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Computing by proving

The basic idea behind Logic programming is that computing
can be performed by proving.

For instance, from the set of formulas
ϕ = ∀x∀y((mother(x) ∧ child(y, x)) → loves(x, y)),
ψ = mother(mary) and ξ = child(tom,mary), it is possible to
compute whom Mary loves.

This is achieved as follows:

Prove that ∃x loves(mary, x) is a logical consequence of
{ϕ,ψ, ξ} (which is indeed the case).

If in this proof, a (stronger) statement of the form
loves(mary, term) is being derived—it is also a logical
consequence of {ϕ,ψ, ξ}—and term (here term = tom)
is a result of the computation.
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Constructive proofs

To perform the proof, we can use one of the proof systems
we know, for instance Natural deduction.

Writing "m" for "mary" and "t" for "tom", we can get:

∀x∀y((mother(x) ∧ child(y, x)) → loves(x, y))

∀y((mother(m) ∧ child(y, m)) → loves(m, y))
∀E

(mother(m) ∧ child(t, m)) → loves(m, t)
∀E

mother(m) child(t, m)

mother(m) ∧ child(t, m)
∧I

loves(m, t)
→E

∃x loves(m, x)
∃I

Note that this proof is actually a proof in intuitionistic logic: it
does not use RAA. It is a constructive proof.
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Nonconstructive proofs

The proof that some closed formula that starts with ∃ is a
logical consequence of a given set X of formulas cannot
always be constructive.

For instance, the following proof that {¬∀xϕ} |= ∃x¬ϕ uses
RAA, and no alternative proof could avoid using RAA (that
is clear intuitively: how could we come up with any term t
such that ϕ[t/x] if we only know that ¬∀xϕ?)

[¬ϕ]1

∃x¬ϕ
∃I

[¬∃x¬ϕ]2

⊥
¬E

ϕ RAA1

∀xϕ
∀I

¬∀xϕ

⊥
¬E

∃x¬ϕ
RAA2
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Finding witnesses

So the key question is: when is a closed formula of the form
∃xχ a logical consequence of a set of formulas X iff there
exists a term t—a witness for ∃xχ—such that χ[t/x] is a
logical consequence of X?

The answer is: iff there exists a constructive proof (a proof
in Natural deduction without RAA) of ∃xχ from X.
Moreover, a formula of the form χ[t/x] will necessarily occur
in such a proof.

So we might conclude: if our aim is to compute by proving,
let us just study intuitionistic logic rather then classical logic!

What we will do instead is put some syntactic restrictions
on X and χ. We will require that X is a set of definite
clauses and that ∃xχ is a definite query (to be defined).
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Equivalent logics

If X is a set of definite clauses and ϕ is a definite query,
then the following are equivalent.

There exists a proof of ϕ from X in classical logic.

There exists a proof of ϕ from X in intuitionistic logic.

So in this particular case, we get the best of both worlds!
Indeed, we like the semantics of classical logic, that is close
to our intuition (we have not studied and will not study the
more complex semantics of intuitionistic logic); but we also
like constructive proofs.

Of course, there is a price to pay, namely, to give up some
of the expressive power of full first-order logic.

There is another benefit in the above restriction: rather than
using Natural deduction without RAA, we can use a more
efficient proof procedure, SLD-Resolution.
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Clauses, resolution, skolemization

In order to ‘glue’ first-order logic and Logic programming as
tightly as possible, we do not directly jump into the realm of
Logic programming, but get close to it by defining more
general notions than definite clauses and SLD-resolution:
we will first study clauses and resolution.

Though clauses are also syntactically very restrictive, in
some sense they still retain the full generality of first-order
logic thanks to a syntactic transformation called
skolemization that we will also study.
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Clauses (1)

A clause is any formula of the form ϕ1 ∨ . . . ∨ ϕn, where for
all i ≤ n, ϕi is either an atomic formula—an atom, a positive
literal—or the negation of an atomic formula—a negative
literal.

A clause is also represented by the set of its disjuncts. For
instance:

p(f(y)) ∨ ¬p(g(z)) ∨ q(z, y) is a clause, also represented
as {p(f(y)),¬p(g(z)), q(z, y)};

¬q(z, f(y)) ∨ ¬p(g(z)) ∨ q(y, y) is a clause, also
represented as {¬q(z, f(y)),¬p(g(z)), q(y, y)}.

