Tutorial Solution 2

COMP 2411, Session 1, 2004

Q1: The first formula is clearly true when q is true and r is false, hence is satisfiable. The second formula is clearly true when p is false, q is false and r is false, hence is also satisfiable.

Q2:

- $(p \lor q) \land (\neg q \lor r)$ is in CNF and logically equivalent to the DNF $p \land \neg q \lor p \land r \lor q \land r$.
- $\neg p \lor (q \to \neg r)$ is logically equivalent to the CNF $\neg p \lor \neg q \lor \neg r$ and to the DNF $\neg p \lor \neg q \lor \neg r$.
- $p \land \neg q \lor p \land r$ is in DNF and logically equivalent to the CNF $p \land (\neg q \lor p) \land (p \lor r) \land (\neg q \lor r)$
- $p \lor q \leftrightarrow \neg r$ is logically equivalent to the CNF $(\neg r \lor \neg p) \land (\neg r \lor \neg q) \land (p \lor q \lor r)$ and to the DNF $p \land \neg r \lor q \land \neg r \lor \neg p \land \neg q \land r$.

Q3: For n = 1 take $X = \{p\}$.

For n = 2 take $X = \{p_1, p_1 \to p\}$.

For n > 2 take $X = \{p_1, p_1 \to p_2, \dots, p_{n-2} \to p_{n-1}, p_{n-1} \to p\}.$

Q4: The following claim is immediately verified by induction.

Any formula of the form $p \leftrightarrow \ldots \leftrightarrow p$ with $n \in \mathbb{N} \setminus \{0\}$ is valid iff n is even; if n is odd and p is false then the formula is false.

Let φ be a formula that contains \leftrightarrow as its only boolean operator. Since \leftrightarrow is commutative and associative, φ is logically equivalent to a formula of the form

$$(\overbrace{p_1 \leftrightarrow \ldots \leftrightarrow p_1}^{n_1}) \leftrightarrow \ldots \leftrightarrow (\overbrace{p_k \leftrightarrow \ldots \leftrightarrow p_k}^{n_k})$$

for some nonnull $k, n_1, \ldots, n_k \in \mathbb{N}$ and pairwise distinct propositional atoms p_1, \ldots, p_k .

- Assume that n_1, \ldots, n_k are all even. By the claim above, $p_i \leftrightarrow \ldots \leftrightarrow p_i$ is valid for all members i of $\{1, \ldots, k\}$, which clearly implies that φ is valid.
- Assume that not all of n_1, \ldots, n_k are even. Without loss of generality we can suppose that n_1 is odd. Obviously, if p_2, \ldots, p_k are given the value true then $p_i \leftrightarrow \ldots \leftrightarrow p_i$ is true for all $i \in \{2, \ldots, k\}$, hence $(p_1 \leftrightarrow \ldots \leftrightarrow p_2) \leftrightarrow \ldots \leftrightarrow (p_k \leftrightarrow \ldots \leftrightarrow p_k)$ is also true. By the claim above, $p_1 \leftrightarrow \ldots \leftrightarrow p_1$ is false when p_1 gets the value false. Hence φ is false when p_1 gets the value false and p_2, \ldots, p_k get the value true, and we conclude that φ is not valid.

Q5: We show that the negation of the formula is unsatisfiable.

$$\neg(\neg(p \land q) \rightarrow \neg p \lor \neg q)$$

$$| \neg(p \land q), \neg(\neg p \lor \neg q)$$

$$| \neg p, \neg \neg q, \neg(p \land q)$$

$$| p, \neg \neg q, \neg(p \land q)$$

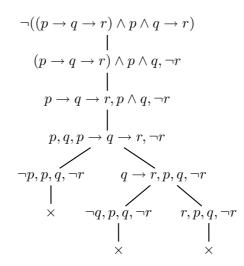
$$| q, p, \neg(p \land q)$$

$$| \neg p, q, p \qquad \neg q, q, p$$

$$| \downarrow \qquad \qquad \downarrow$$

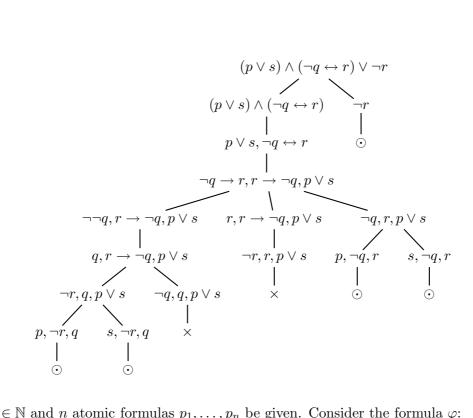
$$\times \qquad \times$$

Q6: We show that $(p \to q \to r) \land p \land q \to r$ is valid, hence that the negation of the former formula is unsatisfiable.



Q7: The next tableau shows that the formula is true when:

- p is true, q is false and r is true, or
- ullet q is false, r is true and s is true, or
- r is false



Q8: Let $n \in \mathbb{N}$ and n atomic formulas p_1, \ldots, p_n be given. Consider the formula φ :

$$(l_1^0 \vee \ldots \vee l_n^0) \wedge \ldots \wedge (l_1^{2^n-1} \vee \ldots \vee l_n^{2^n-1})$$

where for all $i \in \{0, \dots, 2^n - 1\}$ and $j \in \{1, \dots, n\}$, l_j^i is p_j if the jth bit in the binary representation of i is 1, and $\neg p_i$ otherwise. Note that φ is unsatisfiable. It is immediately verified that the number of leaves in a tableau for φ is equal to n^{2^n} .

Optimizations like applying an α -rule before a β -rule, or closing a branch even when its leaf is not labeled with literals only, do not help much. For a practical confirmation, add

to tableau_tests.pl and test these four queries.