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Names for individuals

We know that an interpretation over a vocabulary has a
domain, or a set of individuals. Some of these individuals
have no name, i.e., interpret no closed term.

For instance, consider a vocabulary with a unary predicate
symbol p as only nonlogical symbol. There are many
models of ∀x p(x). There are models of ∀x p(x) of cardinality
n for all n > 0. There are infinite models of ∀x p(x).

All the models of ∀x p(x) have the particularity that their
members have no name: there are no closed terms over
the vocabulary.

Nice interpretations have the property that each of their
individuals interprets a unique closed term.
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Example

Suppose that the vocabulary contains two constants tom
and ann and no other function symbol. A nice interpretation
would just have two elements; one would interpret tom, the
other would interpret ann.

Suppose that the only function symbols of the vocabulary
are a constant a and a unary function symbol s. A nice
interpretation would have infinitely many elements. Every
element would be interpret a unique term of the form

n
︷ ︸︸ ︷

s(. . . s( a) . . .), abbreviated as sn(a). For example, we can
choose a structure M with |M| = N and decide that for all
n ∈ N, n interprets sn(a).

We will define a class of nice interpretations called
Herbrand interpretations.
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Nice interpretations

If the vocabulary contains n constants and no function
symbol of nonnull arity, then all nice interpretations have n
elements.

If the vocabulary contains a constant and a function symbol
whose arity is nonnull, then all nice interpretations are
infinite.

If the vocabulary contains no constant, then there is no nice
interpretation over the vocabulary, even if the vocabulary
contains function symbols of nonnull arity.

Suppose that the vocabulary consists of a constant a, a
unary function symbol s, and a unary predicate p. Then
P = {∃x p(x),¬p(a),∀x(¬p(x) → ¬p(s(x))}. Then P is
satisfiable, but has no nice interpretation.

Lecture notes 20.0, COMP 2411, session 1, 2004 – p. 4



Herbrand universe and base

Consider a vocabulary containing at least one constant.

The set U of all closed terms over the vocabulary is called
the Herbrand universe.

The set B of all closed atomic formulas is called the
Herbrand base.

We also talk about Herbrand universe and base for a set of
formulas P containing at least one constant: in that case,
the (nonlogical part) of the vocabulary is defined as the set
of nonlogical symbols occurring in P . We will use the
notation UP and BP , respectively.
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Examples

Consider the set of formulas P :
odd(s(0)).
∀x(odd(x)→odd(s(s(x)))).

Then UP = {0, s(0), s(s(0)), s(s(s(0))), . . .} and
BP = {odd(0), odd(s(0)), odd(s(s(0))), odd(s(s(s(0)))), . . .}.

Consider the set of formulas P :
owns(owner(corvette), corvette).
∀x(owns(x, corvette)→happy(x)).

Then
UP = {corvette, owner(corvette), owner(owner(corvette)), . . .}
and BP = {owns(s, t) | s, t ∈ UP} ∪ {happy(s) | s ∈ UP}.
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Herbrand interpretations (1)

Herbrand interpretations could be defined as interpretations
M all of whose individuals have a unique name. But if |M|
(M’s domain) is in one-to-one correspondence with the set
of closed terms, we can just assume that |M| is the set of
closed terms. Moreover, we assume that all closed terms
are interpreted canonically. Formally:

Given a set of formulas P , a Herbrand interpretation of P is
an interpretation M over the language of P such that:

|M| = UP .

For every n-ary function symbol f occurring in P , fM is
such that for all a1, . . . , an ∈ |M|,
fM(a1, . . . , an) = f(a1, . . . , an).

In particular, for all constants c occurring in P , cM = c.
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Herbrand interpretations (2)

Note that if p is an n-ary predicate symbol occurring in P ,
then pM is a subset of Un

P .

Suppose that the only predicate symbol in P is p/1. Then it
is natural to identify a Herbrand interpretation with a subset
of the Herbrand universe.

More generally, a Herbrand interpretation can be identified
with a set of labelled n-tuples over the Herbrand universe,
where the label is a predicate symbol of arity n.

It is then natural to consider the intersection of two
Herbrand interpretations, or their union, etc.
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Example

Consider again the set of formulas P :
odd(s(0)).
∀x(odd(x)→odd(s(s(x)))).

Possible Herbrand interpretations are:

M1 = ∅.

