
Lecture notes 11.1

Propositional logic: resolution

COMP 2411, session 1, 2004

Lecture notes 11.1, COMP 2411, session 1, 2004 – p. 1

Introduction

Though semantic tableaux provide a relatively efficient
proof method, they do not scale up to the predicate
calculus, which is the logical language we will eventually be
interested in.

Hilbert-style proof systems and Natural deduction have to
explore a bigger search space, which makes them
unsuitable for mechanical theorem proving, despite their
good features.

Resolution is a relatively efficient method that can be
extended to the predicate calculus.

It is all the more interesting that Prolog uses a refinement of
the Resolution method.

Lecture notes 11.1, COMP 2411, session 1, 2004 – p. 2

Conjunctive normal form (1)

Contrary to the previous proof systems, Resolution cannot
process any kind of formula, but just disjunctions of literals.

The following are examples of disjunctions of literals.

p

p ∨ ¬p

¬p ∨ ¬q ∨ ¬r

p ∨ ¬q ∨ ¬r ∨ s ∨ ¬r ∨ ¬r

This is not a limitation because every propositional formula
ϕ can be put into conjunctive normal form (CNF): ϕ is
logically equivalent to a conjunction of disjunctions of
literals.

Lecture notes 11.1, COMP 2411, session 1, 2004 – p. 3

Conjunctive normal form (2)

To put a formula into conjunctive normal for, it suffices to:

1. eliminate all boolean operators except negation,
disjunction and conjunction;

2. pull all negations inwards using De Morgan’s laws;

3. eliminate double negations;

4. distribute disjunction over conjunction.

The previous steps applied to (¬p→¬q)→¬(p ∧ ¬q) yield:

1. ¬(¬¬p ∨ ¬q) ∨ ¬(p ∧ ¬q)

2. (¬¬¬p ∧ ¬¬q) ∨ (¬p ∨ ¬¬q)

3. (¬p ∧ q) ∨ (¬p ∨ q)

4. (¬p ∨ ¬p ∨ q) ∧ (q ∨ ¬p ∨ q)

Lecture notes 11.1, COMP 2411, session 1, 2004 – p. 4



Clauses

A disjunction of literals can be represented as a set of
literals, called a clause.

Identical literals in a disjunction is literals are obviously
reduced to one representative in the associated clause.
E.g., the clause associated with q ∨ ¬p ∨ q is {q,¬p}.

The empty clause is a particular clause, that does not
corresponding to any disjunction of literals, but to a
contradiction (like p ∧ ¬p). It is denoted �.

A unit clause is a clause consisting of a single literal.

Alternative notation for clauses is sometimes used. For
instance, pq̄r̄ is an alternative notation for {p,¬q,¬r}.

A conjunctive normal form is sometimes represented as
a set of clauses. E.g., the CNF on p. 4, line 4, can be
represented as {{¬p, q}, {q,¬p}}.

Lecture notes 11.1, COMP 2411, session 1, 2004 – p. 5

Satisfiability of clauses/sets of clauses

A clause/set of clauses is satisfiable iff there exists an
assignment (of truth values to the atomic formulas) that
makes the formula in CNF associated with the clause/set of
clauses true.

A clause/set of clauses is valid iff all assignments make the
associated formula true.

For instance, {{p, q, r}, {¬p, q}, {¬q,¬r}, {r}} is satisfiable,
thanks to the assignment that maps p to false, q to false,
and r to true.

The empty clause is not satisfiable (it is not possible to
make any member of � true since � has no member.

The empty set of clauses is valid (all members of ∅ are
always true since ∅ has no member).

Lecture notes 11.1, COMP 2411, session 1, 2004 – p. 6

The resolution rule

Given three clauses C1 and C2 and C, the Resolution rule
infers C (conclusion/ resolvent) from C1 and C2

(premises/parent clauses) iff there exists an atom ϕ such
that:

ϕ belongs to C1, ¬ϕ belongs to C2, and
C = (C1 \ {ϕ}) ∪ (C2 \ {¬ϕ}), or

ϕ belongs to C2, ¬ϕ belongs to C1, and
C = (C1 \ {¬ϕ}) ∪ (C2 \ {ϕ}).

For example, from C1 = {a, b,¬c} and C2 = {b, c,¬e}, and
taking ϕ = c, the resolution rule derives C = {a, b,¬e}.

Property: The Resolution rule can be applied in more than
one way to the same pair of clauses C1 and C2 iff any
resolvent of C1, C2 is valid.

Lecture notes 11.1, COMP 2411, session 1, 2004 – p. 7

Key property of resolution rule

Property: For all clauses C1, C2, C such that C is a resolvent
of C1, C2, C1 ∪ C2 is satisfiable iff C is satisfiable; moreover,
any model of C1 ∪ C2 is a model of C.

