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Abstract

Consider the following problem. You are given an alphabet of k distinct sym-
bols and are told that the ¢** symbol occurred exactly n; times in the past.
On the basis of this information alone, you must now estimate the conditional
probability that the next symbol will be 7. In this report, we present a new
solution to this fundamental problem in statistics and demonstrate that our
solution outperforms standard approaches, both in theory and in practice.
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1 Introduction

Consider the following problem. You are given an alphabet A of k distinct sym-
bols and are told that the i*” symbol occurred exactly n; times in the past. On
the basis of this information alone, you must now estimate the conditional prob-
ability p(i|{n;}, n) that the next symbol will be . We present a new solution
to this fundamental problem in statistics and inductive reasoning and demon-
strate that our solution outperforms standard approaches, both in theory and
in practice.

This problem of multinomial estimation is arguably the single most impor-
tant parameter estimation problem in all of statistics. Its solution is necessary
in any application requiring a discrete probability function, such as classification
with decision trees or time series prediction.

For time series prediction with Markov processes, the alphabet A is the
alphabet of the Markov process and the {n;}; are the number of times that the
it" symbol has been generated in the state s. The prediction p(i|{n;},ns, s)
represents the probability that the state s will generate the i*” symbol and
transition to the next state 6(s, 7). As an example, consider the problem of
predicting the next word in an English utterance based on the preceding words.
The alphabet A represents all the possible words of English and the states of
the Markov process represent the immediately preceding words.

For classification with decision trees, the alphabet A is the set of classes and
the {n;}, are the number of times that the i*® class has been observed in a
given equivalence set s. The equivalence sets correspond to the leaves of the
decision tree. They partition the universe of objects based on their observable
properties (ie., their features) while the classes A represent a hidden property.
The prediction p(7|[{ni}s, ns, s) represents the probability that the next object
that belongs to the equivalence set s will belong to the i*? class. As an example,
consider the problem of medical diagnosis. The classes A represent all the
possible illnesses that a patient might have and the equivalence sets represent
all the logically possible combinations of symptoms that a patient might have.

We begin by presenting the original solution to this problem — Laplace’s
law of succession — as well as the most widely-adopted practical solution —
Lidstone’s law of succession. Next we present our natural law of succession and
compare it to the two standard laws. We show that the penalty for using either of
the standard laws instead of the natural law grows without bound for any finite
string drawn from a subset of the alphabet. Unlike prior analyses, our analysis
applies to any finite string without reference to hidden source probabilities or to
convergence in the limit. We conclude by comparing the empirical performance
of the natural law to four parameter estimation rules employed by the data
compression community. The natural law gives the best overall compression, by
a wide margin. In an appendix, we compare the natural law to two variants of
the classic Good-Turing estimate [12].



2 Parameter Estimation

The problem of predicting symbols from their observed frequencies is tradition-
ally viewed as a problem in parameter estimation. Under this view, each symbol
¢ 1s associated with a hidden parameter p; whose value represents its probability
of occurrence. Our task is to determine the value of all the parameters, using
the observed frequencies. Let us consider two approaches to this parameter
estimation problem, one due to Laplace and the other to Lidstone.

2.1 Laplace’s Law

The original solution to this parameter estimation problem is Laplace’s law of
succession (1775)

pr(il{ni}, n) = (ni +1)/(n + k) (1)

where n = ). n; is the total number of symbols observed. Laplace proved that
(1) is the correct Bayesian estimate when starting from a uniform prior on the
symbol probabilities.

Laplace’s law of succession has been widely criticized for assigning both
too much and too little probability to novel events. For example, consider the
question of whether or not the sun will rise tomorrow, given that it has risen
n; times in the past and failed to rise ny times. In Laplace’s circumstances,
all the reports of history for the past five thousand years indicated that the
sun had never failed to rise. So nyp = 0 days and n; = 1,826,213 days, and
therefore Laplace calculates the probability that sun will rise tomorrow to be
1 —1/1,826,215. For comparison, consider the popular New Jersey “Pick 6”
state lottery. In order to win, one must pick the correct six balls from a set of
46, without replacement. There are 9,366,819 ways to do this, so the chance
that the sun would fail to rise tomorrow is more than five times greater than the
chance of winning Pick 6! Given a similar payoff, the inhabitants of New Jersey
who subscribe to Laplace’s law should be willing to bet on the sun’s failing to
rise for at least another 20,425 years.

Or consider the question of how many elephants live on the planet Mars.
Mars has a surface area of approximately 22,166,424,000 square miles. Let us say
for the sake of argument that each square mile can support at most one elephant,
allowing for grazing and a comfortable life style. Then a prior: we know that
there are anywhere from 0 to 22,166,424 000 elephants on Mars. Having no
other prior knowledge, we have no rational basis to distinguish between these
possibilities and therefore assign them a uniform prior. Due to the frivolous
nature of our project, we are only permitted to make a single interplanetary
observation of Mars per day. Using Laplace’s law of succession it would take
110,829,935,214 millenia in order for us to believe that there are no elephants
on Mars with the same confidence that Laplace believed that the sun would rise
tomorrow.



