Lecture notes 6.0

Semantic tableaux

COMP 2411, session 1, 2004

Lecture notes 6.0, COMP 2411, session 1, 2004 - p. 1

Principle (1)

The basic idea behind the method is: try and find a model of φ in a systematic way, by breaking down formulas into smaller formulas, until we are left with nothing but atomic formulas and/or negations of atomic formulas.

Definition: A literal is an atomic formula or the negation of an atomic formula.

We can easily infer whether a set S of literals has a model or not:

- either S contains an atom and its negation (e.g., $S = \{p, q, \neg r, \neg q\}$), in which case S has no model,
- or S never contains an atom and its negation (e.g., $S = \{p, q, \neg r, \neg s\}$), in which case S has a model.

Introduction

To check whether a formula φ is valid, we can build a truth table for φ .

This is however a very inefficient method since the number of rows is exponential in the number of atomic formulas in φ .

Moreover, the truth table method has no counterpart in the predicate calculus.

The method of semantic tableaux is a proof procedure that is:

- easy to understand;
- efficient in many cases;
- can be generalized to the predicate calculus.

Lecture notes 6.0. COMP 2411, session 1, 2004 - p. 2

Principle (2)

When we break down a formula φ into smaller formulas, two cases can happen.

- Case 1: to make φ true, we have to make two smaller formulas φ_1 and φ_2 true. For instance, to make $(p \vee \neg q) \wedge (q \to s)$ true, we have to make $p \vee \neg q$ true and we have to make $q \to s$ true.
- **●** Case 2: to make φ true, we have to make at least one of two smaller formulas φ_1 and φ_2 true. For instance, to make $(p \lor \neg q) \lor (q \to s)$ true, we can make $p \lor \neg q$ true or we can make $q \to s$ true.

The algorithm has two kinds of rules: α -rules for the first case, and β -rules for the second case.

Lecture notes 6.0, COMP 2411, session 1, 2004 - p. 3

Lecture notes 6.0, COMP 2411, session 1, 2004 - p. 4

Example 1

Suppose that we want to make $\varphi = (p \lor q) \land (\neg p \land \neg q)$ true. Then we have to make both $p \lor q$ and $\neg p \land \neg q$ true.

To make $p \lor q$ true, we can either make p true or make q true. Hence to make φ true, we can either:

- make p and $\neg p \land \neg q$ true, or
- \blacksquare make q and $\neg p \land \neg q$ true.

Now to make $\neg p \land \neg q$ true, we have to make both $\neg p$ and $\neg q$ true. Hence to make φ true, we can either:

- \blacksquare make p, $\neg p$ and $\neg q$ true, or
- ullet make q, $\neg p$ and $\neg q$ true.

Since neither $\{p, \neg p, \neg q\}$ nor $\{q, \neg p, \neg q\}$ has a model, we conclude that φ has no model.

Lecture notes 6.0, COMP 2411, session 1, 2004 - p. 5

Tree representation

The tableau construction can be represented by a labeled tree where:

- the root is labeled with the initial formula φ ;
- each internal node has one child or two children, depending on whether an α -rule or a β -rule is applied;
- each node different from the root is labeled with a sequence of formulas;
- each formula in the sequence of formulas that label the leaf is a literal.

A branch is marked as \odot (open) if the literals that label its leaf have a model; it is marked as \times (closed) otherwise.

 φ has a model iff at least one branch is marked as open.

Example 2

Suppose that we want to make $\varphi=(p\vee q)\wedge (\neg p\wedge \neg s)$ true. Then we have to make both $p\vee q$ and $\neg p\wedge \neg s$ true.

To make $p \lor q$ true, we can either make p true or make q true. Hence to make φ true, we can either:

- \blacksquare make p and $\neg p \land \neg s$ true, or
- \blacksquare make q and $\neg p \land \neg s$ true.

Now to make $\neg p \land \neg s$ true, we have to make both $\neg p$ and $\neg s$ true. Hence to make φ true, we can either:

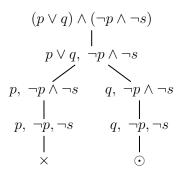
- \blacksquare make p, $\neg p$ and $\neg s$ true, or
- \blacksquare make q, $\neg p$ and $\neg s$ true.

Since $\{q, \neg p, \neg s\}$ does have a model, we conclude that φ has a model.