Take C1, C2, C as in previous page. Let ν be an assignment
that makes C = {a, b,¬e} true, hence ν(a) = T or ν(b) = T
or ν(e) = F . Suppose that ν(a) = T . Note that a ∈ C1 and
c ∈ C2 and neither c nor ¬c belongs to C. Put ν⋆(ϕ) = ν(ϕ)
for all atoms ϕ distinct from c, and ν⋆(c) = T . Clearly, ν⋆ is a
model of C1 ∪ C2.

Conversely, let ν be an assignment that makes both C1 and
C2 true. Suppose that ν(c) = T . Since ¬c ∈ C1 it follows that
ν is a model of C1 \ {¬c}. Since C1 \ {¬c} ⊆ C, ν is also a
model of C.

Lecture notes 11.1, COMP 2411, session 1, 2004 – p. 8



Proof by resolution

Starting from a finite set S of clauses, only finitely many
clauses can be iteratively generated using the Resolution
rule.

Moreover, the (unsatisfiable) empty clause � is generated
iff S is unsatisfiable.

More precisely, the Resolution algorithm takes as argument
a set of clauses S, puts S0 = S and inductively defines Si+1

from Si as the union of Si with the set of all resolvents of
pairs of clauses in Si.

Let n ∈ N be such that Sn+1 = Sn (no new clause can be
generated). Then S is unsatisfiable iff � /∈ Sn.

Lecture notes 11.1, COMP 2411, session 1, 2004 – p. 9

Examples (1)

[p] [q, ˜p] [˜r] [r, ˜p, ˜q] is unsatisfiable,
since the empty clause can be generated:

[p] [q, ˜p] [˜r] [r, ˜p, ˜q]

[q] [p] [q, ˜p] [˜r] [r, ˜p, ˜q]

[r, ˜p] [q] [p] [q, ˜p] [˜r] [r, ˜p, ˜q]

[r] [r, ˜p] [q] [p] [q, ˜p] [˜r] [r, ˜p, ˜q]

[] [r] [r, ˜p] [q] [p] [q, ˜p] [˜r] [r, ˜p, ˜q]

Note that the above output of the program
resolution tests does not generate S1, S2, . . . as
defined on previous slide, but (equivalently) generates one
new clause at each step, until either � ([] ) is generated or
no more clause can be generated.

Lecture notes 11.1, COMP 2411, session 1, 2004 – p. 10

Examples (2)

The program does not guarantee that the shortest
derivation of � is obtained. Different orderings of clauses
might yield shorter proofs:

[r, ˜p, ˜q] [q, ˜p] [p] [˜r]

[r, ˜p] [r, ˜p, ˜q] [q, ˜p] [p] [˜r]

[r] [r, ˜p] [r, ˜p, ˜q] [q, ˜p] [p] [˜r]

[] [r] [r, ˜p] [r, ˜p, ˜q] [q, ˜p] [p] [˜r]

Since [p] [q, ˜p] [˜r] [r, ˜p, ˜q] is a set of
clauses associated with the formula
ϕ = ¬((p→q→r)→(p→q)→p→r), what has been shown is
that ϕ is not satisfiable, hence that (p→q→r)→(p→q)→p→r
is valid.

Lecture notes 11.1, COMP 2411, session 1, 2004 – p. 11

Examples (3)

Like semantic tableaux, Resolution is a top-down proof
procedure that tries to generate a contradiction.

For another example, [q, ˜p] [q, ˜p] make up a
satisfiable set of clauses, since no new clause can be
generated from it.

resolution tests also gives examples of formulas that
are obviously valid because one of their CNF equivalent
yields an empty set of clauses, obtaining by removing valid
clauses (containing both an atom and its negation).

Lecture notes 11.1, COMP 2411, session 1, 2004 – p. 12



Resolution trees

Derivations of � from a set S of clauses can be represented
by a derivation tree, whose root is labeled with �, and
whose leaves are labeled with the members of S used in
the derivation:

�

{¬p}

{¬p,¬q}

{¬p,¬q, r} ¬r

{¬p, q}

{p}

Lecture notes 11.1, COMP 2411, session 1, 2004 – p. 13

Soundness and completeness

Like all the proof procedures we have studied, Resolution is
a sound and complete proof procedure.
Soundness: If � is derived from a set S of clauses by
derivation, then S is unsatisfiable.

The proof of the contrapositive is by induction on heights of
trees using the second part of the property on page 8.

Completeness: If a set S of clauses is unsatisfiable, then
the resolution procedure generates � from S.

See Textbook for proof.

Lecture notes 11.1, COMP 2411, session 1, 2004 – p. 14


	Introduction
	Conjunctive normal form (1)
	Conjunctive normal form (2)
	Clauses
	Satisfiability of clauses/sets of clauses
	The resolution rule
	Key property of resolution rule
	Proof by resolution
	Examples (1)
	Examples (2)
	Examples (3)
	Resolution trees
	Soundness and completeness