Finally, consider the problem of predicting the output of a random number
generator that purports to generate 32 bit numbers uniformly. After 232 — 1
trials, you observe that this alleged random number generator has generated
exactly 232 — 1 distinct numbers! Only a single number 7 has not been generated.
According to Laplace’s law of succession, the probability that the next number
is i is only 1/(23% — 1).

The widely proclaimed absurdity of these results has led many influential
statisticians to reject Bayesian inference altogether [8, 9, 19, 38]. Even the
staunchest advocates of Bayesian reasoning feel compelled to give stern warn-
ings against the use of Laplace’s law [11, 13, 16, 17]. Apparently the risk of
using Laplace’s law has become so great that it may no longer be taught to
undergraduates, even at MIT [1, 7].

It is only fair to point out, as Laplace did, that these calculations did not
include our comprehensive prior knowledge of celestial mechanics, zoology, Mar-
tian meteorology, or computer programs.? But we may well wonder — what is
the value of inductive inference if prior knowledge is its certain prerequisite?

2.2 Lidstone’s Law

In statistical practice, a commonly adopted solution to the problem of multino-
mial estimation 1s Lidstone’s law of succession for some positive A.

palil{ni}, n) = (ni +A)/(n + kA) (2)

This class of probability estimates is due to the actuaries G.F. Hardy [14] and
G.J. Lidstone [28] at the turn of the century. These estimates were later ex-
plained by W.E. Johnson [21] as a linear interpolation of the maximum likeli-
hood estimate n;/n and the uniform prior 1/k. This may immediately be seen
by rewriting (2) as (3) with the substitution g = n/(n + kX) [13].

pulil{ns) ) = w5+ (1 ) (3)

Johnson’s perspective was taken up by R. Carnap in his widely-cited work on
inductive reasoning [3].

This class of probability estimates is also prominent in the information theory
literature [6, 10, 24, 25] and the statistical language modeling community [20].
The most widely advocated single value for A is 1/2, for a diverse set of reasons
[18, 31, 26]. For this reason, the special case A = 1/2 has even been given its own
name, namely, the Jeffreys-Perks law of succession [13]. Empirical investigation
shows that the optimal value for A in data compression applications ranges from
1 for object code files to 1/32 for files containing English prose.

2Immediately after calculating the probability of the sun rising, Laplace notes that “this
number would be incomparably greater for one who, perceiving . . . the principle regulating
days and seasons, sees that nothing at the present moment can check the sun’s course.” [27,
p-11]



The value of the flattening parameter A represents the statistician’s prior
knowledge. It must be chosen before making any observations. Consequently,
we are confronted with the dilemma of choosing A solely on the basis of our prior
knowledge. In most cases, the necessity of choosing a parameter value a priori
defeats the purpose of inductive inference. If we are required to study celestial
mechanics in order to set the value of A for accurate sunrise prediction, then
we may as well just ignore the observations altogether and simply predict that
the sun will certainly rise tomorrow. But what then will we do when our prior
knowledge is incomplete or not easily quantifiable? In such situations, we are
conceptually obligated to set A to unity and bear the consequences of Laplace’s
law of succession.

In point of fact, no value of A is appropriate for sunrise prediction. A < 1
represents greater trust in the empirical probabilities while A > 1 represents less
trust in the empirical probabilities. In the case of sunrise prediction, our confi-
dence that the sun will rise tomorrow is based on our scientific understanding of
celestial mechanics and the solar system, not on the mere fact that the sun has
risen for the past 5,000 years. This line of reasoning suggests an enormous value
for A, which yields poor predictions. Consequently, no value of A is appropriate
for this situation, although smaller A will give better predictions.

Nor does Lidstone’s law offer a practical solution to the Martian elephants
problem. To a first approximation, halving A only halves the number of obser-
vations required to achieve a given level of confidence. Since the set of symbols
is so large, A must be essentially zero in order for the probability estimate to
converge in our lifetimes. But then a single faulty observation, or the prank of
an undergraduate astronomy student, will suffice to convince us of the existence
of Martian elephants.

Finally, we note that only extremely large values of A will give better pre-
dictions for the defective random number generator. Unfortunately, a large A
represents prior confidence in the uniformity of the random number generator.
Just as a small A does not represent a lack of prior knowledge, a large A does not
represent a wealth of prior knowledge. And thus we see that A does truly not
represent our prior knowledge — rather, it only represents the prior knowledge
that we wished we had after making our observations.

3 Natural Strings

Let us now consider a different approach to this problem. Instead of estimating
parameter values, let us impose constraints on strings so that simple strings are
more probable than complex ones. Our approach is principally inspired by the
theory of stochastic complexity [34, 35, 36] and the related theory of algorithmic
complexity [4, 23, 37].

