Tutorial Solution 1

COMP 2411, Session 1, 2004

Q1: If voice one was telling the truth, then it would be lying, contradiction. Hence voice one is a lying Knave, and at least one of the others is a Knight. If voice two were lying, everybody would be a Knave, which contradicts the previous conclusion that voice one does not say the truth. Hence voice two is a Knight. Since Knights always tell the truth, voice three is a Knave.

Q2:

- $(p \to \neg q) \land r$
- $p \lor q \lor r$
- $(p \land \neg q \lor r) \lor s$
- $(q \vee \neg r) \vee p \vee s$
- $\bullet \ (p \leftrightarrow \neg q) \leftrightarrow \neg (r \lor s)$
- $\bullet \neg \neg \neg (q \lor r) \leftrightarrow q \lor r$
- $\bullet \neg \neg \neg (q \lor r) \leftrightarrow q \leftrightarrow r$
- $((p \to q) \to r \to s) \land \neg p \lor r$

Q3:

- $(r \lor (\neg p \land q))$
- $(q \rightarrow (\neg \neg \neg p \lor r))$
- $((\neg(p \to q) \lor (r \lor s)) \to q)$
- $(p \leftrightarrow ((\neg p \lor q) \rightarrow (p \land (q \lor r))))$
- $((\neg p \lor (q \lor (r \land s))) \leftrightarrow (p \land \neg p))$

Q4:

- $p \vee r$ is true
- $p \wedge r$ is false
- $\neg p \land \neg r$ is false
- $p \leftrightarrow \neg q \lor r$ is false
- $q \vee \neg r \rightarrow p$ is true

- $q \lor p \to q \to \neg r$ is true
- $(q \leftrightarrow \neg p) \leftrightarrow p \leftrightarrow q$ is false
- $(q \to p) \to (p \to \neg r) \to \neg r \to q$ is true

Q5: If $p \to q$ is true then

- $p \lor r \to q \lor r$ is true
- $p \wedge r \rightarrow q \wedge r$ is true
- $\neg p \land q \leftrightarrow p \lor q$ can be either true of false

Q6: If $p \leftrightarrow q$ is false then

- $p \wedge q$ is false
- $p \lor q$ is true
- $p \rightarrow q$ can be either true of false
- $p \wedge r \leftrightarrow q \wedge r$ can be either true of false

Q7: If $p \leftrightarrow q$ is true then

- $p \wedge q$ can be either true of false
- $p \lor q$ can be either true of false
- $p \rightarrow q$ is true
- $p \wedge r \leftrightarrow q \wedge r$ is true

Q8:

- If $\neg p \lor q \to p \to \neg r$ is false then p, q and r are all true
- If $p \land q \leftrightarrow p \lor q$ is false and p is false then q is true
- $(p \rightarrow \neg q) \rightarrow r \rightarrow q$ is false then q is false and r is true, and p can be either true or false

Q9:

- $\neg (p \to (q \leftrightarrow \neg r)) \equiv p \land (q \leftrightarrow r)$
- $\neg(\neg p \lor (q \to r)) \equiv p \land q \land \neg r$
- $\neg (p \land (q \lor \neg r)) \equiv \neg p \lor \neg q \land r$

Q10: Let propositional formulas φ and ψ be given. By the definition of \equiv , $\varphi \equiv \psi$ holds iff φ and ψ get the same truth value in all interpretations. By the definition of \leftrightarrow , $\varphi \leftrightarrow \psi$ is true iff φ and ψ are either both true or both false. The claim follows immediately.

Q11: Let φ be a formula built from propositional atoms p, p_1, \ldots, p_n using \vee and \wedge only. If all of p, p_1, \ldots, p_n get the value true, then φ also takes the value true since the disjunction of two true formulas is true, and the conjunction of two true formulas is true. Hence φ is not logically equivalent to $\neg p$. Hence negation is not definable in terms of disjunction and conjunction.

Q12: It suffices to observe that $\neg p \equiv p \lor p \to \neg p$ and $p \lor q \equiv \neg (p \lor q \to (r \land \neg r))$.