3.3 Cubic Spline Interpolation

Given a tabulated function \(y_i = y(x_i) \), \(i = 1 \ldots N \), focus attention on one particular interval, between \(x_j \) and \(x_{j+1} \). Linear interpolation in that interval gives the interpolation formula

\[
y = Ay_j + By_{j+1}
\]

(3.3.1)

c=vector(1,n);
d=vector(1,n);
hh=fabs(x-xa[1]);
for (i=1;i<=n;i++) {
 h=fabs(x-xa[i]);
 if (h == 0.0) {
 *y=ya[i];
 *dy=0.0;
 FREERETURN
 } else if (h < hh) {
 ns=i;
 hh=h;
 }
 c[i]=ya[i];
d[i]=ya[i]+TINY;
The TINY part is needed to prevent a rare zero-over-zero condition.
}
*y=ya[ns--];
for (m=1;m<n;mm++) {
 for (i=1;i<=n-m;i++) {
 w=c[i+1]-d[i];
 h=xa[i+m]-x;
 h will never be zero, since this was tested in the initial-izing loop.
t=(x xa[i]-x)*d[i]/h;
 dd=t-c[i+1];
 if (dd == 0.0) nrerror("Error in routine ratint");
 This error condition indicates that the interpolating function has a pole at the requested value of \(x \).
 dd=dd/dd;
 d[i]=c[i+1]*dd;
 c[i]=t*dd;
 }
 *y += (**dy=(2*ns < (n-m) ? c[ns+1] : d[ns--]));
}
FREERETURN

CITED REFERENCES AND FURTHER READING:
where

\[A \equiv \frac{x_{j+1} - x}{x_{j+1} - x_j} \quad B \equiv 1 - A = \frac{x - x_j}{x_{j+1} - x_j} \]

(3.3.2)

Equations (3.3.1) and (3.3.2) are a special case of the general Lagrange interpolation formula (3.1.1).

Since it is (piecewise) linear, equation (3.3.1) has zero second derivative in the interior of each interval, and an undefined, or infinite, second derivative at the abscissas \(x_j \). The goal of cubic spline interpolation is to get an interpolation formula that is smooth in the first derivative, and continuous in the second derivative, both within an interval and at its boundaries.

Suppose, contrary to fact, that in addition to the tabulated values of \(y_j \), we also have tabulated values for the function’s second derivatives, \(y''_j \), that is, a set of numbers \(y''_j \). Then, within each interval, we can add to the right-hand side of equation (3.3.1) a cubic polynomial whose second derivative varies linearly from a value \(y''_j \) on the left to a value \(y''_{j+1} \) on the right. Doing so, we will have the desired continuous second derivative. If we also construct the cubic polynomial to have zero values at \(x_j \) and \(x_{j+1} \), then adding it in will not spoil the agreement with the tabulated functional values \(y_j \) and \(y_{j+1} \) at the endpoints \(x_j \) and \(x_{j+1} \).

A little side calculation shows that there is only one way to arrange this construction, namely replacing (3.3.1) by

\[y = Ay_j + By_{j+1} + Cy''_j + Dy''_{j+1} \]

(3.3.3)

where \(A \) and \(B \) are defined in (3.3.2) and

\[C \equiv \frac{1}{6} (A^3 - A)(x_{j+1} - x_j)^2 \quad D \equiv \frac{1}{6} (B^3 - B)(x_{j+1} - x_j)^2 \]

(3.3.4)

Notice that the dependence on the independent variable \(x \) in equations (3.3.3) and (3.3.4) is entirely through the linear \(x \)-dependence of \(A \) and \(B \), and (through \(A \) and \(B \)) the cubic \(x \)-dependence of \(C \) and \(D \).

We can readily check that \(y'' \) is in fact the second derivative of the new interpolating polynomial. We take derivatives of equation (3.3.3) with respect to \(x \), using the definitions of \(A, B, C, D \) to compute \(dA/dx, dB/dx, dC/dx, \) and \(dD/dx \). The result is

\[\frac{dy}{dx} = \frac{y_{j+1} - y_j}{x_{j+1} - x_j} - \frac{3A^2 - 1}{6} (x_{j+1} - x_j)y''_j + \frac{3B^2 - 1}{6} (x_{j+1} - x_j)y''_{j+1} \]

(3.3.5)

for the first derivative, and

\[\frac{d^2y}{dx^2} = Ay''_j + By''_{j+1} \]

