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Q1: If voice one was telling the truth, then it would be lying, contradiction. Hence voice one is a
lying Knave, and at least one of the others is a Knight. If voice two were lying, everybody would be
a Knave, which contradicts the previous conclusion that voice one does not say the truth. Hence
voice two is a Knight. Since Knights always tell the truth, voice three is a Knave.
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Q5: If p — q is true then
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QG6: If p < q is false then
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QT7: If p < q is true then
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Q8:

o If pV qg— p— —ris false then p, ¢ and r are all true
o If pAq < pVqis false and p is false then ¢ is true

e (p — —q) — r — q is false then ¢ is false and r is true, and p can be either true or false
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Q10: Let propositional formulas ¢ and ¥ be given. By the definition of =, ¢ = v holds iff ¢ and
1) get the same truth value in all interpretations. By the definition of <, ¢ « 9 is true iff ¢ and
1) are either both true or both false. The claim follows immediately.

Q11: Let ¢ be a formula built from propositional atoms p,p1,...,p, using V and A only. If all
of p,p1,...,pn get the value true, then ¢ also takes the value true since the disjunction of two
true formulas is true, and the conjunction of two true formulas is true. Hence ¢ is not logically
equivalent to —p. Hence negation is not definable in terms of disjunction and conjunction.

Q12: It suffices to observe that -p=pVp — —pand pVgqg=-(pVqg— (r\A-r)).