The set representation also gives the empty clause, that
does not correspond to any disjunction of literals, but to a
contradiction.
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Clauses (2)

Remember that by convention, the truth of a clause is
equivalent to the truth of its universal closure.

A universal formula, of the form ∀x1 . . . ∀xnϕ where ϕ does
not contain any occurrence of quantifier, is logically
equivalent to a set of clauses: it suffices to put ϕ in
conjunctive normal form: each conjunct is a clause.

More general formulas are not logically equivalent to a set
of clauses.

There still exists a relationship between an arbitrary
first-order formula and a set of clauses. To find out the
nature the nature of the relationship, and which set of
clauses is involved, we need to define skolemization.
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Skolemization (1)

Skolemization is a technique based on enrichments of the
vocabulary, that removes existential quantifiers in formulas
in prenex form and preserves the notion of satisfiability.

Suppose that we are working with a vocabulary V
consisting of the unary predicate symbol p.

The formula ϕ = ∃x p(x) is satisfiable: indeed, the structure
M over V whose domain is N and such that
pM = {0, 2, 4, 6 . . .} is a model of ϕ. (The meaning of ϕ in M

is that some number is even.)

Note that V contains no function symbol (in particular, no
constant). Let us enrich V with a constant c, which yields a
new vocabulary V ′.
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Skolemization (2)

Then p(c) is satisfiable: indeed, the structure N over V ′

whose domain is N, such that pN = {0, 2, 4, 6 . . .}, and such
that cN = 4, is a model of ϕ.
(Of course, cN = 0, or cN = 12, would do as well.)

At this stage we might think: let us just consider
vocabularies that contain at least one constant, and we will
not have to bother using this notion of enrichment.

So let us start again. Suppose that V consists of the unary
predicate symbol p and the constant a. As before, ∃x p(x) is
satisfiable.

Moreover, the formula p(a) is also satisfiable: indeed, the
structure M over V whose domain is N, such that
pM = {0, 2, 4, 6 . . .}, and such that aM = 4, is a model of p(a).
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Skolemization (3)

But consider the formula ψ = ¬p(a) ∧ ∃x p(x). It is
satisfiable: indeed, the structure N over V whose domain is
N, such that pN = {0, 2, 4, 6 . . .}, and such that aN = 1, is a
model of ¬p(a) ∧ ∃Xp(X).

Obviously, ¬p(a) ∧ p(a) is not satisfiable.

Let us enrich V with a constant c, which yields a new
vocabulary V ′.

Then ¬p(a) ∧ p(c) is satisfiable: indeed, the structure S over
V ′ whose domain is N, such that pS = {0, 2, 4, 6 . . .}, and
such that aS = 1 and cS = 4, is a model of ¬p(a) ∧ p(c).
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Skolemization (4)

Generalizing the argument, we obtain the following result.

Let ϕ be a formula over a vocabulary V . Set V ′ = V ∪ {c}
where c is a constant that does not occur in V .

Then ∃xϕ is satisfiable (i.e., some structure over V is a
model of ∃xϕ) if and only if ϕ[c/x] is satisfiable (ie. some
structure over V ′ is a model of ϕ[c/x]).

Even if V contains infinitely many constants, enriching V
with a new constant is necessary to make the previous
result hold for any formula over V of the form ∃xϕ .
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Skolemization (5)

So now we know how to remove existential quantifiers that
occur in front of a formula, using extra constants. But what
about the other existential quantifiers ?

Consider the formula ϕ = ∀x∃y(q(x, y) ∧ ¬q(x, x)). If we
remove ∃y and replace all other occurrences of y by a
constant c we get: ψ = ∀x(q(x, c) ∧ ¬q(x, x)).

But ψ |= q(c, c) ∧ ¬q(c, c), which is not satisfiable.

Still ϕ is satisfiable: indeed, the the structure M over V
whose domain is N, such that
qM = {(0, 1), (1, 2), (2, 3), (3, 4) . . .} is a model of ϕ.
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Skolemization (6)

Let us enrich V with a unary function symbol f , which yields
a new vocabulary V ′.

