Lecture notes 12.0
First-order logic: syntax

COMP 2411, session 1, 2004

Lecture notes 12.0, COMP 2411, session 1, 2004 —p. 1

Introduction (2)

Whereas the syntax of propositional logic is defined from
propositional atomic formulas and boolean operators, the
syntax of first-order logic is defined from:
» a fixed set of logical symbols encompassing
s (first-order) variables,
» boolean operators,
quantifiers,
possibly the predicate symbol =;
a set of nonlogical symbols encompassing
» possibly functions symbols,
s possibly predicate symbols distinct from =.

e

e

Lecture notes 12.0, COMP 2411, session 1, 2004 - p. 3

Introduction (1)

First-order logic is based on a formal language with
considerably more expressive power than the language of
propositional logic.

For instance, Tom likes Jerry, Jerry likes Tom, someone
likes Tom, Jerry likes everyone can only be ‘translated’ into
propositional logicas p, ¢q. r, s.

In first-order logic, they can be translated as:

® likes(tom, jerry)

® likes(jerry, tom)

® z likes(z, tom)

® Yz likes(jerry,)

henceforth revealing formal relationships between those
statements.

Lecture notes 12.0, COMP 2411, session 1, 2004 — p. 2

Introduction (3)

The formal meaning of a logical symbol is fixed.
A variable will be an arbitrary name for ‘something.
We already know the meaning of the boolean operators.

There are two quantifiers:

s J, the existential quantifier, whose meaning is there
exists or some;

s V, the universal quantifier, whose meaning is all or
every;

= denotes identity; its meaning is is the same as.

The formal meaning of a nonlogical symbol is not fixed:
these symbols enable to describe various families of
‘worlds,” and each such description determines the formal
meaning of the nonlogical symbols.

Lecture notes 12.0, COMP 2411, session 1, 2004 - p. 4

Function and predicate symbols (1)

Function symbols are meant to be used to denote entities,
things, objects, people, etc., whereas predicate symbols
are meant to be used to denote properties or relations.

Both function and predicate symbols have an arity (number
of arguments). Predicate symbols of arity 0 would
correspond to propositional atomic formulas, enabling to
directly embed propositional logic into first-order logic.

Still in practice, predicate symbols are assumed to be of
nonnull arity.

On the other hand, function symbols can be nullary (have a
null arity), in which case they are called constants.

Lecture notes 12.0, COMP 2411, session 1, 2004 —p. 5

Function and predicate symbols (3)

Nonnullary function symbols and predicate symbols are
used to denote entities and relations, but they do not denote
entities and relations by themselves; terms and formulas do.

Terms and formulas are built from the (logical and
nonlogical) symbols, according to certain formation rules.

Terms will denote individuals in a "world" (abstract picture
of “things” in the broader sense: human beings, animals,
objects, events, mathematical entities, etc.). They
correspond to nominal expressions in English.

Formulas will denote declarative statements, involving
properties of individuals or relations between individuals.
They correspond to verbal expressions in English.

Lecture notes 12.0, COMP 2411, session 1, 2004 - p. 7

Function and predicate symbols (2)

For instance:

® john, 7, father_of, middle_point could be examples of
nullary, nullary, unary, and binary function symbols,
respectively.

® is_a_boy, likes, graduated_from_in could be examples of
unary, binary, and ternary predicate symbols,
respectively.

Though such a choice of function and predicate symbols
suggests an intended interpretation, we often prefer
symbols like a, o’ f, R, R1, whether we have an intended
interpretation in mind or not for these symbols.

We will see that it is essential to consider unintended
interpretations as well as intended ones, and from this point
of view, abstract symbols help a lot. ..

Lecture notes 12.0, COMP 2411, session 1, 2004 - p. 6

Function and predicate symbols (4)

Terms do not need formulas, but formulas need terms. E.g.,
‘Go out!” contains no nominal expression, but it is not a
declarative statement, contrary to ‘John is going out.

Terms do not need formulas, but formulas need terms. E.g.,
‘Go out! contains no nominal expression, but it is not a
declarative statement, contrary to ‘John is going out.” More
precisely:

® Terms are built from the variables and the function
symbols.

