
Lecture notes 3.0

Running SWI-Prolog
Creating truth tables

COMP 2411, session 1, 2004

Lecture notes 3.0, COMP 2411, session 1, 2004 – p. 1

Loading the database (1)

The "swipl " command start SWI-Prolog.

A Prolog program consists of clauses, which can be either
facts or rules.

"person(socrates). " and "person(shane,warne). "
are facts, while "mortal(X) :- person(X). " is a rule.

Clauses can be entered into the database directly from the
keyboard:

?- consult(user). or ?- [user].
|: person(socrates).
|: person(shane,warne).
|: mortal(X) :- person(X).

followed by "Cntrl C" and "a" (for abort).
Lecture notes 3.0, COMP 2411, session 1, 2004 – p. 2

Loading the database (2)

Suppose the previous three clauses are stored in the file
˜/Programs/Prolog/plato.pl .

If you are in ˜/Programs/Prolog/ , here are two ways to
load plato.pl into the database:

?- consult(’plato.pl’).
?- [’plato.pl’].

If you are in your home directory, here are two ways to load
˜/Programs/Prolog/plato.pl into the database:

?- consult(’Programs/Prolog/plato.pl’).
?- [’Programs/Prolog/plato.pl’].

Lecture notes 3.0, COMP 2411, session 1, 2004 – p. 3

Loading the database (3)

You can omit the .pl extension.

Quotes are useless in case the argument contains no
special character (dots, slashes, etc.) and directory names
do not start with an uppercase letter.

For instance, if you are in ˜/Programs/Prolog/ , here are
two other ways to load plato.pl into the database:

?- consult(plato).
?- [plato].

And of course, you can use absolute path names instead of
relative path names.

Lecture notes 3.0, COMP 2411, session 1, 2004 – p. 4



Listing the database (1)

You can type "listing. " to list the content of the
database, but the output then includes the built-in
predicates that have been automatically loaded.

It is often more useful to list only specific user-defined
predicates, of any arity:

?- listing(person).

person(socrates).

person(shane, warne).

or of a specific arity:

?- listing(person/2).

person(shane, warne).

Lecture notes 3.0, COMP 2411, session 1, 2004 – p. 5

Listing the database (2)

You can also list rules:

?- listing(mortal).

mortal(A) :-
person(A).

The fact "person(socrates). " is built from the unary
predicate person .

The fact "person(shane,warne). " is built from the binary
predicate person .

The rule "mortal(X) :- person(X). " is built from the
unary predicate mortal .

Facts and rules can be built from the same predicate.

Lecture notes 3.0, COMP 2411, session 1, 2004 – p. 6

Queries (1)

After the program has been loaded, you usually want to ask
queries:

?- mortal(socrates).

Yes
?- mortal(warne).

No

If you hit carriage return before the query is complete (for
instance, you might forget to type the final dot), continue
typing on the next line:

?- mortal(warne)
| .

No

Lecture notes 3.0, COMP 2411, session 1, 2004 – p. 7

Queries (2)

A query can contains variables:

?- mortal(X).

X = socrates �

If you are happy with the solution, hit carriage return:

X = socrates

Yes

If you want alternative solutions, type a semi-colon:

X = socrates ;

No

No should be interpreted as no more solutions.
Lecture notes 3.0, COMP 2411, session 1, 2004 – p. 8



Modifying the database (1)

We can modify the database from the keyboard:

?- [user].
|: person(warne).
Warning: (user://1:14):

Redefined static procedure person/1

Type "Cntrl C" and "a". Observe the changes:

?- listing(person).

person(warne).

person(shane, warne).
Yes
?- mortal(X).

X = warne ;

No
Lecture notes 3.0, COMP 2411, session 1, 2004 – p. 9

Modifying the database (2)

If plato.pl was loaded into the database, modifying the
database from the keyboard does not modify plato.pl .

Assuming that the database was loaded with plato.pl , if
you edit plato.pl and add "person(warne) ", typing
"make." will update the database. Observe the changes:

?- listing(person).

person(socrates).
person(warne).

person(shane, warne).

Yes
?- mortal(X).

X = socrates ;

X = warne ;

No
Lecture notes 3.0, COMP 2411, session 1, 2004 – p. 10

Modifying the database (3)

More generally, you type "make. " to update the database
with the latest version of the files that have been loaded into
the database.

Every time you update the database, either from the
keyboard, or by typing "make. ", or "consult(...). ", or
"[...]. ", you redefine all predicates that were already
defined in the database: the new clauses that are built from
a given predicate replace the clauses in the database that
are built from the same predicate.

consult is the equivalent of reconsult in most other
implementations of Prolog. (reconsult is not an
SWI-Prolog built-in.)

Lecture notes 3.0, COMP 2411, session 1, 2004 – p. 11

Built-in editor

You can use the built-in editor by typing "emacs.". Navigate
in the editor in order to find and load your file.

You can also edit plato.pl by typing "edit(plato). "
(change "plato " by the full path name if your are not in the
right directory), provided that you create a .plrc file in
your home directory, edit it and write:

:- set prolog flag(editor,pce emacs).

Lecture notes 3.0, COMP 2411, session 1, 2004 – p. 12



Directories for Propositional logic

Create the following directories:

Propositional/Basis

Propositional/Evaluations

Propositional/Tests

Propositional/Transformations

Lecture notes 3.0, COMP 2411, session 1, 2004 – p. 13

Programs for truth tables

From the course’s web site, download the following files, to
copy in the following directories:

In Propositional/Basis :
external_operators.pl ,
internal_operators.pl , translations.pl , and
truth_tables.pl .

In Propositional/Evaluations ,
truth_table.pl

In Propositional/Tests ,
truth_table_tests.pl

Lecture notes 3.0, COMP 2411, session 1, 2004 – p. 14

Computing truth tables

In Propositional/Tests , run swipl , load
truth_table_tests.pl and test queries t1 to t11 .

?- [truth_table_tests].

?- t1.
p -> r p r value

t t t
t f f
f t t
f f t

Yes

Lecture notes 3.0, COMP 2411, session 1, 2004 – p. 15


	Loading the database (1)
	Loading the database (2)
	Loading the database (3)
	Listing the database (1)
	Listing the database (2)
	Queries (1)
	Queries (2)
	Modifying the database (1)
	Modifying the database (2)
	Modifying the database (3)
	Built-in editor
	Directories for Propositional logic
	Programs for truth tables
	Computing truth tables