The most important constraint on a string arises from its definition. A string
is, by definition, a sequence of discrete symbols drawn from a finite alphabet



with replacement. A uniform prior on all strings results in the probability
assignment (4) for the string z™ of length n over an alphabet A of size k.

wem = ("7 ) (o)) )

This probability assignment corresponds to a uniform prior on all possible par-
titions of n into k subsets, followed by a uniform prior on all distinguish-
able strings that contain exactly n; occurrences of the i*® symbol. It en-
tails Laplace’s law of succession, regardless of whether we define pr(i|z",n)
as the conditional probability pr(z"i|n + 1)/pr(z™|n) or as the relative odds
pr(z"iln +1)/ ZjeA pr(z"jln +1).

The next most important property of a string — and the single most im-
portant property of a natural string — is that it is drawn from a proper subset
of the alphabet. This is necessarily so for extremely short strings, but it is also
true for long strings. For example, computer files are strings over an alphabet
of size 256. Some files, such as those containing object code or executables, use
all 256 symbols. Most files, however, are limited to a subset of the 95 printing
and spacing ASCII characters. The entire King James bible contains only 66
distinct characters. Or consider that most English speakers use less than 20,000
of the more than 1,000,000 word forms listed in Webster’s 3rd. Even worse, the
set of word forms known by English speakers — of which Webster’s 3rd is only
a proper subset — is continually growing. No natural English sentence could
possibly contain all the English word forms!

We consider two interpretations of the constraint that natural strings are
drawn from a subset of the symbols in their alphabets. In the first interpre-
tation, all nonempty subsets of the alphabet are equally likely. In the second
interpretation, all nonzero subset cardinalities are equally likely.

If we assign a uniform prior to all nonempty subsets of the alphabet, then
we obtain the following probability assignment,

-1

werm= (2 () (o) (i) ®)

i=1

where ¢ is the number of distinct symbols in 2", ie., ¢ = |{7 : n; > 0}|. The first
term represents the number of nonempty subsets containing less than or equal
to min(k, n) symbols. Any subset of size greater than min(k, n) is impossible;
when n > k, there are exactly 2 — 1 nonempty subsets of A. The second term
represents a uniform prior on the n;, given that & — g of the n; must be zero and
the remaining ¢ must be greater than zero. The third term represents a uniform
prior on all strings that contain exactly n; occurrences of the i** symbol, for
each . Since the vast majority of the subsets are of moderate size, both very
large subsets and very small subsets are relatively improbable under (5).



If we assign a uniform prior to all nonzero subset cardinalities, then we
obtain the following probability assignment instead.

o= (e (V) (1) ()

The first term of the product represents a uniform prior on the number ¢ of
attested symbols, 1 < ¢ < min(k,n). The second term represents a uniform
prior on the subsets of A that are of size ¢. The third term represents a uniform
prior on the n;, given that & — ¢ of the n; must be zero and the remaining ¢
must be greater than zero. The fourth term represents a uniform prior on all
strings that contain exactly n; occurrences of the i® symbol, for each i.

In comparison to the uniform subsets prior (5), the uniform cardinality prior
(6) assigns more probability to small and to large subsets of the alphabet, and
less to subsets of moderate cardinality. For example, the uniform cardinality
prior assigns higher probability to subsets of cardinality less than 110 or greater
than 146 in an alphabet size of 256. Most computer files contain less than
95 characters or all 256, so the uniform cardinality prior will have an inherent
advantage over the uniform subsets prior in the domain of computer files. Our
investigation in section 5 confirms this prediction.

Neither probability function (5, 6) is Kolmogorov compatible because p(i”|n) =
p(i"t1|n + 1) for every symbol 7 in A. Every A" has a different model. Conse-
quently, the probability assigned to a string is not the product of the conditional
probabilities of every symbol in the string, ie., p(z"|n) # 172y p(2i41]2t,t). In
order to obtain a law of succession, we must therefore calculate the conditional
probability p(i|z", n) as the relative odds that the symbol i will succeed z"
relative to the probability than any symbol j in A will succeed z”.

. ) p(z™iln 4+ 1
plila” m) = A
Zj:l p(z™jn + 1)
Since our probability assignments depend only on the symbol frequencies {n;}
in the string, p(i[{n;}, n) = p(ilz", n).

Algebraic manipulation on the uniform subsets prior (5) gives us the follow-

(7)

ing law of succession (8), which is valid even when n < k.

ps(il{ni},n) = { (ni + D(n+1-q)/((n+a)(n+1-q)+aqk—q) ifni >0
H q/((n+q)(n+1—q)+q(k —q)) otherwise
(8)
Note that ps(i|{n;},n) = (n; + 1)/(n + k) if ¢ = k, and so the uniform subsets
law reduces to Laplace’s law when all the symbols are attested.
Similarly, the uniform cardinality prior (6) yields the following law of suc-
cession (9), which we call the natural law.

