
Lecture notes 6.0

Semantic tableaux

COMP 2411, session 1, 2004

Lecture notes 6.0, COMP 2411, session 1, 2004 – p. 1

Introduction

To check whether a formula ϕ is valid, we can build a truth
table for ϕ.

This is however a very inefficient method since the number
of rows is exponential in the number of atomic formulas in ϕ.

Moreover, the truth table method has no counterpart in the
predicate calculus.

The method of semantic tableaux is a proof procedure that
is:

easy to understand;

efficient in many cases;

can be generalized to the predicate calculus.

Lecture notes 6.0, COMP 2411, session 1, 2004 – p. 2

Principle (1)

The basic idea behind the method is: try and find a model
of ϕ in a systematic way, by breaking down formulas into
smaller formulas, until we are left with nothing but atomic
formulas and/or negations of atomic formulas.

Definition: A literal is an atomic formula or the negation of
an atomic formula.

We can easily infer whether a set S of literals has a model
or not:

either S contains an atom and its negation (e.g.,
S = {p, q,¬r,¬q}), in which case S has no model,

or S never contains an atom and its negation (e.g.,
S = {p, q,¬r,¬s}), in which case S has a model.

Lecture notes 6.0, COMP 2411, session 1, 2004 – p. 3

Principle (2)

When we break down a formula ϕ into smaller formulas, two
cases can happen.

Case 1: to make ϕ true, we have to make two smaller
formulas ϕ1 and ϕ2 true. For instance, to make
(p ∨ ¬q) ∧ (q → s) true, we have to make p ∨ ¬q true and
we have to make q → s true.

Case 2: to make ϕ true, we have to make at least one
of two smaller formulas ϕ1 and ϕ2 true. For instance, to
make (p ∨¬q) ∨ (q → s) true, we can make p ∨¬q true or
we can make q → s true.

The algorithm has two kinds of rules: α-rules for the first
case, and β-rules for the second case.

Lecture notes 6.0, COMP 2411, session 1, 2004 – p. 4

Example 1

Suppose that we want to make ϕ = (p ∨ q) ∧ (¬p ∧ ¬q) true.
Then we have to make both p ∨ q and ¬p ∧ ¬q true.

To make p ∨ q true, we can either make p true or make q
true. Hence to make ϕ true, we can either:

make p and ¬p ∧ ¬q true, or

make q and ¬p ∧ ¬q true.

Now to make ¬p ∧ ¬q true, we have to make both ¬p and ¬q
true. Hence to make ϕ true, we can either:

make p, ¬p and ¬q true, or

make q, ¬p and ¬q true.

Since neither {p,¬p,¬q} nor {q,¬p,¬q} has a model, we
conclude that ϕ has no model.

Lecture notes 6.0, COMP 2411, session 1, 2004 – p. 5

Example 2

Suppose that we want to make ϕ = (p ∨ q) ∧ (¬p ∧ ¬s) true.
Then we have to make both p ∨ q and ¬p ∧ ¬s true.

To make p ∨ q true, we can either make p true or make q
true. Hence to make ϕ true, we can either:

make p and ¬p ∧ ¬s true, or

make q and ¬p ∧ ¬s true.

Now to make ¬p ∧ ¬s true, we have to make both ¬p and ¬s
true. Hence to make ϕ true, we can either:

make p, ¬p and ¬s true, or

make q, ¬p and ¬s true.

Since {q,¬p,¬s} does have a model, we conclude that ϕ
has a model.

Lecture notes 6.0, COMP 2411, session 1, 2004 – p. 6

Tree representation

The tableau construction can be represented by a labeled
tree where:

the root is labeled with the initial formula ϕ;

each internal node has one child or two children,
depending on whether an α-rule or a β-rule is applied;

each node different from the root is labeled with a
sequence of formulas;

each formula in the sequence of formulas that label the
leaf is a literal.

A branch is marked as � (open) if the literals that label its
leaf have a model; it is marked as × (closed) otherwise.

ϕ has a model iff at least one branch is marked as open.

Lecture notes 6.0, COMP 2411, session 1, 2004 – p. 7

Example 1 again

(p ∨ q) ∧ (¬p ∧ ¬q)

p ∨ q, ¬p ∧ ¬q

p, ¬p ∧ ¬q

p, ¬p,¬q

×

q, ¬p ∧ ¬q

q, ¬p,¬q

×

Lecture notes 6.0, COMP 2411, session 1, 2004 – p. 8

Example 2 again

(p ∨ q) ∧ (¬p ∧ ¬s)

p ∨ q, ¬p ∧ ¬s

p, ¬p ∧ ¬s

p, ¬p,¬s

×

q, ¬p ∧ ¬s

q, ¬p,¬s

�

Lecture notes 6.0, COMP 2411, session 1, 2004 – p. 9

Nonuniqueness

It is usually possible to build different semantic tableaux for
the same formula, by picking up different formulas in the
sequences of formulas that label a node.