Then χ = ∀x(q(x, f(x)) ∧ ¬q(x, x)) is satisfiable: indeed, the
structure N over V ′ whose domain is N, such that
qN = {(0, 1), (1, 2), (2, 3), (3, 4) . . .}, and such that
fN(n) = n+ 1 for all n ∈ N, is a model of χ.

Skolemization generalizes the previous argument.

For each existential quantifier occurring in a closed formula
in prenex form, we count the number n of universal
quantifiers that occur before this existential quantifier.

We then enrich the vocabulary with a new n-ary function
symbol, and modify the formula accordingly.
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Skolemization (7)

The Skolemization technique is justified by the following
result, that generalizes the previous examples.

Proposition 1: Let ∀x1 . . . ∀xn∃xϕ be a formula over a
vocabulary V . Set V ′ = V ∪ {f} where f is an n-ary function
symbol that does not occur in V .

Then ∀x1 . . . ∀xn∃xϕ is satisfiable
(i.e., some structure over V is a model of ∀x1 . . . ∀xn∃xϕ)
if and only if ∀x1 . . . ∀xnϕ[f(x1, . . . , xn)/x] is satisfiable
(i.e., some structure over V ′ is a model of
∀x1 . . . ∀xnϕ[f(x1, . . . , xn)/x]).

Note that the result on slide 11 is the particular case where
n = 0.
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Example

Let us Skolemize
ϕ = ∀x(∀y∃z p(x, y, z) ∧ ∃z∀y∃w¬q(x, y, z, w)).

First, ϕ has to be transformed into a formula in prenex form:
ϕ ≡ ∀x(∀y∃z p(x, y, z) ∧ ∃u∀v∃w¬q(x, u, v, w))
≡ ∀x∀y∃z∃u∀v∃w(p(x, y, z) ∧ ¬q(x, u, v, w)).

Then we enrich the language with 3 function symbols: f/2,
g/2 and h/3.

By Skolemization, ϕ is satisfiable iff

∀x∀y∀v(p(x, y, f(x, y)) ∧ ¬q(x, g(x, y), v, h(x, y, v)))

is satisfiable.

Notes 19.0, COMP 2411, session1, 2003 – p. 17

Back to clauses

It follows from the previous that for any first-order formula ϕ,
there exists a (finite) set X of clauses in an enriched
language such that ϕ is satisfiable iff X is satisfiable.
Indeed:

We can put ϕ in prenex form and get a formula ψ.

Using Skolemization, we can remove the existential
quantifiers in ψ and get a formula of the form
∀x1 . . . ∀xnχ, where χ is a quantifier free formula.

We can put χ in conjunctive normal form and get a set
X of clauses.

Then ϕ is satisfiable iff X is satisfiable.

We examine how to perform all these transformations in
Prolog, starting from a closed formula ϕ.
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Eliminate ↔ and ⊕ (1)

To put all quantifiers in front, we first need to eliminate ↔
(and ⊕ in case we include it in the language as a
commodity).

Indeed, we have rules to pull out quantifiers for formulas
built from ¬, ∨, ∧ or →, but not for formulas built from ↔ or
⊕.

We just use the equivalence between:

ϕ↔ ψ and (ϕ→ψ) ∧ (ψ→ϕ);

ϕ⊕ ψ and (ϕ ∧ ¬ψ) ∨ (ψ ∧ ¬ϕ).

For formulas of a different form, we apply the transformation
recursively to the arguments of the boolean operator or
quantifier applied last.

Notes 19.0, COMP 2411, session1, 2003 – p. 19

Eliminate ↔ and ⊕ (2)

eliminate_equiv_xor(A eqv B, (A1 imp B1) and (B1 imp A1)) :- ! ,

eliminate_equiv_xor(A, A1),

eliminate_equiv_xor(B, B1).

eliminate_equiv_xor(A xor B, (A1 and neg B1) or (neg A1 and B1 )) :- !,

eliminate_equiv_xor(A, A1),

eliminate_equiv_xor(B, B1).

eliminate_equiv_xor(neg A, neg A1) :- !,

eliminate_equiv_xor(A, A1).

eliminate_equiv_xor(A or B, A1 or B1) :- !,

eliminate_equiv_xor(A, A1),

eliminate_equiv_xor(B, B1).

eliminate_equiv_xor(A and B, A1 and B1) :- !,

eliminate_equiv_xor(A, A1),

eliminate_equiv_xor(B, B1).

eliminate_equiv_xor(exists X sep A, exists X sep A1) :- !,

eliminate_equiv_xor(A, A1).

eliminate_equiv_xor(forall X sep A, forall X sep A1) :- !,

eliminate_equiv_xor(A, A1).

eliminate_equiv_xor(A, A).
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Rename variables (1)

To pull out quantifiers, we need to make sure that different
quantifiers apply to different variables.