(n; + 1)/(n+k) ifqg==F
pe(il{n;},n) =< (mi+D(n+1—-¢q)/(n?+n+2q) ifg<kAn; >0 (9)
q(q+1)/(k — q)(n* + n+2q) otherwise



A central difference among the four laws of succession is the amount of
probability they assign to novel symbols. By a slight abuse of notation, let
p(al{ni},n) = 3 {in.50p P(il{ni}, n) be the total probability assigned to attested
symbols and let p(q|{n;}, n) = 1 —p(q|{n;},n) be the total probability assigned
to novel symbols.?

pe(g{ni},n) = (k—q)/(n+k)

p)\(QHni})n) = (k*Q)/\/(n‘l'k/\) (10)
ps(gl{ni},n) = gk —q)/((n+)n+1-q)+qk—q))
pe(al{ni},n) = qlg+1)/(n® +n+2q)

Now the difference between the estimates is striking. Unlike the standard laws of
succession (1,2), the amount of probability assigned to novel events by our laws
of succession (8,9) decreases quadratically in the number n of trials. Doubling
the number of trials will decrease the likelihood of novel events by a factor of
four. Even more importantly, unlike the other three laws, the amount of proba-
bility assigned to novel events by the uniform cardinality law (9) is independent
of the alphabet size k. There is no penalty for large alphabets.

The direct result is that the uniform cardinality law makes extremely strong
predictions. For example, it takes only 1,911 days for the uniform cardinality
law to achieve the same confidence that the sun will rise that Laplace’s law
achieved in 1,826,213 days. If we spent the same paltry 1,911 days counting
the number of elephants on Mars, we would have achieved the same confidence
that there are no Martian elephants that required Laplace’s law 110,829,935,214
millenia!

Unlike Lidstone’s law with A < 1, the uniform cardinality law does not
merely assign less probability to novel events. The amount of probability as-
signed to novel events depends on ¢ and on n. Recall our defective random
number generator that emitted 232 — 1 distinct numbers in 232 — 1 trials. At
that point, Lidstone’s law would predict the lone remaining novel symbol with
probability A/((1 + X)232 — 1), ie., as a practical impossibility. In contrast,
the uniform cardinality law would predict that novel symbol with probability
232/(232 4 1), ie., as a virtual certainty.

Thus, the uniform cardinality law overcomes the practical difficulties en-
countered by Laplace’s law without any prior knowledge of celestial mechanics,
zoology, Martian meteorology, or computer programming.

The uniform cardinality law works because it wastes so little probability.
It assigns such a low conditional probability to novel symbols only because
it has assigned such a high probability to the previous symbols. In contrast,
the standard laws of succession assign a much larger conditional probability to
novel symbols, but only because they have assigned such a low probability to
the previous symbols.

3The latter probability, p(g|{n;},n), is the “escape probability” of the data compression
community [2] and the “backoff probability” of the speech recognition community [22]. See
our discussion in section 5 below.



To see this, let’s reconsider Laplace’s famous sunrise example. According
to Laplace’s law, the total probability pL({n1 = n+ 1}|n + 1) that the sun
will rise for n + 1 consecutive days is 1/(n + 2), while the total probability
p({no = 1,n1 = n}|n + 1) that the sun will rise for all but one of the n + 1
consecutive days is also 1/(n+2). According to the uniform cardinality law, the
total probability pc({n1 = n+1}|n+1) that the sun will rise for n+1 consecutive
days is 1/4, while the total probability pc({no = 1,n; = n}|n+ 1) that the sun
will rise for all but one of n + 1 days is 1/2n. Thus, pr({no = 1,71 = n}n+1)
is only about twice as likely as pc({ng = 1,71, = n}|n + 1). The tremendous
disparity between Laplace’s law and the uniform cardinality law arises because
pc({ny = n+ 1}|n+ 1) is about n/4 times as likely as p({ny = n+ 1}|n+ 1)!
Recall from (7) above that

11", n) =
pe(l| ) pc(171n + 1) 4+ pc(170jn + 1)

The enormous conditional probability pc (11", n) in favor of the sun continuing
to rise is more due to the surprisingly high probability of pc(1”1|n + 1) than
to the low probability of pc(170|n + 1). So our law of succession should satisfy
those who believe that Laplace’s law assigns too much probability to novel events
as well as those who believe that it doesn’t assign enough probability to novel
events.

In statistical practice, it may prove desirable to reduce the flattening in our
two laws of succession (8,9). The resulting “sharpened” estimates (11,12) more
quickly approach the maximum likelihood estimate n;/n while still reserving
the proper amount of probability for novel events.