Lecture notes 6.0, COMP 2411, session 1, 2004 - p. 6

Example 1 again

Example 2 again



Lecture notes 6.0, COMP 2411, session 1, 2004 - p. 9

α -rules

α	α_1	α_2
$\neg \neg \varphi$	φ	
$\varphi_1 \wedge \varphi_2$	φ_1	φ_2
$\neg(\varphi_1\vee\varphi_2)$	$\neg \varphi_1$	$\neg \varphi_2$
$\neg(\varphi_1 \to \varphi_2)$	φ_1	$\neg \varphi_2$
$\neg(\varphi \uparrow \varphi_2)$	φ_1	$arphi_2$
$\varphi\downarrow\varphi_2$	$\neg \varphi_1$	$\neg \varphi_2$
$\varphi_1 \leftrightarrow \varphi_2$	$\varphi_1 \to \varphi_2$	$\varphi_2 \to \varphi_1$
$\neg(\varphi_1\odot\varphi_2)$	$\varphi_1 \to \varphi_2$	$\varphi_2 \to \varphi_1$

Nonuniqueness

It is usually possible to build different semantic tableaux for the same formula, by picking up different formulas in the sequences of formulas that label a node.

The following is an alternative (and better) tableau for the formula of Example 1.

Lecture notes 6.0, COMP 2411, session 1, 2004 - p. 10

β -rules

β	eta_1	eta_2
$\neg(\varphi_1 \land \varphi_2)$	$\neg \varphi_1$	$\neg \varphi_2$
$\varphi_1 \vee \varphi_2$	φ_1	$arphi_2$
$\varphi_1 \to \varphi_2$	$\neg \varphi_1$	$arphi_2$
$\varphi \uparrow \varphi_2$	$\neg \varphi_1$	$\neg \varphi_2$
$\neg(\varphi\downarrow\varphi_2)$	$arphi_1$	$arphi_2$
$\neg(\varphi_1 \leftrightarrow \varphi_2)$	$\neg(\varphi_1 \to \varphi_2)$	$\neg(\varphi_2 \to \varphi_1)$
$ eg arphi \odot arphi_2$	$\neg(\varphi_1 \to \varphi_2)$	$\neg(\varphi_2 \to \varphi_1)$

Lecture notes 6.0. COMP 2411, session 1, 2004 - p. 13

General construction (1)

To build a semantic tableau \mathcal{T} for a propositional formula φ , we start with a tree having just a root labeled with φ .

At each stage in the construction, we choose an unmarked leaf L labeled with a sequence of formulas $\varphi_1, \ldots, \varphi_n$.

- If $\{\varphi_1, \dots, \varphi_n\}$ is a set of literals that contains some atom and its negation, we extend T, giving a child to L(L becomes an internal node) labeled with \times .
- If $\{\varphi_1, \dots, \varphi_n\}$ is a set of literals that contains no atom together with its negation, we extend T, giving a child to L (L becomes an internal node) labeled with \odot .

...A longer example

... A longer example
$$p \to q \to r, \neg((p \to q) \to p \to r)$$

$$\neg q \to r, \neg((p \to q) \to p \to r)$$

$$\neg q, \neg((p \to q) \to p \to r)$$

$$p \to q, \neg(p \to r), \neg q$$

$$\neg p, \neg(p \to r), \neg q$$

$$p \to q, \neg(p \to r), r$$

$$\neg p, \neg(p \to r), \neg q$$

$$p \to q, \neg(p \to r), r$$

$$p, \neg r, \neg q, \neg p$$

$$p, \neg r, \neg q, q$$

$$p, \neg r, r, \neg p$$

$$p, \neg r, r, q$$

$$\downarrow \qquad \qquad \downarrow$$

$$x$$

Lecture notes 6.0, COMP 2411, Session 1, 2004 - p. 14

General construction (2)

- Otherwise, we select a nonliteral $\varphi_i \in \{\varphi_1, \dots, \varphi_n\}$.
 - If φ_i is an α -formula, having φ_i^1 and φ_i^2 as corresponding α_1 and α_2 formulas in the α -table, we extend T, giving a child to L labeled with

$$\varphi_1, \ldots, \varphi_{i-1}, \varphi_i^1, \varphi_i^2, \varphi_{i+1}, \ldots, \varphi_n.$$

• If φ_i is a β -formula, having φ_i^1 and φ_i^2 as corresponding β_1 and β_2 formulas in the β -table, we extend \mathcal{T} , giving two children to L, one labeled with

$$\varphi_1, \dots, \varphi_{i-1}, \varphi_i^1, \varphi_{i+1}, \dots, \varphi_n,$$

the other labeled with

$$\varphi_1, \ldots, \varphi_{i-1}, \varphi_i^2, \varphi_{i+1}, \ldots, \varphi_n$$

General construction (3)

Definition: A tableau whose construction has terminated is called a completed tableau.