(3.3.6)

for the second derivative. Since \(A = 1 \) at \(x_j \), \(A = 0 \) at \(x_{j+1} \), while \(B \) is just the other way around, (3.3.6) shows that \(y'' \) is just the tabulated second derivative, and also that the second derivative will be continuous across (e.g.) the boundary between the two intervals \((x_{j-1}, x_j) \) and \((x_j, x_{j+1}) \).
The only problem now is that we supposed the \(y''_i \)'s to be known, when, actually, they are not. However, we have not yet required that the first derivative, computed from equation (3.3.5), be continuous across the boundary between two intervals. The key idea of a cubic spline is to require this continuity and to use it to get equations for the second derivatives \(y''_i \).

The required equations are obtained by setting equation (3.3.5) evaluated for \(x = x_j \) in the interval \((x_{j-1}, x_j) \) equal to the same equation evaluated for \(x = x_j \) but in the interval \((x_j, x_{j+1}) \). With some rearrangement, this gives (for \(j = 2, \ldots, N-1 \))

\[
\frac{x_j - x_{j-1}}{6} y''_{j-1} + \frac{x_j + x_{j-1} - 2x_j}{3} y''_j + \frac{x_{j+1} - x_j}{6} y''_{j+1} = \frac{y_{j+1} - y_j}{x_{j+1} - x_j} - \frac{y_j - y_{j-1}}{x_j - x_{j-1}}
\]

(3.3.7)

These are \(N - 2 \) linear equations in the \(N \) unknowns \(y''_i, i = 1, \ldots, N \). Therefore there is a two-parameter family of possible solutions.

For a unique solution, we need to specify two further conditions, typically taken as boundary conditions at \(x_1 \) and \(x_N \). The most common ways of doing this are either

- set one or both of \(y''_1 \) and \(y''_N \) equal to zero, giving the so-called natural cubic spline, which has zero second derivative on one or both of its boundaries, or
- set either of \(y''_1 \) and \(y''_N \) to values calculated from equation (3.3.5) so as to make the first derivative of the interpolating function have a specified value on either or both boundaries.

One reason that cubic splines are especially practical is that the set of equations (3.3.7), along with the two additional boundary conditions, are not only linear, but also tridiagonal. Each \(y''_j \) is coupled only to its nearest neighbors at \(j \pm 1 \). Therefore, the equations can be solved in \(O(N) \) operations by the tridiagonal algorithm (§2.4). That algorithm is concise enough to build right into the spline calculational routine. This makes the routine not completely transparent as an implementation of (3.3.7), so we encourage you to study it carefully, comparing with tridag (§2.4). Arrays are assumed to be unit-offset. If you have zero-offset arrays, see §1.2.

```c
#include "nrutil.h"

void spline(float x[], float y[], int n, float yp1, float ypn, float y2[])
Given arrays \( x[1..n] \) and \( y[1..n] \) containing a tabulated function, i.e., \( y_i = f(x_i) \), with \( x_1 < x_2 < \ldots < x_N \), and given values \( yp1 \) and \( ypn \) for the first derivative of the interpolating function at points 1 and \( N \), respectively, this routine returns an array \( y2[1..n] \) that contains the second derivatives of the interpolating function at the tabulated points \( x_i \). If \( yp1 \) and/or \( ypn \) are equal to \( 1 \times 10^{10} \) or larger, the routine is signaled to set the corresponding boundary condition for a natural spline, with zero second derivative on that boundary.
{
    int i,k;
    float p,qn,sig,un,*u;

    u=vector(1,n-1);
    if (yp1 > 0.99e30) The lower boundary condition is set either to be "natural"
        y2[1]=u[1]=0.0;
    else { or else to have a specified first derivative.
        y2[1] = -0.8;
        u[1]=(3.0/(x[2]-x[1]))*(y[2]-y[1])/(x[2]-x[1])-yp1;
    }
```
for (i=2;i<=n-1;i++) {
 sig=(x[i]-x[i-1])/(x[i+1]-x[i-1]);
 p=sig*y2[i-1]+2.0;
 y2[i]=(sig-1.0)/p;
 u[i]=(y[i+1]-y[i])/(x[i+1]-x[i]) - (y[i]-y[i-1])/(x[i]-x[i-1]);
 u[i]=(6.0*u[i]/(x[i+1]-x[i-1])-sig*u[i-1])/p;
}
if (ypn > 0.99e30)
 The upper boundary condition is set either to be
 qn=un=0.0;
else {
 or else to have a specified first derivative.
 qn=0.5;
 un=(3.0/(x[n]-x[n-1]))*(ypn-(y[n]-y[n-1])/(x[n]-x[n-1]));
 y2[n]=(un-qn*u[n-1])/(qn*y2[n-1]+1.0);
 for (k=n-1;k>=1;k--)
 This is the backsubstitution loop of the tridiagonal
 y2[k]=y2[k]*y2[k+1]+u[k];
 free_vector(u,1,n-1);
}