(nz> ( (n+tg)nt+1l-gq)

g if n; >0
n/ (n+q)(n+1-q)+qk—q)

ps(il{ni},n) = ¢ (11)

therwi
(n+a)(n+1—q)+q(k—q) e
o ifg=k
n
] niy n(n+1)+q(1—¢q) .
poi(il{ni}, n) = (;Z) FEE— ifg<kAn; >0 (12)
1 g(g+1) .
| (kq) n?+nt g otherwise

These laws give better results when estimating the state transition probabilities
of a large Markov model, or in any other situation where the total number of
trials is small.



4 Analysis

The practical importance of strong predictions confined to subsets of the alpha-
bet cannot be overstated. Let us therefore determine which law gives the best
predictions when strings are confined to a subset of the alphabet. We propose
two analyses to answer this question. The first analysis reports the total proba-
bility assigned to the set of strings generated from a subset of the alphabet. We
show that the total probability assigned to the set of possible strings by Lid-
stone’s law rapidly approaches zero. In contrast, the total probability assigned
to the possible string by the natural law is a constant, independent of the string
length. The second analysis considers the ratio of the probabilities assigned
by two laws of succession to any string drawn from a subset of the alphabet.
We show that the natural law assigns more probability to any such string than
is assigned by either of the standard laws. Both of our analyses have the sin-
gular virtue of applying to finite strings, without reference to hidden source
probabilities.

Let us first consider the case where the set of possible strings is drawn from
a subset of the alphabet. Let A be the universe of possible symbols and let B
be the actual alphabet of the source, B C A, and |B| = b. In our examples, A
might be the set of all 256 8-bit bytes and B might be the set of 95 printing and
spacing ASCII characters. One important question we can ask of a probability
estimate is how much probability it wastes on the impossible strings A™ — B"
of a given length n, without prior knowledge of B.*

According to Laplace’s law, there are (n+k& — 1)!/n!(k — 1)! logically possible
{n;} although in the current situation only (n 4+ b — 1)!/n!(b — 1)! are in fact
possible for our source. Therefore

n n+b—1 n+k—1
pL(B |n) = ( b1 )/( E—1 )
(k-1 (n+b-1)!
(b— D' (n+k— 1)

E—1 \**
< (n+k1>

and the total probability pz(B™|n) assigned to the possible strings rapidly ap-
proaches zero for increasing n when b < k. Equivalently, the total probability
pL(A" — B") =1 — pr(B") wasted on the impossible strings approaches unity
when b < k.

A similar result obtains for Lidstone’s law. The total probability assigned

*In the most general case, we might consider the amount of probability assigned by an
estimate to an arbitrary set By of all possible strings, B, C A", without prior knowledge of
the impossible strings By,. Such an analysis reveals how quickly the estimate distinguishes the
possible from the impossible, and how much probability is ultimately wasted on the impossible.



to a string ™, 2" € A", with symbol frequencies {n;} by Lidstone’s law is

[L:(C(ns + A)/T(A))
T(n + kX)/T(kX)

pa(e"|n) = (13)

while the total probability assigned to the possible strings B” is as follows, using
Stirling’s approximation.

pA(B"|n)
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Unless A = 0 and b = 1, the total probability px(B™|n) assigned to the possible
strings approaches zero as n approaches infinity.

Thus, Lidstone’s law without prior knowledge of B performs arbitrarily worse
than any other probability function with prior knowledge of B. This profound
flaw in Lidstone’s law — and in Laplace’s law — is typically disguised by an-
alyzing how the probability estimate py(é|{n;}, n) converges to the underlying
source probability as n approaches infinity. Our much simpler analysis shows
that convergence of probabilities in the limit is at best a feeble optimality.

How much probability does the uniform cardinality law waste on the im-
possible strings? According to the uniform cardinality law, there are kk!(n —
D!q!(k—q)(n—q)! (g — 1)! logically possible {n;}. To simplify the analysis, let
us consider the case where n is sufficiently large so that ¢ = b. (The case ¢ < b is
more favorable to the uniform cardinality law.) Then only (n—1)!/(n—0)!(b—1)!
of the {n;} are still possible, and

ey = (27 ) (£ (371
bl(k — b)!
(k+1)!

which is minimized for b = k/2. At that point, the total probability pc(B")
assigned to the possible strings is strictly greater than the constant 2=%/2 irre-
spective of n. Thus, the uniform cardinality law without prior knowledge of B
performs at most a constant factor worse than any other probability function
with prior knowledge of B!

As our second theoretical question, let us consider how much the probabilities
assigned by the uniform cardinality law can differ from those given by Laplace’s
law. In particular, how can we bound the ratio pc(2™|n)/pL(2™|n) for all n and

10



z"7 Observe that the ratio of the two probabilities depends only on n, &, and
q. Without loss of generality, we assume n > k to simplify the analysis. (The
case n < k is considerably more favorable to the uniform cardinality law.)

vty = ("EE ) () (o))
= O((n+k— 1)k

In other words, encoding a sequence of length n with Laplace’s law instead of
the uniform cardinality law will cost an additional ©((k — ¢) logn) bits. The
penalty for using Laplace’s law instead of the uniform cardinality law grows
without bound.

