Lecture notes 15.0

First-order logic: logical equivalence,
satisfiability, validity, logical consequence
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Lecture notes 15.0, COMP 2411, session 1, 2004 —p. 1

Models

We have defined the truth of a closed formula, also called a
sentence, in a structure.

By convention, a formula that is not closed is true in a
structure 9 iff (any of) its universal closures are true in 91.

For instance, with a vocabulary containing a binary
predicate symbol P, the (nonclosed) formula
dxP(z,u) — VzP(y,u) is true in a structure 9t iff
VuVy(3xP(z,u) — VzP(y,u)) is true in 9.

When a formula ¢ is true in a structure 9, i.e., when
M = o, we say that Mt is a model of .

Similarly, given a set of formulas 7', we say that 0t is a
model of 7', and we write 9t = 7', when 2t is a model of all
formulas in 7.
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Introduction

The notions of logical equivalence, satisfiability, validity, and
logical consequence are defined in first-order logic in a
similar way to propositional logic.

Indeed, they are all derived from the notion of truth (of a
formula) in an interpretation.

The notion of interpretation is different in both cases:
assignment of truth values to propositional letters in one
case, and structures in the other.

These differences are basically irrelevant when it comes to
the previous notions.
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Logical equivalence, validity

Two formulas are logically equivalent iff they have the same
meaning in any structure. Formally, the formulas ¢ and v
are logically equivalent just in case:

for all structures 9, M |= ¢ iff M |= .

We say that a formula ¢ is valid, or a tautology, denoted
= o, iff @ is true in all structures. Formally, the formula ¢ is
valid, or a tautology, just in case:

for all structures 9, M |= ¢
Example of valid formulas include:
® Va(r=ux)
® Jz(xr=ux)
® VoP(x) — JxP(x).
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Logical implication

Given two formulas ¢ and ¢, we say that ¢ logically implies
v, or that ¢ is a logical consequence of ¢, denoted ¢ = ¢,
iff every model of ¢ is a model of . So ¢ = ¢ just in case:

for all structures 9, if M | + then M = .

Similarly, given a set of formulas 7" and a formula ¢, we say
that T logically implies ¢, or that ¢ is a logical consequence
of T, denoted T |~ ¢, iff every model of T' is a model of ¢.
So T | ¢ justin case:

for all structures 9, if M |= T then N |= .
For instance:
® Vy(zr =vy) E VaP(z) VVa-P(x)
® {Va(P(r) — Q(x)), IxP(r)} | FrQ(x)
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Basic properties (1)

Property: Every formula is a logical consequence of an
inconsistent set of formulas.

Property: For all closed formulas ¢, the following are
equivalent.

® isvalid.
#® - is unsatisfiable.
® ¢ is alogical consequence of the empty set.

Property: For all closed formulas ) and ¢, the following are
equivalent.

® o is alogical consequence of .
® ) — ypisvalid.
® Y A - is unsatisfiable.
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Satisfiability, validity, consistency

A formula ¢ is satisfiable iff it has a model; otherwise ¢ is
said to be unsatisfiable.

A set of formulas T is consistent iff it has a model;
otherwise T is said to be inconsistent.

For instance:

® JxP(z) A3x—P(x) is satisfiable.

Jx(P(z) A —P(x)) is unsatisfiable.

Jx(xz # x) (abbreviation for 3z—(xz = x)) is unsatisfiable.
{©1,...,p,} is consistent iff o1 A ... A @, is satisfiable.
() is consistent.

{3xP(z),Yx—P(x)} is inconsistent.

o o o 0 @
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Basic properties (2)

Property: For all sets of formulas 7" and for all closed
formulas ¢, the following are equivalent.

® ¢ is alogical consequence of 7.
® T U{-p} is inconsistent.

Property: For all closed formulas ) and ¢, the following are
equivalent.

® ¢ is alogical consequence of ¢» and ¢ is a logical
consequence of .

# ¢ and ¢ are logical equivalent.
® ) — pisvalid.
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Logical equivalences (1)

The logical equivalences of propositional logic are obviously
equivalences of first-order logic.

To be understood, and by no means learnt by heart, are the
following logical equivalences involving quantifiers.

-3z is logically equivalent to Vx—y
—Vzp is logically equivalent to 3z—¢
Jz3ye is logically equivalent to Jy3ze
VaVyq is logically equivalent to VyVxe

e o o o @

JzVy¢ logically implies Vy3zp
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Renaming of variables (1)

Given a formula ¢, a variable x having free occurrences in ¢
and a term ¢, it is always possible to rename the bound
occurrences of variables in ¢, and get a formula ¢ such that:

# no variable has both free and bound occurrences in ¢;

® no variable has both an occurrence in ¢t and a bound
occurrence in ¢

# occurrences of variables in ¢ that immediately follow
distinct occurrences of quantifiers are not occurrences
of the same variable;

# tis substitutible for x and ;

® o < @pisvalid.

The first three conditions above basically guarantee ‘good
readability’.
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Logical equivalences (2)

# Hzpis logically equivalent to ¢ if there is no free
occurrence of z in ¢

® Vaxois logically equivalent to o if there is no free
occurrence of z in ¢

® Va(ep A1) is logically equivalent to VYap A Vay)
® dz(p V) is logically equivalent to Jzp v Iz

® V(e V1)) is logically equivalent to Vay V ¢ if there is no
free occurrence of x in ¢

® dz(p A1) is logically equivalent to Jzp A ¢ if there is no
free occurrence of = in ¢

We sometimes write ¢ = ¢ to denote that ¢ and ¢ are
logically equivalent.
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Renaming of variables (2)

For instance, take
¢ = v P(x,y) A ~32Vy(Q(z,y,2) V Iz R(x, 2))

and
t=g(v,z,y).

If we want to substitute y by ¢ in a formula ¢ that satisfies
the conditions above with y playing the role of z, we can
define ¢ as:

FuP(u,y) A —F2VH(Q(x,t, 2) V JwR(w, 2))
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Properties of equality

In the following, ¢, t1, t2, t3 denote terms.

e o o @

t =tis avalid.
ts = t1 is a logical consequence of t; = o
ts = t1 is a logical consequence of (t; = t2) A (t2 = t3)

Given a formula ¢ and a variable z, if ¢; and ¢, are both
substituble for = in ¢ then t; = t, logically implies

plt1/7] < plta/z]
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