
Assignment 3

COMP 2411, Session 1, 2004

Q1 (2 marks): Determine whether each of the following formulas is valid. In case the formula is
not valid give a model of the negation of the formula. In case the formula is valid justify your
answer.

• ∃x∀y∃z((p(y, z)→p(x, z))→p(x, x)→p(y, x))

• ∀x∀y(p(x, y) ∨ q(y, x))→∀x(∀y p(x, y) ∨ ∃y q(y, x)).

Q2 (2 marks): Consider a vocabulary consisting of a constant a, a unary predicate symbol P , and
a binary predicate symbol R, and the three structures Mi, 1 ≤ i ≤ 6, represented below (up to
isomorphism). All these structures have a common domain of cardinality 5. The interpretation
of a is the same in all structures, and is equal to an individual that is represented by the center
point. We render the fact that an individual x has property P with a grey circle on the cross that
represents x, and we render the fact that R(x, y) holds for individuals x and y with an arrow from
the cross that represents x to the cross that represents y.

M3

+ +

+

+
+

a

M2

+ +

+

+
+

a

M1

+ +

+

+
+

a

M4

+ +

+

+
+

a

M5

+ +

+

+
+

a

M6

+ +

+

+
+

a

Determine for each of the following formulas in which structures it is true.

• ∀x∀y(R(x, y) → (¬P (x) ∧ ¬P (y)))

• ∀x1 . . . ∀x11(R(a, x1) ∧ R(x1, x2) ∧ . . . ∧ R(x10, x11) → R(x11, a))

• ∀x(∃y(P (y) ∧ R(x, y))→∀z(R(x, z)→∃u(R(u, z) ∧ P (u))))

1

Let your student number end in a2a3a4a5a6. Find a formula ϕ without equality such that M1 |= ϕ

and for all i ∈ {2, . . . , 6}, Mi |= ϕ iff ai is even. For instance, if your student number ends in 53441
then your formula should be true in M1, M4 and M5 and false in M2, M3 and M6. You should
not only write down your formula, but also express in plain English what it represents graphically,
so that it is clear from your description that it is true in the structures it is meant to be true in.

Q3 (2 marks): Using Semantic tableaux, show that ∀x∀y(p(x, y)→p(x, x)) is a logical consequence
of {∀x∀y(p(x, y)→p(y, x)),∀x∀y∀z(p(x, y) ∧ p(y, z)→p(x, z))}.

Note 1: Due to space constraints, it is probably a good idea to introduce a few abbreviations, like
A = ∀x∀y(p(x, y)→p(y, x)), B = ∀x∀y∀z(p(x, y) ∧ p(y, z)→p(x, z)), C = ∀x∀y(p(x, y)→p(x, x)),
etc., and use these abbreviations in the tableau’s labels.

Note 2: Your tableau can have as many branches as you like, but you need no more than 4 branches.
If you try and use the program tableau test.pl, you will find out that the program is not very
helpful because the tree it produces is far from optimal.

4 (2 marks): Write code for well_formed_polynomial/1, which tests whether a polynomial is well
formed according to the following description. You can assume the argument will be ground (not
contain any variable) when this predicate is called.

In this context a well-formed polynomial is one with positive integer coefficients only. It has
representation:

Monic + Monic + ... + Monic

There must be at least one monic in any polynomial expression. A monic polynomial is represented
by:

Num * Exponent * ... * Exponent

where Num is in a Peano representation (e.g., a term of the form s(s(...s(0)...))), and Exponent

is an exponent of the form atom^Num. The number of exponents can be zero, but there must be
exactly one Num.

For instance, the polynomial x2 + 2xy + y is represented by:

s(0) * x^s(s(0)) + s(s(0)) * x^s(0) * y^s(0) + s(0) * y^s(0).

As a special case, an exception to the above rules, 0 is also a well formed polynomial.

Exponents must be stored in order from greatest degree to least degree, with those of equal degree
sorted using the internal sort/2 predicate or Prolog atom comparison operations.

For instance:

2

?- well_formed_polynomial(s(0) * x^s(0) * y^s(0))

Yes.

?- well_formed_polynomial(s(0) * y^s(0) * x^s(0))

No.

Monics must be sorted in order from greatest degree to least degree, with monics of equal degree
sorted in the order given by sort/2 predicate on the exponents, or internal Prolog comparison
operations.

For instance:

?- well_formed_polynomial(s(0) * x^s(s(0)) +

s(s(0)) * x^s(0) * y^s(0) + s(0) * y^s(0)).