M2 = {odd(s(0))}.

M3 = {odd(s(0)), odd(s(s(0)))}.

M4 = {odd(sn(0)) |n ∈ {1, 3, 5, . . .}}

M5 = BP .

Obviously, only M4 and M5 are models of P .
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Herbrand models

Given a set P of formulas, a Herbrand model of P is by
definition a Herbrand interpretation that is a model of P .

We have seen that some sets of formulas have a model
(are satisfiable), but have no Herbrand model.

Thanks to Skolemization, we know how to transform a
formula ϕ into a set X of clauses such that ϕ is satisfiable iff
X is satisfiable. With that in mind, we give the following
result.

Proposition: Every satisfiable set of clauses has a Herbrand
model.

Less formally, every set of clauses has a ‘nice’ model, all of
whose individuals have a unique name.
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Proof (1)

Let set of clauses P be satisfiable. Choose a model M of P .

Let N be the Herbrand interpretation identified with
{F ∈ BP |M |= F}. We show that N |= P .

Suppose for a contradiction that N is not a model of P .
Choose a clause C ∈ P such that N 6|= C.

C is of the form L0 ∨ . . . ∨ Ln where for all i ≤ n, Li is atomic
or the negation of an atomic formula. Assume for instance
that C = p(x, y) ∨ ¬q(x) ∨ ¬p(y, z) ∨ r(x, z).

Then N 6|= C means that
N |= ∃x∃y∃z(¬p(x, y) ∧ q(x) ∧ p(y, z) ∧ ¬r(x, z)).

Hence we can find a, b, c ∈ |N| such that
N |= ¬p(ā, b̄) ∧ q(ā) ∧ p(b̄, c̄) ∧ ¬r(ā, c̄).

Lecture notes 20.0, COMP 2411, session 1, 2004 – p. 11

Proof (2)

But N is a Herbrand interpretation, hence a1, a2, a3 have
names—respectively some closed terms t1, t2, t3—and
N |= ¬p(t1, t2) ∧ q(t1) ∧ p(t2, t3) ∧ ¬r(t1, t3).

Note that p(t1, t2), q(t1), p(t2, t3) and r(t1, t3) are all
members of BP .

By the definition of N, it follows that
M |= ¬p(t1, t2) ∧ q(t1) ∧ p(t2, t3) ∧ ¬r(t1, t3).

Hence M 6|= ∀x∀y∀z(p(x, y) ∨ ¬q(x) ∨ ¬p(y, z) ∨ r(x, z)).

Hence M 6|= C. Contradiction.

The reasoning we did using this particular clause can be
applied mutatis mutandis to an arbitrary clause, which
completes the proof of the proposition.
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Corollary

Corollary: Let ϕ be a formula and let X be a set of clauses
obtained from ¬ϕ by Skolemization. Then ϕ is valid iff X
has no Herbrand model.

This is good news for two reasons:

We have fewer structures to deal with.

Herbrand interpretations look nicer than interpretations
that are not Herbrand. So the task of proving that ϕ is
valid should be easier working from X than working
from ϕ: we indeed only have to derive a contradiction
from closed instances of members of X.

Still generating all closed instances of a set of clauses
would be inefficient. In order to get a more efficient proof
procedure, we need to introduce the notion of substitution
and then of unifier.
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Substitutions

In this part we use upper-case letters to represent variables
and easily distinguish them from constants.

A substitution (for a vocabulary V) is a mapping from a finite
set of variables to the set of terms over V.
Let distinct variables X0, . . . , Xn and terms t0, . . . , tn be such
that ti 6= Xi for all i ≤ n. The substitution that maps Xi to ti
for all i ≤ n is represented as {X0/t0, . . . , Xn/tn}.

The conditions that X0, . . . , Xn are pairwise distinct and that
ti 6= Xi for all i ≤ n guarantee that is no inconsistency,
redundancy, or empty information in the notation
{X0/t0, . . . , Xn/tn}.
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Domain and range

The empty substitution is denoted ǫ.

The domain of a substitution θ, i.e., the set of variables on
which θ is defined, is denoted Dom(θ). Hence
Dom({X0/t0, . . . , Xn/tn}) = {X0, . . . , Xn}.

The range of a substitution θ = {X0/t0, . . . , Xn/tn} is
defined here as the set of all variables that occur in some of
the terms t0, . . . , tn. It is denoted Range(θ).

