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Introduction (1)

It is important to make the distinction between concrete and
abstract interpretations.

Often we define the nonlogical symbols of a vocabulary
having a concrete interpretation in mind. The semantics of
the predicate calculus is based on abstract interpretations,
i.e., mathematical structures.

Whether a mathematical structure can offer an adequate
picture of the real world is a question that can be
addressed, but outside the realm of mathematical logic.

The semantics of the predicate calculus defines and studies
the notion: a formula is true/false in a structure.
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Introduction (2)

Choosing English words for function and predicate symbols
usually indicates that we have an intended interpretation in
mind. A formula such as

∀x∀y((mother(x) ∧ child_of(y, x)) → loves(x, y))

gets a meaning when we ‘read’ it in English: every mother
loves her children.

What is meant by meaning here

is a relationship between an English sentence and the
physical world;

is hard to define precisely;

is rich and not reducible to true or false.
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Introduction (3)

In logic, what is meant by meaning

is a relationship between a closed (first-order) formula
and an abstract world, namely, an algebraic structure;

is perfectly well defined and formalized;

is reducible to true or false.

In logic, giving a meaning to

∀x∀y((mother(x) ∧ child_of(y, x)) → loves(x, y))

is equivalent to giving a meaning to

∀x∀y((P (x) ∧Q(y, x)) → R(x, y)).
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An example

Consider a vocabulary V whose nonlogical symbols are a
constant "a", a unary function symbol "s", a unary predicate
symbol "P", and a binary predicate symbol "R". A structure
M over V is defined as:

a nonempty X set of individuals—the domain of M

an interpretation of "a" in M: a member of X

an interpretation of "s" in M: a unary operation over X
(function from X into X)

an interpretation of P in M: a unary relation over X
(subset of X)

an interpretation of R in M: a binary relation over X
(subset of X2)
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. . . plus the interpretation of "a". . .
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. . . plus the interpretation of "s". . .
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. . . plus the interpretation of "P". . .
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. . . plus the interpretation of "R"
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Who has a name?

3 has a unique name: a

0 has infinitely many names: s(a), s(s(a)), s(s(s(a))). . .

1, 2, 4 and 5 have no name, though we can refer to them
indirectly if we have equality in the language:

1 is the unique guy x such that
∃y∃z(y 6= z ∧R(y, x) ∧R(z, x))

2 is the unique guy x such that R(x, x)

4 is the unique guy x such that ∃y(R(y, y) ∧ s(y) = x)

5 is the unique guy x such that
s(s(x)) 6= x ∧R(s(s(x)), s(s(x)))

Usually, most individuals in a structure have no name and
cannot even be referred to indirectly.
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Description of M

Because M is finite, we can describe M, up to
isomorphism, i.e., up to the nature of its individuals, as the
unique structure that satisfies the following formula:

Cardinality of the domain:
∃x0 . . . ∃x5(x0 6= x1 ∧ x0 6= x2 ∧ . . . ∧ x4 6= x5∧

∀x(x = x0 ∨ . . .∨ x = x5)∧ . . .

Description of s: s(x0) = x0 ∧ s(x1) = x2 ∧ s(x2) = x4∧
s(x3) = x0 ∧ s(x4) = x2 ∧ s(x5) = x4 ∧ . . .

Description of P :
∀x(P (x) ↔ (x = x1 ∨ x = x2 ∨ x = x3)) ∧ . . .

Description of R: ∀y∀z(R(y, z) ↔ ((y = x3 ∧ z = x0)∨
(y = x3 ∧ z = x1) ∨ (y = x1 ∧ z = x5)∨
(y = x5 ∧ z = x1) ∨ (y = x2 ∧ z = x2)))).
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Structures: definition

Given a vocabulary V , a structure M over V is a nonempty
set, called the domain of M, denoted |M|, together with an
interpretation of all function and predicate symbols in V , i.e.:

for each n-ary function symbol f ∈ V , an n-ary
operation fM over |M|;

for each n-ary predicate symbol R ∈ V , an n-ary
relation RM over |M|.

In particular, each constant c ∈ V is interpreted as a
member cM of |M|.