For instance, ∃x(p(x) ∧ ∀xq(x, x)) is obviously equivalent to
∃x∀y(p(x) ∧ q(y, y)), but not to ∃x∀x(p(x) ∧ q(x, x)) (which
note is equivalent to ∀x(p(x) ∧ q(x, x)).

To make things simpler, we do not look for variables to
which at least two quantifiers are applied, but we just
rename all quantified variables as x1 , x2 , x3 ,. . . , using the
convenient gensym built-in.

As a precondition, we assume that our original formula
does not contain any occurrence of x1 , x2 , x3 ,. . .

Basically, with a formula of the form ∃vϕ or ∀vϕ, we have to
replace in ϕ all free occurrences of v by xi, for the i
generated by gensym , and put ∃xi or ∀xi in front.
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Rename variables (2)

rename_variables(Formula, RenamedFormula) :-

reset_gensym(x),

rename_variables1(Formula, RenamedFormula).

rename_variables1(exists X sep FormX, exists V sep Form) :- !,

gensym(x, V),

instance(X, V, FormX, FormV),

rename_variables1(FormV, Form).

rename_variables1(forall X sep FormX, forall V sep Form) :- !,

gensym(x, V),

instance(X, V, FormX, FormV),

rename_variables1(FormV, Form).

rename_variables1(Expression, RenamedExpression) :-

compound(Expression), !,

Expression =.. [Oper| Args],

maplist(rename_variables1, Args, Args1),

RenamedExpression =.. [Oper| Args1].

rename_variables1(ConstantOrVariable, ConstantOrVari able).
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Rename variables (3)

instance(Variable, Term, Variable, Term) :- !.

instance(X, _, exists X sep Form, exists X sep Form) :- !.

instance(X, Term, exists Y sep Form, exists Y sep Form1) :- !,

instance(X, Term, Form, Form1).

instance(X, _, forall X sep Form, forall X sep Form) :- !.

instance(X, Term, forall Y sep Form, forall Y sep Form1) :- !,

instance(X, Term, Form, Form1).

instance(X, Term, Expression, Instance) :-

compound(Expression),

Expression \= ’$VAR’(_), !,

Expression =.. [Oper| Args],

maplist(instance(X, Term), Args, Args1),

Instance =.. [Oper| Args1].

instance(_, _, Atom, Atom).
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Put into prenex form (1)

We are now ready to put the formula into prenex form, i.e.,
pull out all quantifiers:

prenex(Formula, PrenexFormula) :-

eliminate_equiv_xor(Formula, Formula1),

rename_variables(Formula1, Formula2),

prenex1(Formula2, PrenexFormula).

using equivalences like:

∀xψ ∧ ξ ≡ ∀x(ψ ∧ ξ) when x does not occur in ξ;

∀xψ→ξ ≡ ∃x(ψ ∧ ξ) when x does not occur in ξ;

ψ→∀xξ ≡ ∀x(ψ ∧ ξ) when x does not occur in ψ;

Etc.

all the conditions to the right being guaranteed by the fact
that we started from a closed formula, and that we have
renamed all variables.
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Put into prenex form (2)

prenex1(exists X sep A, exists X sep A1) :- !,

prenex1(A, A1).

prenex1(forall X sep A, forall X sep A1) :- !,

prenex1(A, A1).

prenex1(neg exists X sep A, forall X sep C) :-

prenex1(neg A, C).

prenex1(neg forall X sep A, exists X sep C) :-

prenex1(neg A, C).

prenex1(exists X sep A or B, exists X sep C) :- !,

prenex1(A or B, C).

prenex1(forall X sep A or B, forall X sep C) :- !,

prenex1(A or B, C).

prenex1(exists X sep A and B, exists X sep C) :- !,

prenex1(A and B, C).