A similar result obtains for Lidstone’s law.

k
po(a™n)/pa(z"[n) = O =Dk =1 TT nl=%)

i=1

We include the A~! term as a reminder that A = 0 will result in an infinite
advantage for the uniform cardinality rule when ¢ > 1. This ratio is a function of
the parameter A and the observed {n;}. For the Jeffreys-Perks law of succession,
with the widely advocated A = 1/2, the penalty grows without bound when
q < k/2. The case ¢ > k/2 depends on the actual symbol frequencies. When
the entropy of the relative frequencies is high and the number of attested symbols
is high, then the uniform cardinality law will provide better predictions than
the Jeffreys-Perks law. When the empirical entropy is low but the number
of attested symbols is large, then the Jeffreys-Perks law will provide better
predictions than the uniform cardinality law.

The predictions given by the uniform subsets law differ from those of the
uniform cardinality law by a constant that depends only on £ and ¢, independent
of n. Consequently, the uniform subsets law also enjoys a significant advantage
over Laplace’s law and Lidstone’s law.

Finally, we note that our analysis applies equally well to finite memory
models whose state transition probabilities are estimated using either Laplace’s
law [32, 33] or the Jeffreys-Perks law [39, 40]. Unless all the alphabet symbols are
observed in all the model states — an incredibly unnatural situation — the total
probability assigned to the possible strings by such models rapidly approaches
zero as the strings get longer. Estimating the state transition probabilities of
finite memory models using the natural law instead of the Jeffreys-Perks law
will result in a prediction advantage that grows as a polynomial in the length
of the string, even when the string includes all the symbols of the alphabet.

11



5 Application

Data compression provides a stringent empirical test for all probability esti-
mates. Here the task is to predict the next byte in a file on the basis of the (fre-
quencies of the) preceding bytes. Better probability estimates provide greater
compression. So let us compare our two laws of succession (8,9) to the best
estimates that the data compression community has to offer.

The four most widely used probability estimates in the data compression
community, affectionately dubbed “methods A—D,” are summarized in the fol-
lowing table

Method p(i|{n:}, n) p(gl{ni}, n)

A 5] ni/(n+1) 1/(n+1)
B [5] (ni = )/n (k—q)q/(k—q')n
C [29] ni/(n+ q) q/(n+q)
DS (m /n o/2n
where ¢' = |{7 : n; > 1}| is the number of symbols that have occurred at least

twice. The second column gives the conditional probability of attested symbols
while the third column gives the total probability assigned to novel symbols (the
so-called “escape probability” for context models).?

The sole justification for these estimates is their empirical performance in
data compression applications. In fact, the authors of methods A-B go so far as
to claim that “there can be no theoretical justification for choosing any partic-
ular escape [probability] as the optimal one.” [2, p.145] Fortunately, our work
provides a clear theoretical justification: pick the method that most closely ap-
proximates the uniform cardinality law. In most cases, n > ¢, and then method
D most closely approximates the uniform cardinality law. Method B provides
the worst approximation to the uniform cardinality law because it assigns such
low probability to symbols that have occurred exactly once. Consequently, our
approach predicts that out of the four methods A-D, B is the worst and D is
the best. Let the tests begin.

Our first test is sunrise prediction. Since we believe that the sun has risen for
the past 5,220 years of recorded history, the test file contains 1,906,605 bytes,
all ‘1’ to indicate a successful sunrise.® Since ¢ = 1, methods A and C give the
same predictions in this situation. The slope of the compression curve represents
the rate at which the estimation rule becomes confident that the sun will rise

5Method B assigns probability (n; —1)/n to symbols that have occurred at least twice, and
then assigns the remaining ¢/n probability uniformly to all symbols that have occurred less
than two times [5]. There are exactly k — g novel symbols, so the total probability assigned
to novel symbols by method B is ((k — ¢q)/(k — ¢'))(q/n).

6The reader will note that this task is more difficult than Laplace’s sunrise prediction
problem because the alphabet size is 256 instead of 2. Those that find this objectionable may
imagine the task of sunrise prediction to be to predict whether the sun will rise, and if not,
then why not. A list of 255 possible reasons why the sun might fail to rise is available from
the author upon request.
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tomorrow, where a flatter compression curve represents stronger confidence in

tomorrow’s sunrise. Results are graphed in figures 1, 2.7

Sunrise Prediction
70 T T T T
60 T -
’ cardinality —
e subsets ----
50 | methods A,C ----- N
method B -
/ method D ---
40 | .
fS /
<IN N
20| i
"rv." L
10 H =
O 1 1 1 1
20 40 60 80 100
days

Figure 1: The first 100 days of recorded history. The horizontal axis represents
days while the vertical axis represents the negative log of the total probability
that the sun will rise for n consecutive days. A flatter curve represents greater

confidence in tomorrow’s sunrise.