Formulas are built from the terms, the predicate
symbols, the boolean operators, and the quantifiers.

Lecture notes 12.0, COMP 2411, session 1, 2004 - p. 8

Vocabularies (1)

The vocabulary of a first-order language without equality
consists of:

a denumerable set of (first-order) variables;

the boolean operators —, Vv, A, — and «;

the quantifiers 3 and Vv,

a (possibly empty) countable set of function symbols;
a nonempty, countable set of predicate symbols.

e o o @

Lecture notes 12.0, COMP 2411, session 1, 2004 —p. 9

Terms: definition

Given a vocabulary V, the set of terms over V' is inductively
as the smallest set such that:

every variable is a term over V;

» forall n € N, n-ary function symbols f in V and terms
ti,...,tpoverV, f(t,...,t,) IS a term over V.

In particular, every constant in V' is a term over V.

A term is closed iff it contains no variable. Note that:
there exists denumerably many terms over V;

there exists a closed term over V iff V contains a
constant.

Lecture notes 12.0, COMP 2411, session 1, 2004 - p. 11

Vocabularies (2)

The vocabulary of a first-order language with equality
consists of:

adenumerable set of (first-order) variables;

the boolean operators —, Vv, A, — and «;

the quantifiers 3 and Vv,

the binary predicate symbol =;

a (possibly empty) countable set of function symbols;

e o o o @

a (possibly empty) countable set of predicate symbols.

Lecture notes 12.0, COMP 2411, session 1,2004 - p. 10

Terms: examples (1)

Suppose for instance that IV contains the function symbols
a/0, f/1,9/2 (we use h/n to express that the arity of & is
equal to n). Then g(a, f(g(a, f(z)))) is a term over V.

Like any term, it can be represented by a parse tree:

9(a, f(g(a{(\x))))
a/ flg(a, f(x)))

|
g(a, f

Lecture notes 12.0, COMP 2411, session 1,2004 - p. 12

Terms: examples (2)

Suppose the world we have in mind is N. To denote its
individuals, we have two options:

include infinitely many constants in the vocabulary, like
zero, one, two, three. ..

include one constant and one unary function symbol in
the vocabulary, like 0/0 and s/1.

We would denote 3 by three in the first case, and by
s(s(s(0))) in the second case.

When a vocabulary V' contains a unary function symbol f,
n n

Lo —N— N
we often use f"(t) as an abbreviation for f(...(f(¢)...), for
alln € Nand terms ¢ over V. E.g., s°(0) is 0, s!(0) is s(0),
and s*(0) is s(s(s(s(0)))).

Lecture notes 12.0, COMP 2411, session 1, 2004 — p. 13

Formulas: definition

Given a vocabulary V, the set of formulas over V' is
inductively as the smallest set such that:

» forall n > 0, n-ary predicate symbols P in V distinct
from = and for all terms ¢1,...,t, over V, P(t,...,t,) IS
a formula over V;

» if V contains = then for all terms ¢, ¢, over V, t1 =ty is
a formula over V;

°

for all formulas ¢ over V, - is a formula over V;

» for all formulas , ¢ over V, (¢ V), (¢ A1), (¢ — 1)
and (¢ < 1) are formulas over V;

» for all formulas ¢ over V and for all variables z, 3z¢ and
Vxp are formulas over V.

Formulas of the first kind are called atomic formulas or
atoms.

Lecture notes 12.0, COMP 2411, session 1, 2004 - p. 15

Terms: examples (3)

Suppose that the world we have in mind is the Australian
population today. We could use a vocabulary V' that
contains a few constants for the VIP, e.g., howard/0 and
warne/0, plus other function symbols like father/1, son/2, etc.

Then for all terms ¢, nonnull » € N and terms ¢, t1, t; over V,
father”(¢) is the abbreviation of a term over V and son(t1, t2)
is aterm over V.

Some terms do not have any intuitive meaning w.r.t. the
world we have in mind, e.g.:

father(father(father(father(warne)))), or

® son(howard, warne).

