#### Lecture notes 7.2

#### Propositional calculus: Hilbert systems

COMP 2411, session 1, 2004

Lecture notes 7.2, COMP 2411, session 1, 2004 - p. 1

## **Choice of language**

We assume that  $\neg$  and  $\rightarrow$  are the only primitive operators of our language (remember that they can generate all boolean operators).

#### We view:

- $\varphi \lor \psi$  as an abbreviation for  $\neg \varphi \rightarrow \psi$ ;
- $\varphi \wedge \psi$  as an abbreviation for  $\neg(\varphi \rightarrow \neg \psi)$ ;
- $\varphi \leftrightarrow \psi$  as an abbreviation for  $(\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi)$ , hence as an abbreviation for:

$$\neg((\varphi \rightarrow \psi) \rightarrow \neg(\psi \rightarrow \varphi)).$$

Choosing a minimal syntax enables to keep axioms and rules of inference to a minimum.

#### **Introduction**

Let a formula  $\varphi$  be given.

To prove that  $\varphi$  is valid using semantic tableaux, we start from  $\neg \varphi$ , decompose it into smaller formulas, and check that no assignment of truth value to the constituting atoms can make  $\neg \varphi$  true. This proof procedure is top-down.

Hilbert-style proof systems offer a bottom-up approach: starting from a list of axioms and applying inference rules in all possible ways, we try to generate  $\varphi$ ;  $\varphi$  is valid iff this attempt succeeds.

Proofs in the second type of system are not so easy to understand intuitively; but they give good insights into the distinction between proof and semantics.

Lecture notes 7.2. COMP 2411, session 1, 2004 - p. 2

#### **Choice of axioms**

There are infinitely many possible choices of axioms.

The selected axioms should just be valid formulas.

We choose the following axiom schemes, meaning that we can substitute for  $\varphi$ ,  $\psi$  and  $\xi$  below any propositional formula in our language (where all formulas are built from atomic formulas using  $\neg$  and  $\rightarrow$  only).

Axiom 1:  $\varphi {\rightarrow} \psi {\rightarrow} \varphi$ 

**Axiom 2:**  $(\varphi \rightarrow \psi \rightarrow \xi) \rightarrow (\varphi \rightarrow \psi) \rightarrow \varphi \rightarrow \xi$ 

Axiom 3:  $(\neg\psi\rightarrow\neg\varphi)\rightarrow(\neg\psi\rightarrow\varphi)\rightarrow\psi$ 

#### Choice of rules of inference

There are infinitely many possible choices of rules of inference.

The selected rules should just be valid, meaning that the conclusion of a rule should be a logical consequence of the premises of the rule.

We choose the following rule, where we can substitute for  $\varphi$  and  $\psi$  any propositional formula in our language (where all formulas are built from atomic formulas using  $\neg$  and  $\rightarrow$  only)

$$\frac{\varphi \quad \varphi \rightarrow \psi}{\psi}$$

This rule is know as modus ponens (MP).

Lecture notes 7.2, COMP 2411, session 1, 2004 - p. 5

## **Proof: general definition**

Given a set X of formulas and a formula  $\varphi$ , a proof of  $\varphi$  from X (in the proof-system we are investigating) is a finite sequence  $(\varphi_0, \ldots, \varphi_n)$  of formulas such that:

- $\varphi_n = \varphi$  (the proof ends with the formula to be proved).
- For all  $k \leq n$ , either:
  - $\varphi_k$  belongs to X (is an assumption), or
  - $\varphi_k$  is an instance of one of the three axiom schemes, or
  - $\varphi_k$  follows from  $\varphi_i$  and  $\varphi_j$  with i, j < k (two formulas that occur before  $\varphi_k$  in the proof) using modus ponens.

## Example 1

The following is an example of proof (together with justifications).

The proof shows that  $p \rightarrow p$  is valid.

| 1. | $(p \rightarrow (p \rightarrow p) \rightarrow p) \rightarrow (p \rightarrow p \rightarrow p) \rightarrow p \rightarrow p$ | Axiom 2 |
|----|---------------------------------------------------------------------------------------------------------------------------|---------|
| 2. | $p {\longrightarrow} (p {\longrightarrow} p) {\longrightarrow} p$                                                         | Axiom 1 |
| 3. | $(p \rightarrow p \rightarrow p) \rightarrow p \rightarrow p$                                                             | MP 1,2  |
| 4. | $p { ightarrow} p { ightarrow} p$                                                                                         | Axiom 1 |
| 5. | $p { ightarrow} p$                                                                                                        | MP 3,4  |

Lecture notes 7.2, COMP 2411, session 1, 2004 - p. 6

# Example 2

The following is an example of a proof of q from  $\{p, \neg p\}$  (together with justifications).

The proof shows that q is a logical consequence of  $\{p, \neg p\}$ .

| 1. | p                                                                              | Hypothesis |
|----|--------------------------------------------------------------------------------|------------|
| 2. | $\neg p$                                                                       | Hypothesis |
| 3. | $p \rightarrow \neg q \rightarrow p$                                           | Axiom 1    |
| 4. | $\neg p \rightarrow \neg q \rightarrow \neg p$                                 | Axiom 1    |
| 5. | $\neg q \rightarrow p$                                                         | MP 1,3     |
| 6. | $\neg q \rightarrow \neg p$                                                    | MP 2,4     |
| 7. | $(\neg q \rightarrow \neg p) \rightarrow (\neg q \rightarrow p) \rightarrow q$ | Axiom 3    |
| 8. | $(\neg q \rightarrow p) \rightarrow q$                                         | MP 6,7     |
| 9. | q                                                                              | MP 5,8     |

Lecture notes 7.2, COMP 2411, session 1, 2004 - p. 7

Lecture notes 7.2, COMP 2411, session 1, 2004 - p. 8

#### **Derived rules**

Writing proofs in this system is rather frustrating. . .

