| ntroduction

To check whether a formula ¢ is valid, we can build a truth

L ecture notes 6.0 table for .

This is however a very inefficient method since the number
of rows is exponential in the number of atomic formulas in ¢.

Semantic tableaux Moreover, the truth table method has no counterpart in the
predicate calculus.

The method of semantic tableaux is a proof procedure that
COMP 2411, session 1, 2004 is:

easy to understand;
» efficient in many cases;
can be generalized to the predicate calculus.

Lecture notes 6.0, COMP 2411, session 1, 2004 — p. 1 Lecture notes 6.0, COMP 2411, session 1, 2004 — p. 2

Principle (1) Principle (2)

The basic idea behind the method is: try and find a model When we break down a formula ¢ into smaller formulas, two
of ¢ in a systematic way, by breaking down formulas into cases can happen.
smaller formulas, until we are left with nothing but atomic

. h # Case 1: to make ¢ true, we have to make two smaller
formulas and/or negations of atomic formulas.

formulas ¢; and - true. For instance, to make

Definition: A literal is an atomic formula or the negation of (pV =q) A (¢ — s) true, we have to make p vV —¢ true and
an atomic formula. we have to make ¢ — s true.

Case 2: to make ¢ true, we have to make at least one
of two smaller formulas ¢; and - true. For instance, to

make (p Vv —q) V (¢ — s) true, we can make p \V —q true or
either S contains an atom and its negation (e.g., we can make ¢ — s true.

S ={p,q,—-r,—q}), iIn which case S has no model,

We can easily infer whether a set S of literals has a model
or not:

The algorithm has two kinds of rules: a-rules for the first
or S never contains an atom and its negation (e.qg., case, and ;-rules for the second case.

S = {p, q,—r,—s}), in which case S has a model.

Lecture notes 6.0, COMP 2411, session 1, 2004 - p. 3 Lecture notes 6.0, COMP 2411, session 1, 2004 - p. 4

Example 1

Suppose that we want to make ¢ = (p vV ¢) A (—p A —q) true.
Then we have to make both p v ¢ and —p A —q true.

To make p V ¢ true, we can either make p true or make ¢
true. Hence to make ¢ true, we can either:

make p and —p A —¢ true, or
® make g and —p A —q true.

Now to make —p A —q true, we have to make both —p and —¢
true. Hence to make ¢ true, we can either:

® make p, —p and —q true, or
® make ¢, —-p and —q true.

Since neither {p, =p, —q} nor {q, —=p, ~¢} has a model, we
conclude that © has no model.

Lecture notes 6.0, COMP 2411, session 1, 2004 - p. 5

Treerepresentation

The tableau construction can be represented by a labeled
tree where:

the root is labeled with the initial formula ;

each internal node has one child or two children,
depending on whether an a-rule or a s-rule is applied;

® each node different from the root is labeled with a
sequence of formulas;

each formula in the sequence of formulas that label the
leaf is a literal.

A branch is marked as © (open) if the literals that label its
leaf have a model; it is marked as x (closed) otherwise.

¢ has a model iff at least one branch is marked as open.

Lecture notes 6.0, COMP 2411, session 1, 2004 - p. 7

Example 2

Suppose that we want to make ¢ = (p V ¢) A (=p A —s) true.
Then we have to make both p v ¢ and —p A —s true.

To make p V ¢ true, we can either make p true or make ¢
true. Hence to make ¢ true, we can either:

make p and —p A —s true, or

make ¢ and —p A —s true.

Now to make —p A —s true, we have to make both —p and —s
true. Hence to make ¢ true, we can either:

make p, —-p and —s true, or
make ¢, —p and —s true.

Since {q, —p, —s} does have a model, we conclude that ¢
has a model.