We can represent a structure graphically if its domain is
small, no function symbol is of arity greater than 1, and no
predicate symbol is of arity greater than 2.
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M defined formally

With our running example:

|M| = {0, 1, 2, 3, 4, 5}

aM = 3

sM : {0, 1, 2, 3, 4, 5} → {0, 1, 2, 3, 4, 5} maps 0 to 0, 1 to 2,
2 to 4, 3 to 0, 4 to 2, 5 to 4

PM = {(1), (2), (3)}, identified with {1, 2, 3}

RM = {(3, 0), (3, 1), (1, 5), (5, 1), (2, 2)}
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Meaning of closed terms and formulas

Let M be a structure over a vocabulary V .

The meaning, or interpretation, in M of a closed term
over V is a member of |M|.

The meaning, or interpretation, in M of a closed
formula over V is either "true" or "false".

To define formally the meaning of closed terms and
formulas in structure M, it is necessary to be able to refer to
each member of |M|, which is not possible in general.

So we enrich the vocabulary with new constants, one per
individual in M, defining:

VM = V ∪ {c̄ | c ∈ |M|}

where for each c ∈ |M|, c̄ is a new constant.
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M now viewed as a structure overV M

With our running example, VM = {a, s, P,R, 0̄, 1̄, 2̄, 3̄, 4̄, 5̄}
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Interpretation of closed terms

Note that every term over V is a term over VM.

Given a closed term t over VM, the interpretation of t in M

is denoted tM. It is inductively defined as follows.

For all c ∈ |M|, the interpretation c̄M of c̄ in M is c.

For all n-ary function symbols f in V and closed terms
t1, . . . , tn over VM, the interpretation f(t1, . . . , tn)M of
f(t1, . . . , tn) in M is fM(tM

1
, . . . , tM

n
).
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Interpretation of some terms in M

With our running example:

3̄M = 3

aM = 3

s(s(s(a)))M = sM(s(s(a))M) = sM(sM(s(a))M) =

sM(sM(sM(aM))) = sM(sM(sM(3))) = sM(sM(0)) =

sM(0) = 0

s(s(s(1̄)))M = sM(s(s(1̄))M) = sM(sM(s(1̄))M) =

sM(sM(sM(1̄M))) = sM(sM(sM(1))) = sM(sM(2)) =

sM(4) = 2
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Interpretation of closed formulas (1)

Given a closed formula ϕ over VM, the interpretation of ϕ in
M is either "true" or "false".
Note that every formula over V is a formula over VM.

We write M |= ϕ when ϕ is true in M and M 6|= ϕ otherwise.

The definition of "ϕ is true in M" is inductive:

For all n-ary predicate symbols R in V and closed terms
t1, . . . , tn over VM, M |= R(t1, . . . , tn)

iff (tM
1
, . . . , tM

n
) ∈ RM

For languages with equality only:
for all closed terms t1, t2, M |= t1 = t2
iff tM

1
= tM

2
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Interpretation of closed formulas (2)

For all closed formulas ψ, ξ, M |= ψ ∨ ξ
iff M |= ψ or M |= ξ

For all closed formulas ψ, ξ, M |= ψ ∧ ξ
iff M |= ψ and M |= ξ

For all closed formulas ψ, ξ, M |= ψ → ξ
iff M 6|= ψ or M |= ξ

For all closed formulas ψ, ξ, M |= ψ ↔ ξ
iff both M |= ψ and M |= ξ, or both M 6|= ψ and M 6|= ξ

For all formulas ψ and variables x such that ∃xψ is
closed, M |= ∃xψ iff M |= ψ[c̄/x] for at least one c ∈ |M|

For all formulas ψ and variables x such that ∀xψ is
closed, M |= ∀xψ iff M |= ψ[c̄/x] for all c ∈ |M|
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Interpretation of some formulas in M

With our running example:

M |= ¬R(s(s(s(1̄))), a) since s(s(s(1̄)))M = 2, aM = 3,
and (2, 3) /∈ RM

M |= ∃xR(x, s(x)) since s(3̄)M = 0 and (3, 0) ∈ RM

M |= ∃x¬R(x, s(x)) since s(2̄)M = 4 and (2, 4) /∈ RM

M |= ∀x(P (x) → ∃yR(x, y)) since PM = {1, 2, 3},
(1, 5) ∈ RM, (2, 2) ∈ RM, and (3, 1) ∈ RM

M |= ∀x∀z(∃y(R(x, y) ∧R(y, z)) → (P (x) ∨ P (z))) as can
be checked easily, using in particular the facts that
(3, 1) ∈ RM, (1, 5) ∈ RM, and 3 ∈ PM.

M |= ∀x(¬(P (s(x)) ∨ P (s(s(x)))) → (x = a ∨ x = s(a)))
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