Derived rules help a bit: they play the role of lemmas that can be used to shorten arguments.

A very useful derived rule is the deduction rule:

Let a set X of formulas and two formulas  $\psi$  and  $\varphi$  be given. If there exists a proof of  $\varphi$  from  $X \cup \{\psi\}$  then there exists a proof of  $\psi \to \varphi$  from X.

The deduction rule involves extra or provisional hypotheses that are eventually lifted (removed) when the rule is applied.

See textbook for other examples of derived rules in a slightly different system (in axiom 3).

Lecture notes 7.2, COMP 2411, session 1, 2004 - p. 9

# **Justification of deduction rule (1)**

Consider a proof  $\varphi_0, \dots, \varphi_n$  of  $\varphi$  from  $X \cup \{\psi\}$  (hence  $\varphi_n = \varphi$ ). We have to build a proof of  $\psi \to \varphi$  from X.

For that, we inductively build a proof of  $\psi \rightarrow \varphi_k$  for all  $k \leq n$ .

Let  $k \le n$  be given, and suppose that we have a proof of  $\psi \rightarrow \varphi_j$  for all j < k.

Case 1: Assume that  $\varphi_k$  is an axiom or a hypothesis in X. Then we obtain the following proof of  $\psi \rightarrow \varphi_k$  (from  $\emptyset$ , hence from X).

- 1.  $\varphi_k \rightarrow \psi \rightarrow \varphi_k$  Axiom 1
- 2.  $\varphi_k$  Axiom or hypothesis
- 3.  $\psi \rightarrow \varphi_k$  MP 2,1

## Example 3

The following is an example of a proof of  $(\neg q \to \neg p) \to p \to q$  (from  $\emptyset$ , together with justifications), that uses the deduction rule.

| 1. | $\neg q \rightarrow \neg p$                                                    | Extra hypothesis            |
|----|--------------------------------------------------------------------------------|-----------------------------|
| 2. | $(\neg q \rightarrow \neg p) \rightarrow (\neg q \rightarrow p) \rightarrow q$ | Axiom 3                     |
| 3. | $p \rightarrow \neg q \rightarrow p$                                           | Axiom 1                     |
| 4. | $(\neg q \rightarrow p) \rightarrow q$                                         | MP 1,2                      |
| 5. | p                                                                              | Extra hypothesis            |
| 6. | $\neg q \rightarrow p$                                                         | MP 5,3                      |
| 7. | q                                                                              | MP 6,4                      |
| 8. | $p{ ightarrow}q$                                                               | Deduction rule 5,7, lift 5. |
| 9. | $(\neg q \rightarrow \neg p) \rightarrow p \rightarrow q$                      | Deduction rule 1,8, lift 1. |

Lecture notes 7.2, COMP 2411, session 1, 2004 - p. 10

## **Justification of deduction rule (2)**

Case 2:  $\varphi$  is  $\psi$ .

Then we have given a proof of (an instance of)  $\varphi \rightarrow \varphi$  from  $\emptyset$ , hence also from X, on page 6.

Case 3:  $\varphi_k$  is obtained from two earlier formulas  $\varphi_i$  and  $\varphi_j$ , i, j < k, by modus ponens, and  $\varphi_j = \varphi_i \rightarrow \varphi_k$ .

By inductive hypothesis, we have a proof  $P_1$  of  $\psi \rightarrow \varphi_i$  and a proof  $P_2$  of  $\psi \rightarrow \varphi_i \rightarrow \varphi_k$  from X.

## **Justification of deduction rule (3)**

Then we obtain the following proof of  $\psi \rightarrow \varphi_k$  from X.

 $P_1$  minus last line

 $m \qquad \psi \rightarrow \varphi_i$ 

 $P_2$  minus last line

 $n \qquad \psi \rightarrow \varphi_i \rightarrow \varphi_k$ 

n+1  $(\psi \rightarrow \varphi_i \rightarrow \varphi_k) \rightarrow (\psi \rightarrow \varphi_i) \rightarrow \psi \rightarrow \varphi_k$  Axiom 2

 $n+2 \quad (\psi \rightarrow \varphi_i) \rightarrow \psi \rightarrow \varphi_k$  MP n, n+1

n+3  $\psi \rightarrow \varphi_k$  MP m,n+2

## **Soundness and completeness**

The proof system we have defined is also sound and complete:

Proposition: For all sets of formulas X and for all formulas  $\varphi$ ,  $X \models \varphi$  iff there exists a proof of  $\varphi$  from X (see page 7).

Intuitively, this means that:

- axioms and rules of inference are correct (soundess);
- there are enough axioms and rules of inference to prove  $\varphi$  from X, for all X and  $\varphi$  with  $X \models \varphi$ .

To prove the proposition above, we can use the fact that the tableau construction offers a sound and complete proof procedure: it then suffices to 'mimic' every step in the tableau construction by a proof in the present proof system.

Lecture notes 7.2, COMP 2411, session 1, 2004 - p. 13

Lecture notes 7.2, COMP 2411, session 1, 2004 - p. 14