Lecture notes 6.0, COMP 2411, session 1, 2004 - p. 6

Example 1 again

(pVa)A(=pA—q)

pVvVq, "pA—q

N

P, TP ATq q, PN 7q

b, 7p,7q q, 7p, ¢

X X

Lecture notes 6.0, COMP 2411, session 1, 2004 - p. 8

Example 2 again Nonunigqueness

(pVaq)A(=pA-s) It is usually possible to build different semantic tableaux for
| the same formula, by picking up different formulas in the
pVgq, —pA-—s sequences of formulas that label a node.
<N The following is an alternative (and better) tableau for the

, T A —S , T ASmE]
p p| q p| formula of Example 1.

p, —p, s q, —p, s (pVaq)A(=pA—q)
| | |
X ® pVgqg, " pA—q
|
pVq, =p, q

SN

p, 7p,™¢q 4, 7p,q

X X
a-rules S-rules
a ‘ aq ‘ a3 ‘ B ‘ B ‘ B2 ‘
——p © (1 A) —p1 —(p2
P1 A P2 ©1 V2 w1V ©1 o)
(p1V p2) 1 P2 1 — P2 1 ©2
(1 — ¥2) ©1 52 @ T w2 (1 (2
(o T p2) ©1 ©2 (| p2) ©1 02
© | @2 —p1 —(p2 (g1 < 92) | ~(p1 — p2) | =2 — ¢1)
Y1 P2 | p1 = P2 | Y2 — @1 e ®p2 | (1 = w2) | (2 = 91)
—(p1 O p2) | p1— P2 | P2 — 1

Lecture notes 6.0, COMP 2411, session 1, 2004 - p. 11 Lecture notes 6.0, COMP 2411, session 1,2004 - p. 12

A longer example...

((p—=q—r)—pP—q —p—1)
|
p—q—r,-((p—q —p—r)
/ \
|
p—q,~(p—r),-p
/ \
-p,~(p—=r),7p ¢(p—r),-D
p, ", TP, TP p, T, TP, q

X X

Lecture notes 6.0, COMP 2411, session 1, 2004 — p. 13

General construction (1)

To build a semantic tableau 7 for a propositional formula ¢,
we start with a tree having just a root labeled with .

At each stage in the construction, we choose an unmarked
leaf L labeled with a sequence of formulas ¢1, ..., ©n,.

® If {¢1,...,¢,} Is aset of literals that contains some
atom and its negation, we extend 7, giving a child to L
(L becomes an internal node) labeled with x.

» If {¢1,...,9,} is aset of literals that contains no atom
together with its negation, we extend 7, giving a child to
L (L becomes an internal node) labeled with ©.

Lecture notes 6.0, COMP 2411, session 1, 2004 - p. 15

...A longer example

p—q—r-(p—q —p—r)

I

q—>7"7_|((p—)q)—>p—>7’)
|

/
p—q,~(p—r1)q

| |

—p,~(p — 1), g

p,r,~q,~p ¢, (p—r),~q¢ —p,-p—r)r ¢-(p—r)r
X p7_‘T7_'Q7q p7_‘,r‘7r7_‘p p7_|/r7r7q

X X X

/

Lecture notes 6.0, COMP 2411, session 1,2004 - p. 14

General construction (2)

Otherwise, we select a nonliteral ¢; € {¢1,...,¢n}-

s If p; is an a-formula, having ¢! and ¢? as
corresponding «; and «a» formulas in the a-table, we
extend 7, giving a child to L labeled with

1 2
901;-“7902‘—1a90i780i7§0i—|—17~--79071-

s If p; is a g-formula, having ¢! and ¢? as
corresponding 3; and g, formulas in the s-table, we
extend 7, giving two children to L, one labeled with

©1y- - 7S0i—1a30117(10i+17 vy Pn,
the other labeled with

2
Plye -5 Pi—1,¥5 5 Pitls - Pn.

Lecture notes 6.0, COMP 2411, session 1,2004 - p. 16

General construction (3)

Definition: A tableau whose construction has terminated is
called a completed tableau.

A completed tableau is closed if all leaves are marked as
closed (x).

A completed tableau is open if some leaf is marked as open

(®).

Proposition: The construction of a semantic tableau
terminates.

