Lecture notes 16.0
Semantic tableaux

COMP 2411, session 1, 2004

Lecture notes 16.0, COMP 2411, session 1, 2004 —p. 1

Which rules for the quantifiers? (1)

Intuitively:

» if we want to make Jx¢ true, then we have to make sure
that some individual has property ;

» if we want to make Vzy true, then we have to make sure
that all individuals have property ¢;

» if we want to make -3z true, then we have to make
sure that all individuals have property —;

» if we want to make —Vzp true, then we have to make
sure that some individual has property .

The first and fourth rules remind of the g-rules, but with
more than two branches (infinitely many?)

The second and third rules remind of the «a-rules, but
adding more than two formulas (infinitely many?)

Lecture notes 16.0, COMP 2411, session 1, 2004 - p. 3

Introduction

Here we work in the predicate calculus without equality.

We want to generalize the construction of semantic
tableaux from propositional logic to first-order logic,
applying the same basic idea:

In order to show that ¢ is satisfiable, try and find a
model of ¢ in a systematic way, by breaking down
formulas into smaller formulas, until we are left with
nothing but atomic formulas and/or negations of
atomic formulas that do not clash.

We know what to do with the boolean operators. The only
issue is what to do with the quantifiers.

Lecture notes 16.0, COMP 2411, session 1, 2004 — p. 2

Which rules for the quantifiers? (2)

Moreover, how shall we denote the potential individuals?

If we want to make ¢ true, ¢ will be true in a structure 9t
and in our language (given by the chosen vocabulary V):

some individuals can have many names;
® some individuals can have more than one name.

We do not care about individuals having many names
because we have excluded equality. Hence we cannot
differentiate between:

an individual have two names «a and b;

two individuals having respective names « and b and
the same properties expressible in the formal language.

In other words, we can assume that different names denote
different individuals.

Lecture notes 16.0, COMP 2411, session 1, 2004 - p. 4

Which rules for the quantifiers? (3)

When we want to make sure that some individual has a
given property, we choose a new constant meant to
represent a new individual.

When we want to make sure that all individuals have a
given property, we have to consider all constants introduced
now or to be introduced later.

This means that we will not apply the rules for a universal
guantifier or for the negation of an existential quantifier
once and for all, but again and again, to take care of the
new constants that are being introduced as the tableau
construction proceeds.

Before we define the method in full generality, we give a few
examples.

Lecture notes 16.0, COMP 2411, session 1, 2004 —p. 5

JrIyp(x,y) — Jy3ap(y, x) is valid

—(323yp(z,y) — Iy3zp(y, v))

3 3yp(z, y), ~Iy3ep(y, ©)

Jyp(al,y), ~IyIzp(y, x)

p(al,a2), ~3yIp(y, x)

—3zp(a2, x), =3zp(al,), p(al, a2), ~IyIap(y, =)

‘\p(ILQ, a2)7 “p((lQ, a1)7 "Hmp(aL ZL‘), p(a17 a2)7 ﬁflyﬂxp(y, ZL‘), ‘Ell’p((lQ, .I?)
—p(al,a2), =p(al,al), ~p(a2, a2), ~p(a2,al), p(al, a2), ~Iy3zp(y, x), ~Ixp(a2, x), ~Izp(al,)

X

Lecture notes 16.0, COMP 2411, session 1, 2004 - p. 7

dxVyp(x,y) — YyIxp(x,y) is valid

—(32Vyp(z,y) — Vy3p(z,y))
Jayp(x, y), |ﬂ\ﬁ/ﬂfcp(fbn y)
Vyp(al,y), ﬂlVnyp(ru y)
—Jzp(x, a2)|, Yyp(al,y)
—p(a2,a2),—p(al,a2), lVyp(al, y), ~3Jzp(x, a2)
p(al,a2),p(al,al), —p(a2,a2), —||p(a1, a2),—3xp(z,a2),Vyp(al,y)

X

Lecture notes 16.0, COMP 2411, session 1, 2004 - p. 6

Va(p(z) — q(z)) — Yap(x) — Yaq(z) is valid

~(Vz(p(x) — q(z)) — Vap(z) — VYaq(z))
va(p(z) — q(x)), ~(Vop(z) — Vzq(z))
Vap(z), "Vaq(z), Vo (p(z) — q(z))
—q(al), Vap(z), Vz(p(z) — q(2))
p(al), ~q(al), Va(p(z) — q(x)), Vap(z)

p(al) — g(al),p(al), ~q(al), Vop(z), Va(p(z) — q(x))

—p(al),p(al), ~q(al), Vop(z), Vz(p(z) — q(z)) q(al),p(al), ~q(al), Vzp(z), Vz(p(z) — q(z))

X X

Lecture notes 16.0, COMP 2411, session 1, 2004 - p. 8

Vap(z) — Jxp(x) is valid

~(Vzp(z) |—> Jp(x))
Vap(z), ~3xp(z)
p(al), ﬂle(x)v Vap(z)
—p(al), p(al), Vlfcp(w% —Jap(z)

X

Lecture notes 16.0, COMP 2411, session 1, 2004 —p. 9

General construction (1)

To build a semantic tableau 7 for a closed first-order
formula ¢, we start with a tree having just a root labeled
with .

At each stage in the construction, we choose an unmarked
leaf L labeled with a sequence of formulas ¢1, ..., ©n,.

