Yes

:- tableau_test(~(p v q) ^ ~ ~(p v q) v /\ []).

\/ [/\ [], /\ [/\ [~p, ~q], \/ [p, q]]]

/\ [] Open

/\ [/\ [~p, ~q], \/ [p, q]]

/\ [~p, ~q], \/ [p, q]

~p, ~q, \/ [p, q]

p, ~p, ~q Closed

q, ~p, ~q Closed

Yes

Implement the procedures create tableau/2 and write tableau/1 involved in the definition of
tableau test. Note that formulas are displayed over one line only, thanks to a procedure that is
also implemented in assignment2.pl. To solve this question, you will probably use and modify
the procedure extend systematic tableau in the file tableau.pl that can be downloaded from
the course’s web page.

Your program will be tested using the provided tableau test predicate.

4


