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Example

Suppose that the vocabulary contains two constants tom
and ann and no other function symbol. A nice interpretation
would just have two elements; one would interpret tom, the
other would interpret ann.

Suppose that the only function symbols of the vocabulary
are a constant ¢ and a unary function symbol s. A nice
interpretation would have infinitely many elements. Every
element would be interpret a unique term of the form
/—ZLH .

s(...s(a)...), abbreviated as s™(a). For example, we can
choose a structure 9t with |99t| = N and decide that for all
n € N, n interprets s"(a).

We will define a class of nice interpretations called
Herbrand interpretations.
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Namesfor individuals

We know that an interpretation over a vocabulary has a
domain, or a set of individuals. Some of these individuals
have no name, i.e., interpret no closed term.

For instance, consider a vocabulary with a unary predicate
symbol p as only nonlogical symbol. There are many
models of Vx p(x). There are models of Vx p(z) of cardinality
n for all n > 0. There are infinite models of vz p(z).

All the models of Yz p(x) have the particularity that their
members have no name: there are no closed terms over
the vocabulary.

Nice interpretations have the property that each of their
individuals interprets a unique closed term.
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Nice interpretations

If the vocabulary contains n constants and no function
symbol of nonnull arity, then all nice interpretations have n
elements.

If the vocabulary contains a constant and a function symbol
whose arity is nonnull, then all nice interpretations are
infinite.

If the vocabulary contains no constant, then there is no nice

interpretation over the vocabulary, even if the vocabulary
contains function symbols of nonnull arity.

Suppose that the vocabulary consists of a constant a, a
unary function symbol s, and a unary predicate p. Then
P = {3z p(x), pla), Ve (-p(x) — —p(s(x))}. Then P is
satisfiable, but has no nice interpretation.
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Her brand univer se and base

Consider a vocabulary containing at least one constant.

The set U of all closed terms over the vocabulary is called
the Herbrand universe.

The set B of all closed atomic formulas is called the
Herbrand base.

We also talk about Herbrand universe and base for a set of
formulas P containing at least one constant: in that case,
the (nonlogical part) of the vocabulary is defined as the set
of nonlogical symbols occurring in P. We will use the
notation Up and Bp, respectively.
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Herbrand interpretations (1)

Herbrand interpretations could be defined as interpretations
M all of whose individuals have a unique name. But if |9
("M’s domain) is in one-to-one correspondence with the set
of closed terms, we can just assume that 9] is the set of
closed terms. Moreover, we assume that all closed terms
are interpreted canonically. Formally:

Given a set of formulas P, a Herbrand interpretation of P is
an interpretation 9t over the language of P such that:

® M=

® For every n-ary function symbol f occurring in P, f™ is
such that for all a4, ..., a, € |9,

fm(al, coyap) = fla, ..., ap).
In particular, for all constants ¢ occurring in P, ¢™ = c.
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Examples

Consider the set of formulas P:
odd(s(0)).
Vx(odd(x)—odd(s(s(x)))).

Then Up = {0, (0 ),5(3(0)) s(s(s(0))),...} and
Bp = {0dd(0), 0dd(s(0)), 0dd(s(5(0))), 0dd(s(s(s(0))), . .-}.

Consider the set of formulas P:
owns(owner(corvette), corvette).
Vx(owns(x, corvette) —happy(x)).

Then
Up = {corvette, owner(corvette), owner(owner(corvette)), ...}
and Bp = {owns(s,t) |s,t € Up} U {happy(s) |s € Up}.
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Herbrand interpretations (2)

Note that if p is an n-ary predicate symbol occurring in P,
then p™ is a subset of U,

Suppose that the only predicate symbol in P is p/1. Then it
is natural to identify a Herbrand interpretation with a subset
of the Herbrand universe.

More generally, a Herbrand interpretation can be identified
with a set of labelled n-tuples over the Herbrand universe,
where the label is a predicate symbol of arity n.

It is then natural to consider the intersection of two
Herbrand interpretations, or their union, etc.
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Example

Consider again the set of formulas P:
odd(s(0)).
Vx(odd(x)—odd(s(s(x)))).