It is important to understand that the program spline is called only once to
process an entire tabulated function in arrays x_i and y_i. Once this has been done,
values of the interpolated function for any value of x are obtained by calls (as many
as desired) to a separate routine splint (for "spline interpolation":)

void splint(float xa[], float ya[], float y2a[], int n, float x, float *y)
Given the arrays xa[1..n] and ya[1..n], which tabulate a function (with the xa_i's in order),
and given the array y2a[1..n], which is the output from spline above, and given a value of
x, this routine returns a cubic-spline interpolated value y.
{
 void nrerror(char error_text[]);
 int klo,khi,k;
 float h,b,a;
 klo=1;
 khi=n;
 while (khi-klo > 1) {
 k=(khi+klo) >> 1;
 if (xa[k] > x) khi=k;
 else klo=k;
 }
 khi and klo now bracket the input value of x.
 h=xa[khi]-xa[klo];
 if (h == 0.0) nrerror("Bad xa input to routine splint"); The xa's must be dis-
 a=(xa[khi]-x)/h;
 b=(x-xa[klo])/h;
 *y=a*ya[klo]+b*ya[khi]+((a*a*a-a)*y2a[klo]+(b*b*b-b)*y2a[khi])*(h*h)/6.0;
}

CITED REFERENCES AND FURTHER READING:
Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§2.4.
Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §3.8.
3.4 How to Search an Ordered Table

Suppose that you have decided to use some particular interpolation scheme, such as fourth-order polynomial interpolation, to compute a function \(f(x) \) from a set of tabulated \(x_i \)'s and \(f_i \)'s. Then you will need a fast way of finding your place in the table of \(x_i \)'s, given some particular value \(x \) at which the function evaluation is desired. This problem is not properly one of numerical analysis, but it occurs so often in practice that it would be negligent of us to ignore it.

Formally, the problem is this: Given an array of abscissas \(xx[j], j=1, 2, \ldots, n \), with the elements either monotonically increasing or monotonically decreasing, and given a number \(x \), find an integer \(j \) such that \(x \) lies between \(xx[j] \) and \(xx[j+1] \). For this task, let us define fictitious array elements \(xx[0] \) and \(xx[n+1] \) equal to plus or minus infinity (in whichever order is consistent with the monotonicity of the table). Then \(j \) will always be between 0 and \(n \), inclusive; a value of 0 indicates “off-scale” at one end of the table, \(n \) indicates off-scale at the other end.

In most cases, when all is said and done, it is hard to do better than bisection, which will find the right place in the table in about \(\log_2 n \) tries. We already did use bisection in the spline evaluation routine \texttt{splint} of the preceding section, so you might glance back at that. Standing by itself, a bisection routine looks like this:

```c
void locate(float xx[], unsigned long n, float x, unsigned long *j)
{ unsigned long ju,jm,jl;
  int ascnd;
  jl=0;  // Initialize lower limit
  ju=n+1;  // and upper limits.
  ascnd=(xx[n] >= xx[1]);
  while (ju-jl > 1) { // If we are not yet done,
    jm=(ju+jl) >> 1;  // compute a midpoint,
    if (x >= xx[jm] == ascnd)  // and replace either the lower limit
      jl=jm;  // or the upper limit, as appropriate.
    else
      ju=jm;
  }  // Repeat until the test condition is satisfied.
  if (x == xx[1]) *j=1;  // Then set the output
  else if(x == xx[n]) *j=n-1;
  else *j=jl;  // and return.
}
```

A unit-offset array \(xx \) is assumed. To use \texttt{locate} with a zero-offset array, remember to subtract 1 from the address of \(xx \), and also from the returned value \(j \).

Search with Correlated Values

Sometimes you will be in the situation of searching a large table many times, and with nearly identical abscissas on consecutive searches. For example, you may be generating a function that is used on the right-hand side of a differential equation: Most differential-equation integrators, as we shall see in Chapter 16, call