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Representation of lists

Lists are a fundamental data structure in Prolog.

Lists are built from a binary functor, denoted "." (dot), and a
nullary constant, denoted "[]".

If "T" is a list and "H" is a structure, then ".(H,T)" is a new
list whose first element is "H" and whose next elements are
the members of "T".

We call "H" the head of the new list, and "T" the tail of the
new list.

An alternative syntax for the list ".(H,T)" is "[H|T]".
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Representation variants (1)

There are many syntactic variants to represent a list:

?- [a,b,c,d] = [a|[b,c,d]].

yes

?- [a,b,c,d] = .(a,.(b,.(c,.(d,[])))).

yes

?- [a,b,c,d] = [a,b,[c,d]].

No
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Representation variants (2)

?- [a,b,c,d] = [a,b|[c,d]].

Yes

?- [a,[b,c,d]] = [a|[[b,c,d]]].

yes

?- X = .([],[]).

X = [[]]

?- X = [[a,b]|[c,d]].

X = [[a, b], c, d]
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Printing lists

Note how the built-ins "write" and "display" operate:
?- write([a,b,c]).

[a, b, c]

?- write(.(a,.(b,.(c,[])))).

[a, b, c]

?- display([a,b,c]).

.(a, .(b, .(c, [])))

?- display([a|[b,c]]).

.(a, .(b, .(c, [])))
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A few procedures for lists

Following are a few basic programs that deal with lists.

Most of them are already defined in SWI-Prolog, but it is
important to understand how they work.

For all examples below, you should experiment and
understand what happens (tracing the execution):

when you change the ordering of the clauses;

when you change which argument is a variable and
which argument is an instantiated list or element;

when you generate all possible solutions.
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Being a list

"list(L)" succeeds iff "L" is a list.

Can be used to generate uninstantiated lists.

list([]).

list([_|T]) :- list(T).
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Being a member of a list

"member(X,L)" succeeds iff "X" is a member of list "L".

Can be used to generate all members of a list, or generate
all lists that contain some structure.

member(X,[X|_]).

member(X,[_|T]) :- member(X,T).
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Being a concatenation of two lists

"append(L1,L2,L)" succeeds iff "L" is the result of
appending "L1" to "L2".

Can be used to find all splittings of a list.

append([],L,L).

append([H|T1],L,[H|T2]) :- append(T1,L,T2).
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Being the prefix of a list

"prefix(P,L)" succeeds iff "P" is a prefix (initial segment)
of list "L".

prefix([],_).

prefix([H|P],[H|T]) :- prefix(P,T).
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Being the suffix of a list

"suffix(S,L)" succeeds iff "S" is a suffix (final segment)
of list "L".

suffix(L,L).

suffix(S,[_|T]) :- suffix(S,T).
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Being a sublist of a list

"sublist(S,L)" succeeds iff "S" is a sublist of list "L".

sublist(S,L) :- prefix(P,L), suffix(S,P).

. . . or . . .

sublist(S,L) :- suffix(S,L), prefix(S,S).

. . . or . . .

sublist(S,L) :- prefix(S,L).

sublist(S,[_|T]) :- sublist(S,T).

. . . or other simple solutions, using append.
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Being the last element of a list

"last(E,L)" succeeds iff "E" is the last element of list "L".

last(E,L) :- append(L1,[E],L).
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Selecting an element in a list

"select(E,L,R)" succeeds iff "E" is a member of list "L"
and "R" is the list of remaining elements in "L".

select(X,[X|T],T).

select(X,[Y|T],[Y|R]) :- select(X,T,R).
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