prenex1(forall X sep A and B, forall X sep C) :- !,

prenex1(A and B, C).

prenex1(exists X sep A imp B, forall X sep C) :- !,

prenex1(A imp B, C).

prenex1(forall X sep A imp B, exists X sep C) :- !,

prenex1(A imp B, C).
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Put into prenex form (3)

prenex1(A or exists X sep B, exists X sep C) :- !,

prenex1(A or B, C).

prenex1(A or forall X sep B, forall X sep C) :- !,

prenex1(A or B, C).

prenex1(A and exists X sep B, exists X sep C) :- !,

prenex1(A and B, C).

prenex1(A and forall X sep B, forall X sep C) :- !,

prenex1(A and B, C).

prenex1(A imp exists X sep B, exists X sep C) :- !,

prenex1(A imp B, C).

prenex1(A imp forall X sep B, forall X sep C) :- !,

prenex1(A imp B, C).

For the remaining cases, we have to be careful: there might
be quantifiers deeper in the formula, in which case we have
to pull out the quantifiers in these subformulas, and then
pull out the quantifiers again working on the original formula
with the previous subformulas being replaced by their
prenex form equivalent.
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Put into prenex form (4)

prenex1(neg A, C) :-

( contains_quantifiers(A), !,

prenex1(A, A1),

prenex1(neg A1, C)

; C = neg A

).

prenex1(A or B, C) :-

( contains_quantifiers(A), !,

prenex1(A, A1),

prenex1(A1 or B, C)

; contains_quantifiers(B), !,

prenex1(B, B1),

prenex1(A or B1, C)

; C = A or B

).
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Put into prenex form (5)

prenex1(A and B, C) :-

( contains_quantifiers(A), !,

prenex1(A, A1),

prenex1(A1 and B, C)

; contains_quantifiers(B), !,

prenex1(B, B1),

prenex1(A and B1, C)

; C = A and B

).

prenex1(A imp B, C) :-

( contains_quantifiers(A), !,

prenex1(A, A1),

prenex1(A1 imp B, C)

; contains_quantifiers(B), !,

prenex1(B, B1),

prenex1(A imp B1, C)

; C = A imp B

).

prenex1(A, A).
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Put into prenex form (6)

The implementation of contains_quantifiers is trivial:

contains_quantifiers(_ sep _) :- !.

contains_quantifiers(neg A) :- !,

contains_quantifiers(A).

contains_quantifiers(A or B) :- !,

( contains_quantifiers(A)

; contains_quantifiers(B)

).

contains_quantifiers(A and B) :- !,

( contains_quantifiers(A)

; contains_quantifiers(B)

).

contains_quantifiers(A imp B) :- !,

( contains_quantifiers(A)

; contains_quantifiers(B)

).
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Skolemize (1)

Now that we have a formula in prenex form, we can remove
the existential quantifiers and replace an existentially
quantified variable x by a term of the form f(x1, . . . , xx)
where {x1, . . . , xn} is the set of all variables such that
∀x1, . . . ∀xn occur in ϕ before ∃x.

So we need to:

keep track of the universally quantified variables read
so far—they will be stored in the second argument of
skolemize/4 ;

state that we want to substitute x by f(x1, . . . , xn)—this
will be stored in the third argument of skolemize/4 ,
and represents a Skolem mapping.
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Skolemize (2)

Since f has to be a new function symbol (in the enriched
language), we use gensym again, and generate f1 , f2 ,
f3 ,. . . to be used for f . Hence as a precondition, we
assume that our original formula does not contain any
occurrence of f1 , f2 , f3 ,. . .

Once the Skolem mapping has been built, we can perform
the substitution.

skolemize(PrenexFormula, SkolemizedFormula) :-

reset_gensym(f),

skolemize(PrenexFormula, [], [], SkolemizedFormula).
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Skolemize (3)

skolemize(forall X sep A, UnivVars, SkolMapping, forall X s ep B) :- !,

skolemize(A, [X| UnivVars], SkolMapping, B).

skolemize(exists X sep A, UnivVars, SkolMapping, B) :- !,

gensym(f, SkolFunctionSymbol),

SkolFunction =.. [SkolFunctionSymbol| UnivVars],

skolemize(A, UnivVars, [(X, SkolFunction)| SkolMapping] , B).