Yes.

?- well_formed_polynomial(s(0) * x^s(0) +

s(s(0)) * x^s(0) * y^s(0) + s(0) * y^s(0)).

No.

Note that under this definition, all coefficients are positive. Zero coefficients and exponents are not
permitted, so s(0) * x^0 and 0 * x^s(s(0)) are not well formed polynomials. As noted above
however, 0 is a special case.

Other examples:

?- well_formed_polynomial(x^s(s(0))).

No.

?- well_formed_polynomial(-0 * y^s(0))

No.

?- well_formed_polynomial(4^s(0))

No.

Hint: you should use the code for write_polynomial as a guide for how to proceed.

5 (2 marks):

a) Write code for add_polynomial/3 and multiply_polynomial/3, working on well formed poly-
nomials so that the result of add_polynomial(p_1, p_2, p_3) is that p_1 + p_2 = p_3, and the
result of multiply_polynomial(p_1, p_2, p_3)/3’ is that p_1 * p_2 = p_3. You can assume
that the first two arguments are ground, and the result will be retuned in the third argument. If
any argument is not well formed the query should fail (i.e. return No). The returned argument
must be a well formed polynomial.

3

Hint: If you’re finding the full exercise hard, try first writing code which adds two monics, then a
monic to a polynomial, and then two polynomials. Do the same for multiplication.

b) Given some k and l, define a polynomial matrix as a k × l matrix with (well formed positive
integer) polynomial entries.

Write code for add_polynomial_matrix/3 and multiply_polynomial_matrix, which performs
matrix addition and multiplication analogously to the previous exercise. A matrix is stored as a
list of rows, where rows are all lists of the same length. You can assume that the first two arguments
are ground when the predicate is called.

If any of the arguments is not a correctly formatted polynomial matrix (as described) the operation
should fail (i.e. answer No). If the number of rows and columns in the matrix do not permit matrix
multiplication or addition the operation should fail (i.e. answer No). The returned argument must
consist of well formed polynomials.

e.g:

?- add_polynomial_matrix([[s(s(0)), s(0) * x^s(0)], [s(0) * x^s(0), s(s(0))]],

[[s(0) * x^s(0), s(s(0))], [s(s(0)), s(0) * x^s(0)]],

X).

X = [[s(0) * x^s(0) + s(s(0)), s(0) * x^s(0) + s(s(0))],

[s(0) * x^s(0) + s(s(0)), s(0) * x^s(0) + s(s(0))]]

?- add_polynomial_matrix([[s(s(0)), s(0) * x^s(0)], [s(0) * x^s(0)]],

[[s(0) * x^s(0), s(s(0))], [s(s(0)), s(0) * x^s(0)]],

X).

No.

Hint: You may find E. Kreyszig, ”Advanced Engineering Mathematics” helpful if you need to revise
linear algebra; any first-year linear algebra text should help you with matrix multiplication and
addition. Mostly this task is straightforward list manipulation, and in some ways it’s easier than
the previous exercises.

Bonus Marks:

An invertible n × n polynomial matrix is a matrix M such that there exists some N so that
M ·N = I, where I has the standard definition. Write code for invertible_matrix/1 which tests
if an k × l matrix is invertible or not. You will need to test for the matrix being an n × n matrix.

For full bonus marks you will need to make your solution work on large matrices and high degree
polynomials with both positive and negative integer coefficients, in reasonable time with reasonable
memory usage—this means that you should be able to use the standard swi-prolog heap size settings,
and not make the marker bored while he/she waits for your code to execute. You may wish to look
at Knuth ”Art of Computer Programming” volume 2, and Cormen, Leiserson, Rivest, ”Introduction
to Algorithms” for some hints and tricks for efficient polynomial and matrix multiplication, and
any text discussing the Gauss-Jordan decomposition.

4

Up to 2 bonus marks will be awarded for attempting this, but for a maximum of 10/10 for the
assignment. That is, if a student gets 9/10 for the rest of the assignment, and is allocated 2 bonus
marks, their final mark will be 10/10. If a student gets 10/10 and doesn’t attempt the bonus
marks, they will receive 10/10 for the assignment as a whole. Note that this task has the potential
to be very time consuming, and is only suggested for talented students bored with the previous
activities and interested in arithmetic or algebra. Please note in a comment at the beginning of
your submission, “Attempting bonus marks”.

Submission:

Submit your assignment as ass3p2 using the give command. Your submission should all be in the
one file. There will be sample code on the web in the file ass3_sample.pl.

5

