
Lecture notes 1.0

Introduction

COMP 2411, session 1, 2004

Lecture notes 1.0, COMP 2411, session 1, 2004 – p. 1

Logical truth (1)

Consider the following statements.

1. If John has been waiting for the bus for more than 10
minutes and it is raining, then John is in an extremely
bad mood.

2. If John is in an extremely bad mood whenever he has
been waiting for the bus for more than 10 minutes and if
John is not in an extremely bad mood, then John has
not been waiting for the bus for more than 10 minutes.

3. If John is in an extremely bad mood whenever he has
been waiting for the bus for more than 10 minutes and if
John has been waiting for the bus for more than 10
minutes, then someone is in an extremely bad mood.

Lecture notes 1.0, COMP 2411, session 1, 2004 – p. 2

Logical truth (2)

The first statement might be true, but it has no logical
justification.

The second statement is true, which can be justified in the
propositional calculus: ((p→ q) ∧ ¬q) → ¬p is valid (will be
explained soon).

The third statement is true, which cannot be justified in the
propositional calculus, but which can be justified in the
predicate calculus: ((p(a) → q(a)) ∧ p(a)) → ∃xq(x)is valid
(will be explained a bit later).

The core of the logic part of the course is devoted to logical
justifications in the propositional and in the predicate
calculus.

Lecture notes 1.0, COMP 2411, session 1, 2004 – p. 3

Aristotle

The Greek philosopher Aristotle developed a study of Logic
in a group of works collectively known as The Organon,
written around 350 BC.

The object of Aristotle’s Logic is to discover the laws that
govern valid reasoning, as observed in deductions.

A deduction is speech in which, certain things
having been supposed, something different from
those supposed results of necessity because of
their being so. (Prior Analytics I.2, 24b18-20)

A syllogism is, in Aristotle’s theory, one of the laws that
govern valid reasoning.

Lecture notes 1.0, COMP 2411, session 1, 2004 – p. 4

Syllogisms

The following is the most famous instance of a syllogism:

Premises All men are mortal Socrates is a man
Conclusion Socrates is mortal

Taken together, syllogisms constitute a theory of inference.

In Aristotle’s theory, reasoning means applying syllogisms
to a set of premises until the desired conclusion is reached.

Aristotle’s notion of inference is good, but the syllogisms do
not account for every kind of valid form of reasoning.

Still, till the first half of the 19th century, the dominant view
was that of Kant, who claimed that Aristotle had discovered
everything there was to know about logic.

Lecture notes 1.0, COMP 2411, session 1, 2004 – p. 5

Leibniz’s dream (1)

The mathematician and philosopher Leibniz was probably
not too impressed by Aristotle’s work when he wrote in
1667 what is referred to today as Leibniz’s dream.

If we could find characters or signs appropriate for
expressing all our thoughts as definitely and as
exactly as arithmetic expresses numbers or
geometric analysis expresses lines, we could in all
subjects in so far as they are amenable to
reasoning accomplish what is done in Arithmetic
and Geometry.
For all inquiries which depend on reasoning would
be performed by the transposition of characters and
by a kind of calculus, which would immediately
facilitate the discovery of beautiful results.

Lecture notes 1.0, COMP 2411, session 1, 2004 – p. 6

Leibniz’s dream (2)

And if someone would doubt my results, I should
say to him: “Let us calculate, Sir,” and thus by taking
to pen and ink, we should soon settle the question.
Now the characters which express all our thoughts
will constitute a new language. . . this language will
be. . . very easy to learn. It will be quickly accepted
by everybody on account of its great utility and its
surprising facility, and it will serve wonderfully in
communication among various peoples.
There will be no equivocations or amphibolies, and
everything which will be said intelligibly in the
language will be said with propriety.

Lecture notes 1.0, COMP 2411, session 1, 2004 – p. 7

Towards modern logic

Using modern concepts, we can interpret some of Leibniz
claims or hopes as follows.

Natural languages are messy, and the existence of valid
forms of reasoning presupposes the existence of a
clean formal language on which they can operate.

A key property of logical inferences is that they can be
performed effectively by a computer, as least in
principle. Reasoning is running some program.

Lecture notes 1.0, COMP 2411, session 1, 2004 – p. 8

Frege

Leibniz wanted to embed Logic into Mathematics, by
reducing the former to that part of the latter that deals with
calculations (like solving differential equations, transforming
algebraic equations).

The mathematician and philosopher Frege reversed the
approach and tried to embed Mathematics into Logic.

In the Begriffsschrift, written in 1879, Frege invented the
predicate calculus.

It is a remarkable fact that the whole of Mathematics
can—but only in principle—be written in the language of the
predicate calculus.

Frege also formalized the notion of proof, which is basically
a counterpart to the Aristotelian theory of inference.