The following is an alternative (and better) tableau for the
formula of Example 1.

(p ∨ q) ∧ (¬p ∧ ¬q)

p ∨ q, ¬p ∧ ¬q

p ∨ q, ¬p, ¬q

p, ¬p,¬q

×

q, ¬p,¬q

×

Lecture notes 6.0, COMP 2411, session 1, 2004 – p. 10

α-rules

α α1 α2

¬¬ϕ ϕ

ϕ1 ∧ ϕ2 ϕ1 ϕ2

¬(ϕ1 ∨ ϕ2) ¬ϕ1 ¬ϕ2

¬(ϕ1 → ϕ2) ϕ1 ¬ϕ2

¬(ϕ ↑ ϕ2) ϕ1 ϕ2

ϕ ↓ ϕ2 ¬ϕ1 ¬ϕ2

ϕ1 ↔ ϕ2 ϕ1 → ϕ2 ϕ2 → ϕ1

¬(ϕ1 � ϕ2) ϕ1 → ϕ2 ϕ2 → ϕ1

Lecture notes 6.0, COMP 2411, session 1, 2004 – p. 11

β-rules

β β1 β2

¬(ϕ1 ∧ ϕ2) ¬ϕ1 ¬ϕ2

ϕ1 ∨ ϕ2 ϕ1 ϕ2

ϕ1 → ϕ2 ¬ϕ1 ϕ2

ϕ ↑ ϕ2 ¬ϕ1 ¬ϕ2

¬(ϕ ↓ ϕ2) ϕ1 ϕ2

¬(ϕ1 ↔ ϕ2) ¬(ϕ1 → ϕ2) ¬(ϕ2 → ϕ1)

¬ϕ� ϕ2 ¬(ϕ1 → ϕ2) ¬(ϕ2 → ϕ1)

Lecture notes 6.0, COMP 2411, session 1, 2004 – p. 12

A longer example. . .

¬((p→ q → r) → (p→ q) → p→ r)

p→ q → r,¬((p→ q) → p→ r)

¬p,¬((p→ q) → p→ r)

p→ q,¬(p→ r),¬p

¬p,¬(p→ r),¬p

p,¬r,¬p,¬p

×

q,¬(p→ r),¬p

p,¬r,¬p, q

×

. . .

Lecture notes 6.0, COMP 2411, session 1, 2004 – p. 13

. . . A longer example

p→ q → r,¬((p→ q) → p→ r)

. . . q → r,¬((p→ q) → p→ r)

¬q,¬((p→ q) → p→ r)

p→ q,¬(p→ r),¬q

¬p,¬(p→ r),¬q

p,¬r,¬q,¬p

×

q,¬(p→ r),¬q

p,¬r,¬q, q

×

r,¬((p→ q) → p→ r)

p→ q,¬(p→ r), r

¬p,¬(p→ r), r

p,¬r, r,¬p

×

q,¬(p→ r), r

p,¬r, r, q

×

Lecture notes 6.0, COMP 2411, session 1, 2004 – p. 14

General construction (1)

To build a semantic tableau T for a propositional formula ϕ,
we start with a tree having just a root labeled with ϕ.

At each stage in the construction, we choose an unmarked
leaf L labeled with a sequence of formulas ϕ1, . . . , ϕn.

If {ϕ1, . . . , ϕn} is a set of literals that contains some
atom and its negation, we extend T , giving a child to L
(L becomes an internal node) labeled with ×.

If {ϕ1, . . . , ϕn} is a set of literals that contains no atom
together with its negation, we extend T , giving a child to
L (L becomes an internal node) labeled with �.

Lecture notes 6.0, COMP 2411, session 1, 2004 – p. 15

General construction (2)

Otherwise, we select a nonliteral ϕi ∈ {ϕ1, . . . , ϕn}.

If ϕi is an α-formula, having ϕ1
i

and ϕ2
i

as
corresponding α1 and α2 formulas in the α-table, we
extend T , giving a child to L labeled with

ϕ1, . . . , ϕi−1, ϕ
1
i , ϕ

2
i , ϕi+1, . . . , ϕn.

If ϕi is a β-formula, having ϕ1
i

and ϕ2
i

as
corresponding β1 and β2 formulas in the β-table, we
extend T , giving two children to L, one labeled with

ϕ1, . . . , ϕi−1, ϕ
1
i , ϕi+1, . . . , ϕn,

the other labeled with

ϕ1, . . . , ϕi−1, ϕ
2
i , ϕi+1, . . . , ϕn.