"Neither Laplace’s law nor the Jeffreys-Perks law are graphed because their performance
on this file is so bad. Laplace’s law encodes the first 100 days in 301 bits and the entire 5,220
years in 3,644 bits. The Jeffreys-Perks law encodes first 100 days in 225 bits and the entire
5,220 years in 1,952 bits.
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bits

Sunrise Prediction
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Figure 2: The past 5,220 years of recorded history. The horizontal axis repre-
sents days while the vertical axis represents the negative log of the total prob-
ability that the sun will rise for n consecutive days (in bits). A flatter curve
represents greater confidence in tomorrow’s sunrise. After only 9 days, the uni-
form cardinality law is extremely confident in the sunrise. The uniform subsets
law becomes equally confident after 530 days. In contrast, methods A-D do not
achieve the same level of confidence any time during the 5,220 years of recorded

history.
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Our second test is the Calgary data compression corpus, which includes a
wide range of ASCII as well as non-ASCII files [2].® Our compression results are
summarized in the following table 1. All compression results are in whole bytes,
rounded up. Again, the uniform cardinality law is the overwhelming winner,
with the uniform subsets law in second place. The greatest disparity between the
estimates occurs for the file bib, which contains a formatted text bibliography.
Here the best estimate (the uniform cardinality law) beats the worst estimate
(Laplace’s law) by 177 bytes. The uniform cardinality law looses by a significant
amount on only one of the nineteen files (pic). The nonstationarity of that file
causes problems for the strong predictions of the uniform cardinality law.

file size g nH{ni/n} | pc() ps() pz() p%() A B C D
bib 111261 81 72330 92 102 269 174 111 170 152 121
book1 768771 82 435043 116 127 352 219 118 188 181 133
book?2 610856 96 365952 124 132 329 212 138 220 191 156
geo 102400 256 72274 165 191 165 161 285 302 305 248
news 377109 98 244633 116 124 304 201 142 226 199 162
obj1 21504 256 15989 129 147 129 126 249 194 150 174
obj2 246814 256 193144 190 225 189 182 302 353 320 280
paperl 53161 95 33113 100 108 236 156 118 161 141 117
paper2 82199 91 47280 105 114 259 167 112 153 142 111
paper3 46526 84 27132 92 101 238 154 103 142 130 103
paper4 13286 80 7806 79 89 190 126 91 113 101 84
paper5 11954 91 7376 83 89 181 122 102 124 104 92
paper6 38105 93 23861 95 103 223 149 114 154 133 113
pic 513216 159 77636 216 194 323 205 170 171 102 131
progc 39611 92 25743 91 98 222 150 117 165 140 119
progl 71646 87 42720 97 85 253 164 110 158 114 112
progp 49379 89 30052 94 102 236 155 111 154 133 112
trans 93695 99 64800 105 113 252 169 130 190 166 137
total: 3251493 — 1786884 | 2089 2244 4350 2992 2623 3338 2904 2505

Table 1: Compression results on the Calgary corpus for eight parameter esti-
mation rules, in whole bytes. All scores are relative to the empirical entropy
nH{n;/n} of the file, which is a lower bound for these estimates. ¢ is the
number of distinct symbols in each file. The uniform cardinality law pe() is
overwhelmingly the most effective and the uniform subsets law ps() is the next
most effective. Laplace’s law pr () has by far the worst overall peformance. Of
the four ad-hoc methods A-D, method D has the best average performance and
method B has the worst performance.

The uniform cardinality law comes in second place to the uniform subsets
law for the file progl, which contains a LISP program. The first 71 characters
of this file are the LISP comment character (semi-colon), and so the uniform

8The Calgary corpus is available via anonymous ftp from ftp.cpsc.ucalgary.ca.
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cardinality law predicts that the remainder of the file continue in this fashion.
Unfortunately, this prediction only works until the actual text of the comment
begins at the 75th character. Since the uniform subsets law converges slightly
slower, it beats the uniform cardinality law on this file by a mere 12 bytes.

progl
180 T T T
160 F
140
120
100
2
a
80 /
60 |- cardinality —
- % subsets ----
i methods A -----
a0 L i method B -~
/ method C -~
/ i method D -----
20_/,,,'., |
! i
O [L/ 1 1 1
0 50 100 150 200
bytes

Figure 3: Compression rates for the first 100 bytes of the file progl, which
contains a LISP program that begins with 71 semi-colons. Compressed bits are
relative to the empirical entropy.