skolemize(Formula, _, [(X, SkolFunction)| SkolMapping], SkolFormula) :-

instance(X, SkolFunction, Formula, Instance),

skolemize(Instance, _, SkolMapping, SkolFormula).

skolemize(Formula, _, [], Formula).
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Put the matrix into CNF (1)

Having a universal formula, we have to put the matrix (that
part of the formula that follows the sequence of universal
quantifiers) into conjunctive normal form. This requires:

eliminating implication;

applying de Morgan’s laws so that negation only applies
to atoms;

distributing disjunction over conjunction;

using the associativity rules of conjunction and
disjunction to have a nice printout without
parentheses—in case we want such a printout. . . —,
e.g., get ψ1 ∨ (ψ2 ∨ ψ3) preferably to (ψ1 ∨ ψ2) ∨ ψ3, since
the former will be printed out as ψ1 ∨ ψ2 ∨ ψ3.
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Put the matrix into CNF (2)

cnf(A, A4) :-

eliminate_imp(A, A1),

de_morgan(A1, A2),

distribute_or_over_and(A2, A3),

right_associate(A3, A4).

eliminate_imp(A imp B, neg A1 or B1) :- !,

eliminate_imp(A, A1),

eliminate_imp(B, B1).

eliminate_imp(neg A, neg A1) :- !,

eliminate_imp(A, A1).

eliminate_imp(A or B, A1 or B1) :- !,

eliminate_imp(A, A1),

eliminate_imp(B, B1).

eliminate_imp(A and B, A1 and B1) :- !,

eliminate_imp(A, A1),

eliminate_imp(B, B1).
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Put the matrix into CNF (3)

de_morgan(neg neg A, A1) :- !,

de_morgan(A, A1).

de_morgan(neg (A or B), A1 and B1) :- !,

de_morgan(neg A, A1),

de_morgan(neg B, B1).

de_morgan(neg (A and B), A1 or B1) :- !,

de_morgan(neg A, A1),

de_morgan(neg B, B1).

de_morgan(A or B, A1 or B1) :- !,

de_morgan(A, A1),

de_morgan(B, B1).

de_morgan(A and B, A1 and B1) :- !,

de_morgan(A, A1),

de_morgan(B, B1).

de_morgan(A, A).
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Put the matrix into CNF (4)

distribute_or_over_and(A and B, A1 and B1) :- !,

distribute_or_over_and(A, A1),

distribute_or_over_and(B, B1).

distribute_or_over_and(A or B and C, ABC) :- !,

distribute_or_over_and(A or B, AB),

distribute_or_over_and(A or C, AC),

distribute_or_over_and(AB and AC, ABC).

distribute_or_over_and(A and B or C, ABC) :- !,

distribute_or_over_and(A or C, AC),

distribute_or_over_and(B or C, BC),

distribute_or_over_and(AC and BC, ABC).

distribute_or_over_and(A or B, C) :- !,

( contains_and(A or B), !,

distribute_or_over_and(A, A1),

distribute_or_over_and(B, B1),

distribute_or_over_and(A1 or B1, C)

; C = A or B

).

distribute_or_over_and(A, A).
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Put the matrix into CNF (5)

right_associate((A and B) and C, F) :- !,

right_associate(A and (B and C), F).

right_associate(A and B, A1 and B1) :- !,

right_associate(A, A1),

right_associate(B, B1).

right_associate((A or B) or C, F) :- !,

right_associate(A or (B or C), F).

right_associate(A or B, A1 or B1) :- !,

right_associate(A, A1),

right_associate(B, B1).

right_associate(A, A).
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Get the clauses (1)

Getting the clauses is now easy: we first skolemize the
original formula, and then we just have to remove the
universal quantifiers in front, put the result into CNF, and
create for each conjunct C a list whose members are the
disjuncts in C.

We can get a simplified (and logically equivalent) set of
clauses by:

removing duplicates;

deleting any clause that contains an atom and its
negation, since such a clause is obviously valid.

We can also sort the literals in a clause.

We are going to uses clauses in such a way that it is better
to represent variables by upper case letters rather than
lower case letters.
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Get the clauses (2)

Note that it was much cleaner to represent variables by
lower case letters so far, otherwise our code would have
made a much heavier use of metalogical operators (still we
used the metalogical operator =.. ).