Lecture notes 6.0, COMP 2411, session 1, 2004 – p. 16

General construction (3)

Definition: A tableau whose construction has terminated is
called a completed tableau.

A completed tableau is closed if all leaves are marked as
closed (×).

A completed tableau is open if some leaf is marked as open
(�).

Proposition: The construction of a semantic tableau
terminates.

Lecture notes 6.0, COMP 2411, session 1, 2004 – p. 17

Soundness and completeness (1)

The tableau construction is a sound and complete proof
procedure for unsatisfiability:

it is algorithmic (computable, effective)

it is sound because it is always right when it tells us that
a formula is unsatisfiable.

it is complete because it always tells us when a formula
is unsatisfiable.

Moreover, since it always terminates, it is a decidable proof
procedure.

All these notions are captured by the following result.

Proposition (?): Let T be a completed tableau for a formula
ϕ. Then ϕ is unsatisfiable iff T is closed.

Lecture notes 6.0, COMP 2411, session 1, 2004 – p. 18

Soundness and completeness (2)

Since a formula is unsatisfiable iff its negation is valid, we
also have a sound, complete, and decidable proof
procedure for validity.

This is captured by the next Corollary to Proposition (?):

Corollary: Let a formula ϕ be given. Let T be a completed
tableau for ¬ϕ. Then ϕ is valid iff T is closed.

We also have a sound, complete, and decidable proof
procedure for logical consequence:

Corollary: Let formulas ψ1, . . . , ψn, ϕ be given. Let T be a
completed tableau for ψ1 ∧ . . . ∧ ψn ∧ ¬ϕ. Then ϕ is a logical
consequence of {ψ1, . . . , ψn} iff T is closed.

Lecture notes 6.0, COMP 2411, session 1, 2004 – p. 19

Soundness

Soundness is the following half of Proposition (?).

Proposition: Let a formula ϕ and a completed semantic
tableau T for ϕ be given. If T is closed then ϕ is
unsatisfiable.

To prove soundness, it suffices to show that if a subtree of
T rooted at a node labeled with ϕ1, . . . , ϕn is closed, then
{ϕ1, . . . , ϕn} has no model.

The proof of the previous statement is easy by induction on
the height of the subtrees of T .

Lecture notes 6.0, COMP 2411, session 1, 2004 – p. 20

Completeness (1)

Completeness is the following half of Proposition (?).

Proposition: Let a formula ϕ and a completed semantic
tableau T for ϕ be given. If ϕ is unsatisfiable then T is
closed.

To prove completeness, we prove the contrapositive: if T is
open then ϕ is satisfiable.

More precisely, we show that if B is an open branch in T
(e.g., a branch whose leaf is labeled with �)), then set of
literals that label the parent of the leaf determines a model
of ϕ.

Lecture notes 6.0, COMP 2411, session 1, 2004 – p. 21

Hintikka sets

The key notion for proving completeness is the following.

Definition : A Hintikka set is a set of formulas U such that:

U does not contain an atom together with its negation.

For all α-formulas in U , U contains the corresponding α1

and α2 formulas in the α-table.

For all β-formulas in U , U contains one of the
corresponding β1 and β2 formulas in the β-table.

Lecture notes 6.0, COMP 2411, session 1, 2004 – p. 22

Completeness (2)

It is then easy to show the following.

Every Hintikka set has a model.

The set S of formulas that label the nodes of an open
branch B of T is a Hintikka set.

Since S contains ϕ (ϕ is the label of the root of T , hence is
also the label of the root of B), we conclude that ϕ is
satisfiable.

Lecture notes 6.0, COMP 2411, session 1, 2004 – p. 23

Good strategies

The construction of a semantic tableau is made more
efficient if:

α-rules are applied before β-rules;

we close a branch as soon as a leaf is labeled with a
formula and its negation, even if that formula is not an
atom.

This strategy is implemented in the Prolog programs with
the procedure extend systematic tableau, as
opposed to the procedure extend tableau.

Lecture notes 6.0, COMP 2411, session 1, 2004 – p. 24

	Introduction
	Principle (1)
	Principle (2)
	Example 1
	Example 2
	Tree representation
	Example 1 again
	Example 2 again
	Nonuniqueness
	$alpha $-rules
	$�eta $-rules
	A longer exampleldots
	ldots A longer example
	General construction (1)
	General construction (2)
	General construction (3)
	Soundness and completeness (1)
	Soundness and completeness (2)
	Soundness
	Completeness (1)
	Hintikka sets
	Completeness (2)
	Good strategies