Possible Herbrand interpretations are:

» My = 0.

M = {odd(s(0))}

M3 = {odd(s(0)), odd(s(s(0)))}

My = {odd(s"(0)) |n € {1,3,5,...}}

M5 = Bp.

Obviously, only :t, and 95 are models of P.

o
o
o
o
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Proof (1)

Let set of clauses P be satisfiable. Choose a model 97t of P.

Let 91 be the Herbrand interpretation identified with
{F € Bp |9 = F}. We show that 91 |- P.

Suppose for a contradiction that 9t is not a model of P.
Choose a clause C' € P such that 9t [~ C.

C'is of the form Ly Vv ... Vv L, where for all i < n, L; is atomic
or the negation of an atomic formula. Assume for instance
that C' = p(z,y) V ~q(z) V —p(y, 2) V r(z, 2).

Then 91 j= C' means that
N | FxTy3z(—p(z, y) A g(x) Ap(y, 2) A —r(z, 2)).

Hence we can find a, b, ¢ € |91| such that
N = —p(a,b) A q(@) Ap(b,e) A —r(a,e).
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Herbrand models

Given a set P of formulas, a Herbrand model of P is by
definition a Herbrand interpretation that is a model of P.

We have seen that some sets of formulas have a model
(are satisfiable), but have no Herbrand model.

Thanks to Skolemization, we know how to transform a
formula ¢ into a set X of clauses such that ¢ is satisfiable iff
X is satisfiable. With that in mind, we give the following
result.

Proposition: Every satisfiable set of clauses has a Herbrand
model.

Less formally, every set of clauses has a ‘nice’ model, all of
whose individuals have a unique name.

Proof (2)

Lecture notes 20.0, COMP 2411, session 1,2004 —p. 10

But 91 is a Herbrand interpretation, hence a1, as, ag have
names—respectively some closed terms ¢y, to, t3—and

N = —p(t1, t2) Aq(ty) Ap(te, ts) A —r(ty, ts).

Note that p(t1,t2), q(t1), p(ta, t3) and r(t1,t3) are all
members of Bp.

By the definition of 9, it follows that
M = —p(tr,t2) Aq(ta) Ap(ta,ts) A —r(ti,ts).

Hence M (= VaVyVz(p(x,y) V ~q(x) V —p(y, 2) V r(z, 2)).
Hence 90t [~ C. Contradiction.

The reasoning we did using this particular clause can be
applied mutatis mutandis to an arbitrary clause, which
completes the proof of the proposition.
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Corollary

Corollary: Let ¢ be a formula and let X be a set of clauses
obtained from —¢ by Skolemization. Then ¢ is valid iff X
has no Herbrand model.

This is good news for two reasons:
#® We have fewer structures to deal with.

# Herbrand interpretations look nicer than interpretations
that are not Herbrand. So the task of proving that ¢ is
valid should be easier working from X than working
from . we indeed only have to derive a contradiction
from closed instances of members of X.

Still generating all closed instances of a set of clauses
would be inefficient. In order to get a more efficient proof
procedure, we need to introduce the notion of substitution
and then of unifier.
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Domain and range

The empty substitution is denoted e.

The domain of a substitution 4, i.e., the set of variables on
which 6 is defined, is denoted Dom(f). Hence
DOm({Xo/to, e ,Xn/tn}) = {)(07 Ce ,Xn}.

The range of a substitution 0 = { Xy /to, ..., X, /tn} IS
defined here as the set of all variables that occur in some of
the terms tg, ..., t,. It is denoted Range(6).

For instance, Range({X/f(Z),Y /g(a,X)}) ={Z, X }.

(Note that the previous definition is not standard; for the
standard definition, the range of 0 = { Xy /to,..., X, /tn}iS

{to,...,tn}.)
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Substitutions

In this part we use upper-case letters to represent variables
and easily distinguish them from constants.

A substitution (for a vocabulary V) is a mapping from a finite
set of variables to the set of terms over V.