We cannot just substitute our variables x1 , x2 , x3 by X1,
X2, X3 or A, B, C, because if we do that then X1, X2, X3 or
A, B, C will be automatically translated into anonymous
variables, and output as such:

?- instance(x1,A,p(x1,x2),R).

A = _G161
R = p(_G161, x2)

Of course we would prefer p(_G161, x2) to p(A, x2) as
an output.
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Get the clauses (3)

Even worse, we will not be able to replace distinct lower
case letters by distinct upper case letters:

?- instance(x1,A,p(x1,x2),I1), instance(x2,B,I1,I2).

A = x2

I1 = p(x2, x2)

B = _G166

I2 = p(_G166, _G166)

The solution is to use numbervars/3 : this built-in enables
to create terms that are internally represented as
’$VAR’(I) where I is unified with a natural number, and
printed out as upper case letters.
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Get the clauses (4)

?- numbervars([X,Y,Z],0,L).

X = A
Y = B
Z = C
L = 3

?- numbervars([X,Y,Z,V,W],3,L).

X = D
Y = E
Z = F
V = G
W = H
L = 8
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Get the clauses (5)

?- numbervars(X,0,_), var(X).

No

?- numbervars(X,0,_), compound(X).

X = A

?- numbervars(X,0,_), X = ’$VAR’(I).

X = A
I = 0
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Get the clauses (6)

The code to get the clauses from the universal formula
obtained from the original formula by skolemization is then:

clauses(UniversalFormula, Clauses) :-

clauses(UniversalFormula, [], [], Clauses).

clauses(forall X sep Form, LowerVars, UpperVars, Clauses) :- !,

clauses(Form, [X| LowerVars], [_| UpperVars], Clauses).

clauses(Form, LowerVars, UpperVars, Clauses) :-

numbervars(UpperVars, 0, _),

change_variables(LowerVars, UpperVars, Form, Form1),

cnf(Form1, CNFForm),

cnf_to_clausal(CNFForm, Clauses).

change_variables([LowerX| LowerVars], [UpperX| UpperVa rs], Form, Form2) :-

instance(LowerX, UpperX, Form, Form1),

change_variables(LowerVars, UpperVars, Form1, Form2).

change_variables([], [], Form, Form).
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Get the clauses (7)

cnf_to_clausal(Disjuncts and ConjunctsOfDisjuncts, Cla uses) :- !,

cnf_to_clausal(Disjuncts, FirstClause),

cnf_to_clausal(ConjunctsOfDisjuncts, OtherClauses),

append(FirstClause, OtherClauses, Clauses).

cnf_to_clausal(Disjuncts, Clause) :-

disjunction_to_list(Disjuncts, List),

sort(List, Set), % Remove duplicates and sort

( member(Atom, Set), % Replace clause containing

member(neg Atom, Set), !, % an atom and its negation

Clause = [] % by the empty clause

; Clause = [Set]

).

disjunction_to_list(Atom or Disjuncts, [Atom| Atoms]) :- !,

disjunction_to_list(Disjuncts, Atoms).

disjunction_to_list(Atom, [Atom]).
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Examples (1)

The file to_clauses_tests.pl enables to test the code
we have developed.

For each test we print out:

the original formula ϕ;

a formula ψ in prenex form equivalent to ϕ;

a skolemization ξ of ψ;

a set of clauses equivalent to the matrix of ξ.
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Examples (2)

?- t1.

forall x: (p(x) -> q(x)) -> forall x: p(x) -> forall x: q(x)

exists x1: exists x2: forall x3: ((p(x1) -> q(x1)) -> p(x2) -> q(x3))

forall x3: ((p(f1) -> q(f1)) -> p(f2) -> q(x3))

[˜p(f2), p(f1), q(A)]

[˜p(f2), ˜q(f1), q(A)]

?- t2.

exists x: forall y: p(x,y) -> forall y: exists x: p(x,y)

forall x1: exists x2: forall x3: exists x4: (p(x1,x2) -> p(x4 ,x3))

forall x1: forall x3: (p(x1,f1(x1)) -> p(f2(x3,x1),x3))

[˜p(B,f1(B)), p(f2(A,B),A)]
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