A completed tableau is closed if all leaves are marked as closed (\times) .

A completed tableau is open if some leaf is marked as open (\odot) .

Proposition: The construction of a semantic tableau terminates.

Lecture notes 6.0, COMP 2411, session 1, 2004 - p. 17

Soundness and completeness (2)

Since a formula is unsatisfiable iff its negation is valid, we also have a sound, complete, and decidable proof procedure for validity.

This is captured by the next Corollary to Proposition (\star) :

Corollary: Let a formula φ be given. Let \mathcal{T} be a completed tableau for $\neg \varphi$. Then φ is valid iff \mathcal{T} is closed.

We also have a sound, complete, and decidable proof procedure for logical consequence:

Corollary: Let formulas $\psi_1, \ldots, \psi_n, \varphi$ be given. Let \mathcal{T} be a completed tableau for $\psi_1 \wedge \ldots \wedge \psi_n \wedge \neg \varphi$. Then φ is a logical consequence of $\{\psi_1, \ldots, \psi_n\}$ iff \mathcal{T} is closed.

Soundness and completeness (1)

The tableau construction is a sound and complete proof procedure for unsatisfiability:

- it is algorithmic (computable, effective)
- it is sound because it is always right when it tells us that a formula is unsatisfiable.
- it is complete because it always tells us when a formula is unsatisfiable.

Moreover, since it always terminates, it is a decidable proof procedure.

All these notions are captured by the following result.

Proposition (\star): Let \mathcal{T} be a completed tableau for a formula φ . Then φ is unsatisfiable iff \mathcal{T} is closed.

Lecture notes 6.0, COMP 2411, session 1, 2004 - p. 18

Soundness

Soundness is the following half of Proposition (\star) .

Proposition: Let a formula φ and a completed semantic tableau $\mathcal T$ for φ be given. If $\mathcal T$ is closed then φ is unsatisfiable.

To prove soundness, it suffices to show that if a subtree of $\mathcal T$ rooted at a node labeled with $\varphi_1,\ldots,\varphi_n$ is closed, then $\{\varphi_1,\ldots,\varphi_n\}$ has no model.

The proof of the previous statement is easy by induction on the height of the subtrees of \mathcal{T} .

Lecture notes 6.0, COMP 2411, session 1, 2004 - p. 19

Completeness (1)

Completeness is the following half of Proposition (\star) .

Proposition: Let a formula φ and a completed semantic tableau $\mathcal T$ for φ be given. If φ is unsatisfiable then $\mathcal T$ is closed.

To prove completeness, we prove the contrapositive: if $\mathcal T$ is open then φ is satisfiable.

More precisely, we show that if $\mathcal B$ is an open branch in $\mathcal T$ (e.g., a branch whose leaf is labeled with \odot)), then set of literals that label the parent of the leaf determines a model of φ .

Lecture notes 6.0, COMP 2411, session 1, 2004 - p. 21

Completeness (2)

It is then easy to show the following.

- Every Hintikka set has a model.
- The set S of formulas that label the nodes of an open branch \mathcal{B} of \mathcal{T} is a Hintikka set.

Since S contains φ (φ is the label of the root of \mathcal{T} , hence is also the label of the root of \mathcal{B}), we conclude that φ is satisfiable.

Hintikka sets

The key notion for proving completeness is the following.

Definition: A Hintikka set is a set of formulas *U* such that:

- U does not contain an atom together with its negation.
- For all α -formulas in U, U contains the corresponding α_1 and α_2 formulas in the α -table.
- For all β -formulas in U, U contains one of the corresponding β_1 and β_2 formulas in the β -table.

Lecture notes 6.0. COMP 2411, session 1, 2004 - p. 22

Good strategies

The construction of a semantic tableau is made more efficient if:

- α -rules are applied before β -rules;
- we close a branch as soon as a leaf is labeled with a formula and its negation, even if that formula is not an atom.

This strategy is implemented in the Prolog programs with the procedure extend_systematic_tableau, as opposed to the procedure extend_tableau.