Lecture notes 1.0, COMP 2411, session 1, 2004 – p. 9

Proofs (1)

∀y(0 + y = y)
0 + s(0) = s(0)

∀x∀y(s(x) + y = s(x+ y))
s(0) + s(0) = s(0 + s(0))

s(0) + s(0) = s(s(0))

is a proof that 1 + 1 = 2, involving:

the axiom stating that for all numbers y, 0 + y = y;

the axiom stating that for all numbers x and y,
(x+ 1) + y = (x+ y) + 1;

2 applications of the inference rule stating that if every
number has property P , then number n has property P ;

1 application of the inference rule stating that if n and n′

are equal numbers and n has property P , then n′ has
property P .

Lecture notes 1.0, COMP 2411, session 1, 2004 – p. 10

Proofs (2)

More generally, a proof derives a conclusion from axioms,
by applying rules of inference (a counterpart to the
Aristotelian syllogisms) to axioms and formulas previously
derived.

A proof can be represented as a labeled tree.

The labels of the leaves are axioms.

The label of the root is the conclusion.

An internal node is labeled with the formula obtained by
applying some inference rule to the formulas labeling
the children of the node.

Lecture notes 1.0, COMP 2411, session 1, 2004 – p. 11

Axiomatisations

1 + 1 = 2 is more ‘straightforward’ than the fact that for all
numbers x and y, (x+ 1) + y = (x+ y) + 1. So proving the
former from the latter looks futile. Understanding that it is
not futile is a great step towards understanding Logic. . .

The fundamental question after Frege’s work was to try and
come up with a ‘reasonable’ set of axioms and a
‘reasonable’ set of inference rules that would allow to derive
all true arithmetic statements, 1 + 1 = 2 as well as Fermat’s
theorem, expressed as formulas of the predicate calculus.

Such a set of axioms and inference rules would be a
complete axiomatisation of arithmetics.

Lecture notes 1.0, COMP 2411, session 1, 2004 – p. 12

From Logic to Computation (1)

A complete axiomatisation would enable three computers
C1, C2 and C to work as follows.

C1 C C2

Q1
Y/N

Q2
Y/N

ψ0, ψ1, ψ2 . . .

C would output ψ0, ψ1, ψ2 . . ., an enumeration of all true
arithmetic statements, asking questions of the form:

Q1: Is formula ϕ an axiom?

Q2: Is formula ϕ the conclusion of a rule whose
premises are among ψ0, . . . , ψn?

Lecture notes 1.0, COMP 2411, session 1, 2004 – p. 13

From Logic to Computation (2)

The previous picture is in accordance with Leibniz’s intuition
that logical inferences can be performed effectively. . .

. . . a notion that had to be defined formally in order to make
the previous picture meaningful and find out whether a
complete axiomatization of arithmetics is possible.

The efforts of Turing, Post, von Neuman, Gödel and others
yielded:

an abstract model of computation, the Turing machine;

a theory of computable functions;

computers;

a proof that a complete axiomatization of arithmetics is
impossible.

Lecture notes 1.0, COMP 2411, session 1, 2004 – p. 14

Declarative programming

Most programming languages are designed to instruct the
computer in how to solve a problem. They belong to the
paradigm of procedural or imperative programming.

A declarative programming language is designed to
describe a problem, and let the computer find out how to
solve it. . . at least in principle.

Suppose we want to concatenate [1, 2, 3] and [a, b]. We
would like to input

concatenate [1, 2, 3] and [a, b]

and just get the answer. . . but for that to be possible, the
computer must know what we mean by concatenate.

Lecture notes 1.0, COMP 2411, session 1, 2004 – p. 15

Meaning of concatenate

The following captures the meaning of concatenate.

For all lists y, y concatenated to the end of the empty
list is identical to y.

For all lists x and y, if x is nonempty then y
concatenated to the end of x is identical to the list
whose head is x’s head, and whose tail is identical to y
concatenated to the end of x’s tail.

Lecture notes 1.0, COMP 2411, session 1, 2004 – p. 16

Translation into predicate calculus

The meaning of concatenate can be expressed as formulas
of the predicate calculus:

(1) ∀y(cat(ε, y) = y)

(2) ∀x∀y∀z∀h∀v((x = [h|v] ∧ cat(v, y) = z) → cat(x, y) = [h|z])

in the same way as

(1’) ∀y(0 + y = y) and

(2’) ∀v∀y(s(v) + y = s(v + y))

can be viewed as axioms about natural numbers and
addition. (Note the formal analogy between (1’)–(2’)
compared to (1)–(2).)

Lecture notes 1.0, COMP 2411, session 1, 2004 – p. 17

Proving existential statements

If the computer had reasoning abilities, i.e., built-in
inference rules, it should be able to prove from (1) and (2)
that cat([1, 2, 3], [a, b]) = [1, 2, 3, a, b], like proving from (1’) and
(2’) that 3 + 2 = 5.