Lecture notes 12.0, COMP 2411, session 1,2004-p. 14

Formulas: examples (1)

Suppose for instance that IV contains the function symbols
a/0, f/1,g/2 and the predicate symbols P/1,Q /2. The
following are examples of formulas over V:

® Qa, f(z))

® JxVy(Q(a,z) — P(f(y)))

® Javy(Q(a,z) — P(f(y))) VVzQ(z2)
® JaVyIaVe Q(a,y)

We use the same precedence and associativity rules for
boolean operators to omit parentheses as we do in
propositional logic.

Lecture notes 12.0, COMP 2411, session 1,2004 - p. 16

Formulas: examples (2)

Like terms, formulas can be represented by parse-trees.
Below is the parse-tree for

Fvy(Q(a, z) — P(f(y))) V V2 Q(z, 2) :

vy (Qla,) — P(f(y))) VVzQ(z, 2)

\
Bvy(Qa,z) = P(f)) V2Q(=2)

| |
Yy(Qa,w) = P(fW) Q22)

|
Qa,) — P(f(y))

/N
Qa,x) P(f(y))

Lecture notes 12.0, COMP 2411, session 1, 2004 — p. 17

Formulas: examples (4)

Suppose that the vocabulary also contains a unary
predicate symbol is_a_mother, and that the language
contains equality.

The following are examples of formulas.

» Every mother loves her children:
VxVy((is_a_mother(x) Ais_child_of(y,x)) — loves(x,y))
Some mothers have more than two children:
IxJy1dy2Tdys(is_a_mother(x)A
is_child_of(y1,x)Nis_child_of (ya, x)Ais_child_of(ys, x)
A1 # Y2 AY1 # Y3 AY2 # ¥3)

Everybody loves one of Mary’s children CANNOT be
represented by Vxdy loves(x, is_child_of(y, mary)), because
that is NOT a formula.

Lecture notes 12.0, COMP 2411, session 1, 2004 - p. 19

Formulas: examples (3)

To describe a family where a woman called Mary has a
child called Tom, we could use a vocabulary containing two
constants mary and tom, a unary function symbol father,
and two binary predicate symbols loves and is_child_of.

The following are examples of formulas.

Mary loves Tom: loves(mary, tom)

Tom does not loves Mary: —loves(tom, mary)
Mary’s father loves Tom: loves(father(mary), tom)
Tom loves himself: loves(tom, tom)

Tom is Mary’s child: is_child_of(tom, mary)

Mary has a child: 3x is_child_of(x, mary)

e o @ o 0 @

Not everybody has a child: —vx3y is_child_of(y, x)

Lecture notes 12.0, COMP 2411, session 1,2004 - p. 18

Formulas: examples (5)

If the vocabulary also contains a unary function symbol
child_of, then everybody loves Mary’s only child can be
represented by Vxloves(x, child_of(mary)).

If Mary has many children, then Vxloves(x, child_of(mary))
does not represent everybody loves one of Mary’s children:
two different people might not love the same child.

If Mary has many children, then Vxloves(x, child_of(mary))
does not represent one of Mary’s children is loved by
everybody: there is no guarantee that child_of(mary) ‘picks
up’ the beloved child.

Lecture notes 12.0, COMP 2411, session 1,2004 - p. 20

Formulas: examples (6)

To represent families, where couples have a variable
number of children, we can use a vocabulary consisting a
constant none, a constant for every person, a binary
function symbol child, and a ternary function symbol family.

The family consisting of the parents Bill and Mary and their
children Tom and Alice can then be represented by the term
family (bill, mary, child(tom, child(alice, none))).

As often when the vocabulary contains ‘meaningful’
function symbols whose arity is nonnull, many terms, like
child(family (mary, mary, mary), mary), are ‘meaningless.

Function symbols have a fixed arity, but families have a
variable number of members. Hence a construction of this
kind cannot be avoided.

Lecture notes 12.0, COMP 2411, session 1, 2004 — p. 21

Bound and free occurrences

An occurrence of a variable x in a formula ¢ is bound if it
occurs in a subformula of ¢ of the form 3z or V).