The uniform cardinality law comes in next to last place for the file pic,
which contains a bit-mapped monochrome picture. Although this file contains
159 distinct characters, the first 52,422 bytes contain only 3 distinct characters.
By the time the remaining 156 characters appear, our two laws of succession are
extremely confident that the rest of the file will be limited to those first three
characters. As a result, the uniform cardinality law looses to method C by 114
bytes on this file. This situation is best modeled by a small number states, and
so should not be considered a weakness for either of our laws.
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Figure 4: Compression rates for the first 100,000 bytes of the file pic, which
contains a bit-mapped monochrome picture whose first 52,422 bytes contain only
3 distinct characters. Compressed bits are relative to the empirical entropy.
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6 Conclusion

In this world, all strings are finite and most are very short. Alphabets are
large. For this basic reason, natural strings do not include all the symbols in
the alphabet. We have proposed a parameter-free natural law of succession (9)
with this prior knowledge and proved that the total probability it assigns to the
set of possible strings is within a constant factor of the probability assigned by
any other probability function, and that the natural law outperforms Laplace’s
law by a factor of ©((n + k — 1)¥~¢) for any finite string of length n. We have
also shown that the natural law consistently provides the best predictions in
real-world data compression applications.
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A Good—Turing Estimates

I.J. Good and A. Turing [12] proposed the following estimate for enormous
alphabets and many samples

par(il{ni},n) = M Int (14)

no fa,

where f; = |{i : n; = j}|is the number of symbols that appeared exactly j times.
(Note that fo = k — ¢.) The principal motivation for the Good-Turing estimate
is the desire to estimate the probablity of encountering an unseen symbol. The
Good-Turing estimate performs poorly when the sample size is small, and so we
do not consider it in the body of the paper.

When applied to multinomial estimation, the Good-Turing estimate also
suffers from two defects. The first defect is that it will assign zero probability
to frequent events when some of the f; are zero, as is likely to happen when j
is large. The second defect is that more frequent events may be assigned lower
probabilities than less frequent events.

A popular ad-hoc solution to the first problem is to introduce a “discounting
cutoff parameter,” and to only perform Good-Turing discounting for those sym-
bols whose frequencies fall below the value of the discounting cutoff parameter
[22]. This approach will only work when the number of trials is significantly
larger than the value of the cutoff parameter, and the f; values below the (value
of the) cutoff parameter are stable. Consequently, it is not possible to use the
Good-Turing estimate for online estimation or to assign probabilities to entire
strings.

To remedy these problems, Ney and Essen [30] propose two variants of the
Good-Turing estimate. In their absolute discounting model, the positive fre-
quencies are decremented by a small constant amount §, 0 < 6 < 1, and the
remaining frequency is distributed uniformly across the novel events.

pail{ni} m) = {( ~8)fn it >0 (15)

qg6/n(k — q) otherwise

The total probability assigned to a string z™, 2" € A", by the absolute dis-
counting models may be calculated directly

Pl = T HF OLL-0)  (16)

n —1)!

for a discounting constant é independent of the string.

In the Ney-Essen linear discounting model, the positive frequencies are scaled
by a small positive constant o, 0 < @ < 1, and the remaining frequency is again
distributed uniformly across the novel events.

palil{ni}.n) = {( @pmifn i ni > 0 (17)

af/(k —q) otherwise
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For constant «a, the total probability of a string is

ai—1 ,an Wk —
O (vl § LY (18)

Tl _
i€q

Note that the scaling value & must be ©(1/n) for the linear discounting estimate
to converge to the source probabilities at a reasonable rate. The immediate con-
sequence of an adaptive « is that the total probability of a string will depend
on the order of the symbols, and not just on their frequencies. A string whose
symbols occur first early on will be more probable than a string whose sym-
bols occur first later. Consequently, the symbol frequencies are not a sufficient
statistic for this estimate when o € ©(1/n).

The total probability assigned to novel events by these estimates is indepen-
dent of the alphabet size k.

par(@d{ni},n) = fi/n
ps(al{ni},n) = qé/n (19)
palal{nit,n) = «

Let us first consider the ratio of the probabilities of the absolute and linear
discounting models for fixed é and «.

9=l _
Pl o5 ) = I oo
= O(((1 —a)*~ qHZEq nzf6)6)‘1)

> O(((L—a)"(n—¢)")7)

= oY)

This analysis makes clear that the linear discounting model for fixed « is simply
not a viable estimate.

So it is more interesting to compare the absolute discounting model to the
uniform cardinality law.

=1kl(n — 1)in!
P In)pele" ) = e e T Do 8)/ i+ 1)

O((n — ¢)*/ iy mi ™)

We note that
nlto < anué < pi(1+8)

i€Eq

with the immediate implication that

O(1/n") < ps(a"In)/pc (=" In) < O(n*~'=").
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Thus, the relative performance of the absolute discounting model and uniform
cardinality law is a function of the entropy H({n;/n}) of the relative frequencies.
When the empirical entropy is high, then the uniform cardinality law will do
better; when the empirical entropy is low, then the absolute discounting model
will do better.
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