Tutorial Solutions 6

COMP 2411, Session 1, 2004

Q1: For a model \mathfrak{M} of $\varphi \wedge \psi$, put $p^{\mathfrak{M}} = \{(m, n) \in \mathbb{N}^2 \mid m \geq n\}$.

For a model \mathfrak{M} of $\varphi \wedge \neg \psi$, put $p^{\mathfrak{M}} = \{(m, n) \in \mathbb{N}^2 \mid m = n\}$.

For a model \mathfrak{M} of $\neg \varphi \wedge \neg \psi$, put $p^{\mathfrak{M}} = \{(m, n) \in \mathbb{N}^2 \mid m > n\}$.

We show that $\neg \varphi \land \psi$ is not satisfiable. Let a structure \mathfrak{M} be such that $\mathfrak{M} \models \neg \varphi$, hence $\mathfrak{M} \models \exists x \forall y \neg p(x,y)$. Choose $a \in |\mathfrak{M}|$ with $\mathfrak{M} \models \forall y \neg p(x,y)[\bar{a}/x]$. Suppose for a contradiction that $\mathfrak{M} \models \psi$. Choose $b \in |\mathfrak{M}|$ with $\mathfrak{M} \models \forall x p(x,y)[\bar{b}/y]$. Then $\mathfrak{M} \models p(x,y)[\bar{a}/x,\bar{b}/y]$. Hence $\mathfrak{M} \models \exists y p(x,y)[\bar{a}/x]$, which contradicts $\mathfrak{M} \models \forall y \neg p(x,y)[\bar{a}/x]$.

Q2: For instance:

 $\varphi_1: \exists x \forall y (x \leq y)$

 φ_2 : $\exists y \forall x (x \leq y) \land \neg \exists x \forall y (x \leq y)$

 φ_3 : $\forall x \neg \exists y (x < y)$

 φ_4 : $\exists x \exists y (x < y) \land \neg \exists y \forall x (x \le y)$

These structures cannot be described up to isomorphism because there is no equality in the language.

Q3: For instance:

 $\exists x \exists y \exists z (R(x,y) \land R(y,z) \land \forall u \neg R(u,x) \land \forall u \neg (R(x,u) \land R(u,y)) \land \forall u \neg (R(y,u) \land R(u,z))),$ which implies, in particular, that 1 is smaller than 2.

Q4: Pick up a member a of the domain of \mathfrak{M} . Let $a_0, a_1, a_2 \ldots$ be objects that do not belong to the domain of \mathfrak{M} . Let \mathfrak{N} be the structure whose domain is $|\mathfrak{M}| \cup \{a_i \mid i \in \mathbb{N}\}$. For all n > 0, n-ary predicate symbols R in V, and closed terms t_1, \ldots, t_n over $|\mathfrak{M}| \cup \{a_i \mid i \in \mathbb{N}\}$, put:

$$\mathfrak{N} \models p(t_1,\ldots,t_n) \text{ iff } \mathfrak{M} \models p(t'_1,\ldots,t'_n)$$

where for all nonnull $j \leq n$, t'_j is obtained from t_j by replacing of occurrences of $\overline{a_i}$ by \overline{a} , for $i \in \mathbb{N}$. Intuitively, the a_i 's, $i \in \mathbb{N}$, are 'copies' of a having the same properties as a with respect to the other members of the domain of \mathfrak{M} . It is immediately verified by induction on closed formulas that for all closed formulas φ over V, $\mathfrak{M} \models \varphi$ iff $\mathfrak{N} \models \varphi$.

When equality is available, we know that some formulas can express: "there are at most n elements in the domain", when n is a fixed nonnull natural number.

Q5. Let a structure \mathfrak{M} be such that $\mathfrak{M} \models \exists x \forall y R(x,y)$. It suffices to prove that \mathfrak{M} is a model of $\forall y \exists x R(x,y)$. Since $\mathfrak{M} \models \exists x \forall y R(x,y)$, we can choose $a \in |\mathfrak{M}|$ such that $\mathfrak{M} \models \forall y R(\overline{a},y)$. Then for all $b \in |\mathfrak{M}|$, $\mathfrak{M} \models R(\overline{a},\overline{b})$, which shows that $\mathfrak{M} \models \exists x R(\overline{a},\overline{b})$. We conclude that $\mathfrak{M} \models \forall y \exists x R(x,y)$, as wanted.

Q6. φ is true in all structures. Indeed, let \mathfrak{M} be a structure with more than n elements. Let $a_1, \ldots, a_n \in |\mathfrak{M}|$ be given. Consider the structure \mathfrak{N} that is the restriction of \mathfrak{M} to $\{a_1, \ldots, a_n\}$. Then $\mathfrak{N} \models \varphi$ by assumption, which implies immediately that:

$$\mathfrak{M} \models \exists y_1 \dots \exists y_m \psi [\overline{a_1}/x_1, \dots, \overline{a_n}/x_n].$$

We conclude that $\mathfrak{M} \models \varphi$.

Q7: Either the existential quantifier or the universal quantifier (but not both), since one quantifier is definable in terms of the other and negation. We could also remove \rightarrow , \leftrightarrow , and either disjunction or conjunction (but not both).

Q8: For instance:

```
rev_order([],[]).
rev_order([X|T],R) :- rev_order(T,R1), append(R1,[X],R).
```

The queries rev_order([1,2,3],R) and rev_order(R,[1,2,3]) yield the same solution, but when asking for alternative solutions, the first query outputs no whereas the second one loops.

To reverse a list of length n, there are:

- n+1 calls to reverse (to reverse lists of length $n, n-1, \ldots, 1, 0$);
- the call to reverse on a list of length m, m < n, is followed by a call to append to append a list a length m to a list of length 1;
- to append a list a length m to some list, there are m+1 calls to append.

Hence the number of goals to solve is $n + 1 + (1 + 2 + ... + n) = \frac{(1+n+1)(n+1)}{2}$.

 $\mathbf{Q9}$. The query $\mathsf{top}(X,Y)$ yields 7 solutions:

X = a

Y = c

X = a

Y = d

X = b

Y = c

X = b

Y = d

X = e

Y = c

X = e

Y = d

X = e

 $Y = _{-}$

With true(1) replaced by cut, the 5th and 6th solutions are no longer generated.

With true(2) replaced by cut, the 3rd, 4th, 5th and 6th solutions are no longer generated.