For instance, Range({X /f (Z ),Y /g(a,X )}) = {Z ,X }.

(Note that the previous definition is not standard; for the
standard definition, the range of θ = {X0/t0, . . . , Xn/tn} is
{t0, . . . , tn}.)
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Application

Consider a substitution θ = {X0/t0, . . . , Xn/tn}. Let E be a
term or a formula without quantifiers. The application of θ to
E, denoted Eθ, is the sequence of symbols obtained from E
by replacing simultaneously every occurrence of Xi by ti,
for all i ≤ n.

Note that Eθ is a term if E is a term, and that Eθ is a
formula if E is a formula.

Note that in particular, Xθ = t if X/t ∈ θ, and Xθ = X
otherwise.

We call Eθ an instance of E (w.r.t. θ).

Note that every term is an instance of itself w.r.t. ǫ.
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Examples

Note that for θ = {X0/t0, . . . , Xn/tn}, Eθ is just another
notation for what we have denoted by E[t0/X0, . . . , tn/Xn].

p(f(X), g(A, Y ), h(A,X,Z)){X/f(f(Y )), U/f(a)} =
p(f(f(f(Y ))), g(A, Y ), h(A, f(f(Y )), Z))

p(X) ∨ r(X,Z) ∨ q(X,Y, Z){X/a, Y/b} =
p(a) ∨ r(a, Z) ∨ q(a, b, Z)

p(f(X,Z), f(Y, a)){X/a, Y/Z,W/b} = p(f(a, Z), f(Z, a))

p(X,Y ){X/f(Y ), Y/b} = p(f(Y ), b)

p(X,Y, Z){X/f(Y ), Y/a} = p(f(Y ), a, Z)
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Composition (1)

Given two substitutions θ and σ, the composition of θ and σ,
i.e., the function σ ◦ θ, is denoted θσ.

The notation makes sense since the argument of σ ◦ θ is on
the right hand side, whereas the argument of θσ is on the
left hand side: for all X ∈ Domain(σ ◦ θ), (σ ◦ θ)(X) = X(θσ).

For example:

{X/f(Z), Y/g(a,X)}{Z/g(X, b), U/f(c)} =
{X/f(g(X, b)), Y/g(a,X), Z/g(X, b), U/f(c)}

{X/f(Z), Y/W}{X/a,Z/a,W/Y } = {X/f(a), Z/a,W/Y }

{X/f(X), Y/g(a, T ), Z/b}{X/a, Y/b, V/X} =
{X/f(a), Y/g(a, T ), Z/b, V/X}
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Composition (2)

Let θ = {X0/s0, . . . , Xm/sm} and σ = {Y0/t0, . . . , Yn/tn} be
two substitutions.

X0, . . . , Xm are pairwise distinct, Y0, . . . , Yn are pairwise
distinct, but some Xi might be equal to some Yj for some
i ≤ m and j ≤ n.

It can be verified that θσ can be obtained as follows.

First, write down {X0/s0σ, . . . ,Xm/smσ, Y0/t0, . . . , Yn/tn}

Then remove all Yj/tj such that Yj ∈ {X0, . . . , Xm}, for
j ≤ n.

Then remove all Xi/siσ such that Xi = siσ, for i ≤ m.
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Properties of substitutions (1)

A substitution θ is said to be idempotent iff θ = θθ. So given
a term or a formula without quantifiers, say E, applying θ to
E once or many times has the same effect on E.

It is immediately verified that a substitution θ is idempotent
iff Dom(θ) and Range(θ) are disjoint.

Also, substitutions satisfy all the properties of mappings in
general:

Associativity: θ(στ) = (θσ)τ

The empty substitution ǫ is a neutral element:
ǫθ = θǫ = θ.
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Properties of substitutions (2)

But in general substitutions do not satisfy the commutativity
property: σθ can be different from θσ, as shown by the
following example.

{X/f(Y )}{Y/a} = {X/f(a), Y/a} 6=
{Y/a}{X/f(Y )} = {Y/a,X/f(Y )}.

Also, substitutions usually do not have an inverse: given a
substitution θ, there is usually no substitution σ such that
θσ = ǫ.
In particular, whenever θ contains an element of the form
X/t where t is not a variable, θ does not have an inverse.
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