® If {¢1,...,¢n} Is aset of formulas that contains some
formula and its negation, we extend 7, giving a child to
L (L becomes an internal node) labeled with x.

® If{¢1,...,0,}is asetof literals, i.e., atomic formulas (of
the form p(t4,. .., t,) for some n-ary predicate symbol p)
or negation of atomic formula, we extend 7, giving a
child to L (L becomes an internal node) labeled with &.

Lecture notes 16.0, COMP 2411, session 1, 2004 - p. 11

~and 9 rules

To the o and S rules of propositional rules, we add two new
kinds of rules for the quantifiers. The rules are determined
by instances of the formula to which the rule is applied,
removing the quantifier and replacing the quantified
variable by a constant.

IERECE
Vop | pla/a]
vy | pla/7]
L5 |) |
Jre | pla/a]
Vo | ~pla/7]

Lecture notes 16.0, COMP 2411, session 1,2004 - p. 10

General construction (2)

Otherwise, we selecta ¢; € {p1,...,0n}.

s If ; is an a-formula, having ¢! and ¢? as
corresponding «; and «a» formulas in the a-table, we
extend 7, giving a child to L labeled with

1 2
901;-“7902‘—1a90i780i7§0i—|—17~--79071-

s If ; is a g-formula, having ¢! and ¢? as
corresponding 3; and g, formulas in the s-table, we
extend 7, giving two children to L, one labeled with

©1y- - 7801'—1)@'}7(107;4—17 vy Pn,
the other labeled with

2
Ply-- 5 Pi—1,95 5 Pitls - Pn.

Lecture notes 16.0, COMP 2411, session 1,2004 - p. 12

General construction (3)

Continuing the previous case analysis on ;:

s If p; is formula of the § kind, we extend 7, giving a
child to L labeled with

"2 P ,901‘71,5(0),(,0#1, -y Pn

where a is a new contant.

s If ¢; is formula of the ~ kind, we extend 7, giving a
child to L labeled with

()017 .. '7901—17(107;77(a)7§0i+17 . '79071,

where « is a constant that has already been
introduced by a ¢ rule before, unless no such rule
has been used before in which case «a is a new
constant. Note that ; is kept.

Lecture notes 16.0, COMP 2411, session 1, 2004 — p. 13

Soundness and completeness (1)

The tableau construction is a sound and complete proof
procedure for unsatisfiability:

itis algorithmic (computable, effective)

itis sound because it is always right when it tells us that
a formula is unsatisfiable.

itis complete because it always tells us when a formula
is unsatisfiable.

Proposition (x): Let 7 be a completed tableau for a formula
. Then ¢ is unsatisfiable iff 7 is closed.

But since the construction does not always terminates, it is
an undecidable proof procedure.

Lecture notes 16.0, COMP 2411, session 1, 2004 - p. 15

Termination

Definition: A tableau whose construction has terminated is
called a completed tableau.

A completed tableau is closed if all leaves are marked as
closed (x). It is open if some leaf is marked as open (®).

In contrast to what happens in propositional logic, the
tableau construction is not guaranteed to terminate.

» If the formula ¢ that labels the root is unsatisfiable, in
which case the construction is guaranteed to terminate
and the tableau is closed.

» If the formula ¢ that labels the root is satisfiable then

s either the construction is guaranteed to terminate
and the tableau is open, or

» the construction does not terminate.

Lecture notes 16.0, COMP 2411, session 1,2004 - p. 14

Soundness and completeness (2)

Since a formula is unsatisfiable iff its negation is valid, we
also have a sound, complete, and decidable proof
procedure for validity.

This is captured by the next Corollary to Proposition (x):

Corollary: Let a formula ¢ be given. Let 7 be a completed
tableau for —p. Then ¢ is valid iff 7 is closed.

We also have a sound and complete proof procedure for
logical consequence:

Corollary: Let formulas 1, ...,,, ¢ be given. Let 7 be a
completed tableau for 1 A ... A, A =p. Then ¢ is a logical
consequence of {1, ..., ¥, } iff T is closed.

Lecture notes 16.0, COMP 2411, session 1,2004 - p. 16

Optimizations

The program Fi r st _or der/ Eval uati ons/ t abl eau. pl
implements the following strategy:

¥

o
o
o

if possible, apply an « rule before a g rule.
If possible, apply a 5 rule before a ¢ rule.
If possible, apply a ¢ rule before a ~ rule.

When applying a ~ rule, add all instances of the formula
being dealt with (using all constants introduced so far,
or a new one in case no constant has been introduced,
like in the proof of the validity of Vap(z) — Jxp(z)
above).

Lecture notes 16.0, COMP 2411, session 1, 2004 — p. 17

	Introduction
	Which rules for the quantifiers? (1)
	Which rules for the quantifiers? (2)
	Which rules for the quantifiers? (3)
	$exists x �orall y p(x,y)

ightarrow �orall y exists x p(x,y)$ is valid
	$exists x exists y p(x,y)

ightarrow exists y exists x p(y,x)$ is valid
	{small $�orall x (p(x)

ightarrow q(x))
ightarrow �orall x p(x)
ightarrow �orall x
q(x)$ is valid}
	$�orall x p(x)

ightarrow exists x p(x)$ is valid
	$gamma $ and $delta $ rules
	General construction (1)
	General construction (2)
	General construction (3)
	Termination
	Soundness and completeness (1)
	Soundness and completeness (2)
	Optimizations