An occurrence of a variable that is not bound is free.

For instance, in 3z P(z,y) A 232Vy(Q(x,y, 2) V JzR(x, 2)), the
bound occurrences of variables are:

o the first, second, fourth and fifth occurrences of z;
» the second and third occurrences of y;
the first, second and third occurrences of -.

x and y have both bound and free occurrences in .

Lecture notes 12.0, COMP 2411, session 1, 2004 - p. 23

Subformulas

A subformula of a formula ¢ is any formula involved in the
inductive definition of ¢ being a formula, i.e., any formula
that labels one of the nodes of ¢’s parse tree. For example,
the subformulas of J2Vy(Q(a,z) — P(f(y))) VVzQ(z, 2z) are:

® JzVy(Q(a,z) — P(f(y)) V V2 Q(z,2)
J2Vy(Q(a, z) — P(f(y)))

Vy(Q(a,z) — P(f(y)))

Qla,) — P(f(y))

Q(a,)

P(f(y))

VzQ(z,2)

Q(z,2)

e o @ o o 0 @

Lecture notes 12.0, COMP 2411, session 1,2004 - p. 22

Closures

A formula is closed if it contains no free occurrence of a
variable.

Let zq,...,z, be all variables that occur free in a formula .
A formula of the form Vz; ...V, is called a universal
closure of ¢ and is denoted V.

A formula of the form 3x; ... 3z, is called an existential
closure of ¢ and is denoted .

Let o = JzP(x,y) A ~F2Vy(Q(x,y, z) V JzR(x, 2)). Existential
and universal closures of ¢ are, respectively:

® JxIy(FxP(z,y) A -F2Vy(Q(z,y,2) V Iz R(x, 2)))

® VaVy(JzP(z,y) AN —32Vy(Q(z,y, 2) V Iz R(z, 2)))

Universal and existential closures of formulas are obviously
closed.

Lecture notes 12.0, COMP 2411, session 1,2004 - p. 24

Substitutions (1)

Given a formula ¢, a variable x and a term ¢, ¢ is said to be
substituble for x in ¢ iff all free occurrences of = in ¢ can be
replaced by ¢ and no occurrence of a variable in ¢t becomes
bound in the resulting formula.

Let o = JzP(z,y) A —3Vy(Q(x,y,2) V Iz R(x, 2)),
t1 = f(a,y,u) and ty = g(v,).

¢ is not substituble for z in ¢

t1 is substituble for y in ¢

t1 Is substituble for = in ¢

to IS substituble for x in ¢

t9 IS not substituble for y in ¢

e o o o @

to is substituble for z in ¢

Lecture notes 12.0, COMP 2411, session 1, 2004 — p. 25

Substitutions (2)

Given a formula ¢, a variable z and a term ¢, if t is
substituble for = in ¢, then ¢[t/z] denotes the formula
obtained from ¢ by substituting all free occurrences of x in

v by t.

With the previous example:

® o[t1/y] = 3xP(x, f(a,y,u)) N —=IVy(Q(x,y,2) V Iz R(z, 2))
® olta/x] = IxP(z,y) A —3Vy(Q(g(v,), y, 2) V IzR(x, 2))
® olti/z] =plta/z] = ¢

Lecture notes 12.0, COMP 2411, session 1,2004 - p. 26

	Introduction (1)
	Introduction (2)
	Introduction (3)
	Function and predicate symbols (1)
	Function and predicate symbols (2)
	Function and predicate symbols (3)
	Function and predicate symbols (4)
	Vocabularies (1)
	Vocabularies (2)
	Terms: definition
	Terms: examples (1)
	Terms: examples (2)
	Terms: examples (3)
	Formulas: definition
	Formulas: examples (1)
	Formulas: examples (2)
	Formulas: examples (3)
	Formulas: examples (4)
	Formulas: examples (5)
	Formulas: examples (6)
	Subformulas
	Bound and free occurrences
	Closures
	Substitutions (1)
	Substitutions (2)