Lecture notes 6.0, COMP 2411, session 1, 2004 - p. 17

Soundness and completeness (2)

Since a formula is unsatisfiable iff its negation is valid, we
also have a sound, complete, and decidable proof
procedure for validity.

This is captured by the next Corollary to Proposition (x):

Corollary: Let a formula ¢ be given. Let 7 be a completed
tableau for —p. Then ¢ is valid iff 7 is closed.

We also have a sound, complete, and decidable proof
procedure for logical consequence:

Corollary: Let formulas ¢+, ..., v, be given. Let 7 be a
completed tableau for 1 A ... A, A =p. Then ¢ is a logical
consequence of {1, ..., } iff T is closed.

Lecture notes 6.0, COMP 2411, session 1, 2004 - p. 19

Soundness and completeness (1)

The tableau construction is a sound and complete proof
procedure for unsatisfiability:

itis algorithmic (computable, effective)

itis sound because it is always right when it tells us that
a formula is unsatisfiable.

itis complete because it always tells us when a formula
is unsatisfiable.

Moreover, since it always terminates, it is a decidable proof
procedure.

All these notions are captured by the following result.

Proposition (x): Let 7 be a completed tableau for a formula
©. Then ¢ is unsatisfiable iff 7 is closed.

Lecture notes 6.0, COMP 2411, session 1,2004 - p. 18

Soundness

Soundness is the following half of Proposition (x).

Proposition: Let a formula ¢ and a completed semantic
tableau 7 for ¢ be given. If 7 is closed then ¢ is
unsatisfiable.

To prove soundness, it suffices to show that if a subtree of
7 rooted at a node labeled with ¢4, ..., ¢, is closed, then
{¢1,...,¢n} has no model.

The proof of the previous statement is easy by induction on
the height of the subtrees of 7.

Lecture notes 6.0, COMP 2411, session 1, 2004 - p. 20

Completeness (1)

Completeness is the following half of Proposition (x).

Proposition: Let a formula ¢ and a completed semantic
tableau 7 for ¢ be given. If ¢ is unsatisfiable then 7 is
closed.

To prove completeness, we prove the contrapositive: if 7 is
open then ¢ is satisfiable.

More precisely, we show that if B is an open branch in 7
(e.g., a branch whose leaf is labeled with ©)), then set of
literals that label the parent of the leaf determines a model
of .

Lecture notes 6.0, COMP 2411, session 1, 2004 - p. 21

Completeness (2)

It is then easy to show the following.
Every Hintikka set has a model.

The set S of formulas that label the nodes of an open
branch B of 7 is a Hintikka set.

Since S contains ¢ (¢ is the label of the root of 7, hence is
also the label of the root of B), we conclude that ¢ is
satisfiable.

Lecture notes 6.0, COMP 2411, session 1, 2004 - p. 23

Hintikka sets

The key notion for proving completeness is the following.

Definition : A Hintikka set is a set of formulas U such that:
[does not contain an atom together with its negation.

For all a-formulas in U, U contains the corresponding a;
and as formulas in the a-table.

For all g-formulas in U, U contains one of the
corresponding 5, and g, formulas in the g-table.

Lecture notes 6.0, COMP 2411, session 1,2004 - p. 22

Good strategies

The construction of a semantic tableau is made more
efficient if:

o-rules are applied before g-rules;

we close a branch as soon as a leaf is labeled with a
formula and its negation, even if that formula is not an
atom.

This strategy is implemented in the Prolog programs with
the procedure ext end_syst enati c_t abl eau, as
opposed to the procedure ext end_t abl eau.

Lecture notes 6.0, COMP 2411, session 1,2004 - p. 24

	Introduction
	Principle (1)
	Principle (2)
	Example 1
	Example 2
	Tree representation
	Example 1 again
	Example 2 again
	Nonuniqueness
	$alpha $-rules
	$�eta $-rules
	A longer exampleldots
	ldots A longer example
	General construction (1)
	General construction (2)
	General construction (3)
	Soundness and completeness (1)
	Soundness and completeness (2)
	Soundness
	Completeness (1)
	Hintikka sets
	Completeness (2)
	Good strategies

