Tutorial solutions 3

COMP 2411, Session 1, 2004

Q1: Proof that $\{\varphi \to \psi, \psi \to \chi\} \models \varphi \to \chi$:

- Extra hypothesis
- 2. $\varphi \to \psi$ Hypothesis
- 3. ψ MP 1,2
- 4. $\psi \rightarrow \chi$ Hypothesis
- MP 3,4
- 6. $\varphi \to \chi$ Deduction rule 1,5

Proof that $\{\varphi \rightarrow \psi \rightarrow \chi, \psi\} \models \varphi \rightarrow \chi$:

- $\begin{array}{ccc} 1. & \varphi & & \text{Extra hypo} \\ 2. & \psi & & \text{Hypothesis} \end{array}$ Extra hypothesis

- 3. $\varphi \rightarrow \psi \rightarrow \chi$ Hypothesis 4. $\psi \rightarrow \chi$ MP 1,3 5. χ MP 2,4 6. $\varphi \rightarrow \chi$ Deduction rule 1,5

2: Proof that $\models \neg \neg \varphi \rightarrow \varphi$:

- 1. $(\neg \varphi \rightarrow \neg \neg \varphi) \rightarrow (\neg \varphi \rightarrow \neg \varphi) \rightarrow \varphi$ Axiom3
- Proof in lecture notes
- 3. $(\neg \varphi \rightarrow \neg \neg \varphi) \rightarrow \varphi$ Q1 second part 1,2
- Axiom 1
- Q1 first part 4,3

Proof that $\models \varphi \rightarrow \neg \neg \varphi$:

- Previous proof
- 1. $(\neg \neg \neg \varphi \rightarrow \neg \varphi) \rightarrow (\neg \neg \neg \varphi \rightarrow \varphi) \rightarrow \neg \neg \varphi$ axiom3 2. $\neg \neg \neg \varphi \rightarrow \neg \varphi$ Previou 3. $(\neg \neg \neg \varphi \rightarrow \varphi) \rightarrow \neg \neg \varphi$ MP 1,2 4. $\varphi \rightarrow \neg \neg \neg \varphi \rightarrow \varphi$ Axiom 5 5. $\varphi \rightarrow \neg \neg \varphi$ Q1 first
- Axiom 1
- Q1 first part 4,3

Proof that $\{\varphi \rightarrow \psi\} \models \neg \psi \rightarrow \neg \varphi$:

- 1. $\varphi \rightarrow \psi$ Hypothesis
- Penultimate proof
- 3. $\neg \neg \varphi \rightarrow \psi$ Q1 first part 2,1
- 4. $\psi \rightarrow \neg \neg \psi$ Previous proof
- Q1 first part 3,4
- 6. $(\neg\neg\varphi\rightarrow\neg\neg\psi)\rightarrow\neg\psi\rightarrow\neg\varphi$ Proof in lecture notes
- MP 5.6
- **Q3**. The lecture notes give a proof that $\{\varphi, \neg \varphi\} \models \psi$. Two successive applications of the deduction

rule yield that $\varphi \to \neg \varphi \to \psi$ is valid. Since $\varphi \lor \psi$ has been defined (in this proof system) as $\neg \varphi \to \psi$, we are done.

Q4: Given a formula φ , let φ^* be φ with all negations in φ being deleted. It is immediately verified that for all formulas φ , if φ is an instance of axiom 1 or 2 then φ^* is valid. Moreover, for all formulas φ , ψ , $(\varphi \rightarrow \psi)^* = \varphi^* \rightarrow \psi^*$. Hence if a formula φ_3 can be obtained by modus ponens from two formulas φ_1 and φ_2 then φ_3^* can be obtained by modus ponens from φ_1^* and φ_2^* . We infer that if axiom scheme 3 could be proved from axioms schemes 1 and 2 with MP, then for all instances φ of axiom 3, φ^* would be valid. But $\varphi = (\neg p \rightarrow \neg p) \rightarrow (\neg p \rightarrow p) \rightarrow p$ is an instance of axiom 3, and $\varphi^* = (p \rightarrow p) \rightarrow (p \rightarrow p) \rightarrow p$ is false when p is false. We conclude that axiom scheme 3 cannot be proved from axioms schemes 1 and 2 with MP.

Q5: Intuitionistic proof in Natural deduction (without RAA) that $\models (\varphi \land \neg \varphi) \rightarrow \psi$:

$$\frac{\left[\varphi \land \neg \varphi\right]^{1}}{\varphi} \land E \quad \frac{\left[\varphi \land \neg \varphi\right]^{1}}{\neg \varphi} \land E$$

$$\frac{\frac{\bot}{\psi} \bot}{(\varphi \land \neg \varphi) \to \psi} \to I_{1}$$

Q6: Intuitionistic proof in Natural deduction (without RAA) that $\{\neg(\varphi \lor \psi)\} \models \neg(\neg\varphi \to \psi)$:

$$\frac{[\varphi]^{1}}{\varphi \vee \psi} \vee I \qquad \neg(\varphi \vee \psi) \qquad \neg E$$

$$\frac{\frac{\bot}{\neg \varphi} \neg I_{1}}{\qquad \qquad [\neg \varphi \to \psi]^{2}} \to E$$

$$\frac{\psi}{\varphi \vee \psi} \vee I \qquad \qquad \neg(\varphi \vee \psi) \qquad \neg E$$

$$\frac{\bot}{\neg(\neg \varphi \to \psi)} \neg I_{2}$$

Q7: Proof in Natural deduction that $\{\neg\neg\varphi\} \models \varphi$:

$$\frac{[\neg \varphi]^1 \quad \neg \neg \varphi}{\frac{\bot}{\varphi} \quad \text{RAA}_1} \neg E$$

Q8: Proof in Natural deduction that $\{\neg \varphi \rightarrow \neg \psi\} \models \psi \rightarrow \varphi$:

$$\frac{[\varphi]^2 \quad \frac{[\neg \psi]^1 \quad \neg \psi \to \neg \varphi}{\neg \varphi} \to E}{\frac{\bot}{\psi} \quad \text{RAA}_1} \\
\frac{}{\varphi \to \psi} \to I_2}$$