But proving cat([1, 2, 3], [a, b]) = [1, 2, 3, a, b] from (1) and (2) is
not really interesting, since we want to provide
cat([1, 2, 3], [a, b]) as input and get [1, 2, 3, a, b] as output.

We can ask the computer to try and prove a statement
seemingly weaker than cat([1, 2, 3], [a, b]) = [1, 2, 3, a, b],
namely:

does there exist a list which is equal to
[a, b] concatenated to the end of [1, 2, 3]?

Lecture notes 1.0, COMP 2411, session 1, 2004 – p. 18

Constructive proofs

Formally, we would ask the computer to prove:

? ∃z cat([1, 2, 3], [a, b]) = z

It turns out the computer can prove ? from (1) and (2) if and
only if it can compute a witness for z, namely, compute the
(necessarily unique) list [1, 2, 3, a, b] such that:

cat([1, 2, 3], [a, b]) = [1, 2, 3, a, b]

(provided that it has the right inference rules. . .).

In other words, the computer can produce a constructive
proof.

Lecture notes 1.0, COMP 2411, session 1, 2004 – p. 19

‘Typical’ dialogue

So we can have the following dialogue.

User Try and prove that there exists a list which is equal to
[a, b] concatenated to the end of [1, 2, 3].

Computer OK. . . Done, I’ve got a proof.

User In that case, you must have discovered more, you
must actually know which list is equal to [a, b]
concatenated to the end of [1, 2, 3]. Would you be kind
enough to tell me?

Computer No problem, mate. Indeed, I found out that [a, b]
concatenated to the end of [1, 2, 3] is equal to the list
[1, 2, 3, a, b].

Lecture notes 1.0, COMP 2411, session 1, 2004 – p. 20

Nonconstructive proofs

Not all proofs are constructive. Consider for instance the
following proof that there exists 2 irrational numbers a and b
such that ab is rational.

Remember that
√

2 is irrational.

If
√

2

√
2

is rational, then we are done, taking a = b =
√

2.

If
√

2

√
2
is irrrational, then since (

√
2

√
2
)
√

2 =
√

2
2

= 2, we are

also done, taking a =
√

2

√
2

and b =
√

2.

So we have shown the existence of irrational numbers a
and b such that ab is rational, but we have not exhibited
irrational numbers a and b such that ab is rational.

Lecture notes 1.0, COMP 2411, session 1, 2004 – p. 21

Concatenating lists in Prolog

The two axioms that capture the meaning of list
concatenation are expressed as follows in Prolog.

(1∗) cat([], Y, Y).

(2∗) cat([H|T], Y, [H|Z]) :- cat(T, Y, Z).

The dialogue between user and computer takes the
following form:

?- cat([1,2,3],[a,b],L). (input)

L = [1, 2, 3, a, b] (output)

Lecture notes 1.0, COMP 2411, session 1, 2004 – p. 22

One program, many queries (1)

Still using (1∗) and (2∗) only, the computer can answer many
other queries.

E.g., we can ask the computer to try and prove that there
exists a list L that, concatenated to the end of [1, 2, 3], is
equal to [1, 2, 3, a, b]:

?- cat([1,2,3],L,[1,2,3,a,b]). (input)

L = [a, b] (output)

Lecture notes 1.0, COMP 2411, session 1, 2004 – p. 23

One program, many queries (2)

Or we can ask the computer to try and prove that there
exists two lists L1 and L2 whose concatenation is equal to
[1, 2, 3, a, b]:

?- cat(L1,L2,[1,2,3,a,b]).

L1 = []
L2 = [1, 2, 3, a, b];

L1 = [1]
L2 = [2, 3, a, b] ;

L1 = [1, 2]
L2 = [3, a, b]

Yes
Lecture notes 1.0, COMP 2411, session 1, 2004 – p. 24

A few general statements. . .

Logic programming is the discipline that applies Logic
and provides the theoretical foundations to
semi-declarative programming languages.

Prolog is a semi-declarative programming language,
that implements the main concepts of Logic
programming.

Prolog is not the sole semi-declarative programming
language, but it was created before the others and is
still the most prominent one.

No programming language is purely declarative, and
Prolog is no exception. It is doubtful that a purely
declarative programming language can ever be
designed.

Lecture notes 1.0, COMP 2411, session 1, 2004 – p. 25

	Logical truth (1)
	Logical truth (2)
	Aristotle
	Syllogisms
	Leibniz's dream (1)
	Leibniz's dream (2)
	Towards modern logic
	Frege
	Proofs (1)
	Proofs (2)
	Axiomatisations
	From Logic to Computation (1)
	From Logic to Computation (2)
	Declarative programming
	Meaning of concatenate
	Translation into predicate calculus
	Proving existential statements
	Constructive proofs
	`Typical' dialogue
	Nonconstructive proofs
	Concatenating lists in Prolog
	One program, many queries (1)
	One program, many queries (2)
	A few general statementsldots

