
Lecture notes 9.1

Lists in Prolog

COMP 2411, session 1, 2004

Lecture notes 9.1, COMP 2411, session 1, 2004 – p. 1

Representation of lists

Lists are a fundamental data structure in Prolog.

Lists are built from a binary functor, denoted "." (dot), and a
nullary constant, denoted "[]".

If "T" is a list and "H" is a structure, then ".(H,T)" is a new
list whose first element is "H" and whose next elements are
the members of "T".

We call "H" the head of the new list, and "T" the tail of the
new list.

An alternative syntax for the list ".(H,T)" is "[H|T]".

Lecture notes 9.1, COMP 2411, session 1, 2004 – p. 2

Representation variants (1)

There are many syntactic variants to represent a list:

?- [a,b,c,d] = [a|[b,c,d]].

yes

?- [a,b,c,d] = .(a,.(b,.(c,.(d,[])))).

yes

?- [a,b,c,d] = [a,b,[c,d]].

No

Lecture notes 9.1, COMP 2411, session 1, 2004 – p. 3

Representation variants (2)

?- [a,b,c,d] = [a,b|[c,d]].

Yes

?- [a,[b,c,d]] = [a|[[b,c,d]]].

yes

?- X = .([],[]).

X = [[]]

?- X = [[a,b]|[c,d]].

X = [[a, b], c, d]

Lecture notes 9.1, COMP 2411, session 1, 2004 – p. 4

Printing lists

Note how the built-ins "write" and "display" operate:
?- write([a,b,c]).

[a, b, c]

?- write(.(a,.(b,.(c,[])))).

[a, b, c]

?- display([a,b,c]).

.(a, .(b, .(c, [])))

?- display([a|[b,c]]).

.(a, .(b, .(c, [])))
Lecture notes 9.1, COMP 2411, session 1, 2004 – p. 5

A few procedures for lists

Following are a few basic programs that deal with lists.

Most of them are already defined in SWI-Prolog, but it is
important to understand how they work.

For all examples below, you should experiment and
understand what happens (tracing the execution):

when you change the ordering of the clauses;

when you change which argument is a variable and
which argument is an instantiated list or element;

when you generate all possible solutions.

Lecture notes 9.1, COMP 2411, session 1, 2004 – p. 6

Being a list

"list(L)" succeeds iff "L" is a list.

Can be used to generate uninstantiated lists.

list([]).

list([_|T]) :- list(T).

Lecture notes 9.1, COMP 2411, session 1, 2004 – p. 7

Being a member of a list

"member(X,L)" succeeds iff "X" is a member of list "L".

Can be used to generate all members of a list, or generate
all lists that contain some structure.

member(X,[X|_]).

member(X,[_|T]) :- member(X,T).

Lecture notes 9.1, COMP 2411, session 1, 2004 – p. 8

Being a concatenation of two lists

"append(L1,L2,L)" succeeds iff "L" is the result of
appending "L1" to "L2".

Can be used to find all splittings of a list.

append([],L,L).

append([H|T1],L,[H|T2]) :- append(T1,L,T2).

Lecture notes 9.1, COMP 2411, session 1, 2004 – p. 9

Being the prefix of a list

"prefix(P,L)" succeeds iff "P" is a prefix (initial segment)
of list "L".

prefix([],_).

prefix([H|P],[H|T]) :- prefix(P,T).

Lecture notes 9.1, COMP 2411, session 1, 2004 – p. 10

Being the suffix of a list

"suffix(S,L)" succeeds iff "S" is a suffix (final segment)
of list "L".

suffix(L,L).

suffix(S,[_|T]) :- suffix(S,T).

Lecture notes 9.1, COMP 2411, session 1, 2004 – p. 11

Being a sublist of a list

"sublist(S,L)" succeeds iff "S" is a sublist of list "L".

sublist(S,L) :- prefix(P,L), suffix(S,P).

. . . or . . .

sublist(S,L) :- suffix(S,L), prefix(S,S).

. . . or . . .

sublist(S,L) :- prefix(S,L).

sublist(S,[_|T]) :- sublist(S,T).

. . . or other simple solutions, using append.

Lecture notes 9.1, COMP 2411, session 1, 2004 – p. 12

Being the last element of a list

"last(E,L)" succeeds iff "E" is the last element of list "L".

last(E,L) :- append(L1,[E],L).

Lecture notes 9.1, COMP 2411, session 1, 2004 – p. 13

Selecting an element in a list

"select(E,L,R)" succeeds iff "E" is a member of list "L"
and "R" is the list of remaining elements in "L".

select(X,[X|T],T).

select(X,[Y|T],[Y|R]) :- select(X,T,R).

Lecture notes 9.1, COMP 2411, session 1, 2004 – p. 14

	Representation of lists
	Representation variants (1)
	Representation variants (2)
	Printing lists
	A few procedures for lists
	Being a list
	Being a member of a list
	Being a concatenation of two lists
	Being the prefix of a list
	Being the suffix of a list
	Being a sublist of a list
	Being the last element of a list
	Selecting an element in a list