Let distinct variables X, ..., X,, and terms tg, ..., t, be such
that t; # X, for all i < n. The substitution that maps Xj; to ¢;
for all i < n is represented as {Xy/to, ..., Xn/tn}-

The conditions that Xy, ..., X,, are pairwise distinct and that
t; # X, for all i < n guarantee that is no inconsistency,
redundancy, or empty information in the notation

{Xo/to, ..., Xn/tn}.

Lecture notes 20.0, COMP 2411, session 1,2004 - p. 14

Application

Consider a substitution 6 = { Xy /to, ..., X, /t,}. Let E be a
term or a formula without quantifiers. The application of 6 to
E, denoted E9, is the sequence of symbols obtained from £
by replacing simultaneously every occurrence of X; by ¢;,
for all i <n.

Note that £0 is a term if £ is a term, and that E§ is a
formula if £ is a formula.

Note that in particular, X6 =t if X/t € 0, and X0 = X
otherwise.

We call Ef an instance of E (w.r.t. 6).

Note that every term is an instance of itself w.r.t. e.
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Examples

Note that for ¢ = {Xy/to, ..., Xn/tn}, E0 is just another
notation for what we have denoted by Efty/ Xo,. .., tn/Xn].

F(X),9(A,Y), h(A, X, Z)RX/f(f(Y), U/ f(a)} =
FU)).9(AY ). (A, F(F(Y)). 2))

(

(

p(X)Vr(X,Z)Vq(X,Y, Z){X/a,Y/b} =

pla) vV r(a,Z)Vq(a,b, Z)

(f(X,2), fY,a){X/a,Y/Z,W/b} = p(f(a, Z), f(Z,a))
(X, Y){X/f(Y), Y/b} = p(f(Y),D)

(X

Y ZRX/ (YY), Y/ a} = p(f(Y),a, Z)

®p

o

p
®p
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Composition (2)

Let 0 = {Xo/s0,..., Xm/sm} and o = {Yy/to,..., Y, /tn} be
two substitutions.

Xo, ..., X,, are pairwise distinct, Yy, ...,Y,, are pairwise
distinct, but some X; might be equal to some Y for some
i<mandj<n.

It can be verified that o can be obtained as follows.

» First, write down {Xo/so0, ..., Xm/smo, Yo/to, ..., Yn/tn}

» Thenremove all Y;/t; such thatY; € {Xo,..., X}, for
Jj<n.

# Then remove all X;/s;o such that X; = s;o, fori < m.

Lecture notes 20.0, COMP 2411, session 1, 2004 - p. 19

Composition (1)

Given two substitutions ¢ and o, the composition of 6 and o,
i.e., the function o o 0, is denoted 6o.

The notation makes sense since the argument of o o 6 is on
the right hand side, whereas the argument of fo is on the
left hand side: for all X € Domain(c 00), (0 060)(X) = X (00).

For example:

® {X/f(2),Y/9(a, X)}{Z/g(X,0),U/f(c)} =
{X/f(9(X,0)),Y/g(a, X), Z/9(X,b), U/ f(c)}
» {X/[(2),Y/WH{X/a,Z[a, W[Y'} = {X/[(a), Z/a, W]Y'}
(
(

® {X/f(X),Y/g(a,T), Z/b}{X/a,Y /b, V/X} =
{X/f(a),Y/g(a,T), Z/b,V/X}
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Properties of substitutions (1)

A substitution 6 is said to be idempotent iff 8 = 0. So given
a term or a formula without quantifiers, say F, applying 6 to
E once or many times has the same effect on E.

It is immediately verified that a substitution ¢ is idempotent
iff Dom(#) and Range(8) are disjoint.

Also, substitutions satisfy all the properties of mappings in
general:

# Associativity: 0(or) = (6o)T

# The empty substitution ¢ is a neutral element:
€0 =0c=0.
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Properties of substitutions (2)

But in general substitutions do not satisfy the commutativity
property: o can be different from 6o, as shown by the
following example.

{X/f(Y){Y/a} = {X/f(a),Y/a} #
{Y/a {X/f(YV)} = {Y/a, X/ F(Y)}-

Also, substitutions usually do not have an inverse: given a
substitution 6, there is usually no substitution ¢ such that
fo = e.

In particular, whenever ¢ contains an element of the form
X/t where t is not a variable, # does not have an inverse.
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