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ABSTRACT

In this thesis, a novel language visualization system is presented that converts

natural language text into 3D scenes. The system is capable of understanding some

concrete nouns, visualizable adjectives and spatial prepositions from full natural lan-

guage sentences and generating 3D static scenes using these sentences. It is a rule

based system that uses natural language processing tools, 3D model galleries and lan-

guage resources during the process. Several techniques are shown that deals with the

generality and ambiguity of the language in order to visualize the natural language

text. A question answering module is built as well to answer certain types of spa-

tial inference questions after the scene generation process is completed. The system

demonstrates a new way of solving spatial inference problems by not only using the

language itself but with the extra information provided by the visualization process.
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ÖZETÇE

Bu çalışmada doğal dilin 3 boyutlu sahnelere dönüştürülmesini sağlayan yeni bir

sistem tasarımı sunulmaktadır. Dilin görselleştirilmesini sağlayan bu sistem, soyut

olmayan isimleri, bu isimleri niteleyen görünür etkisi olan sıfatları ve konum be-

lirten sözcükleri doğal dil cümlelerinden anlayıp dinamik olmayan 3 boyutlu sah-

nelere çevirmekte ve bunları doğal dil işleme araçlarını, 3 boyutlu model galerilerini

ve dil ile ilgili bilgi kaynaklarını kullanarak, kurallara dayalı olarak yapmaktadır. Bu

sistemin anlatımında aynı zamanda dilin genelliği ve belirsizliğini gidererek onu 3

boyutlu olarak görselleştirebilecek teknikler sunulmaktadır. Bu sahne yaratma işlemi

sonrasında bilgisayarın sahne ile ilgili bazı çıkarım sorularını cevaplayabileceği bir

arayüz de tanıtılmaktadır. Sistemin, sadece dil işleme teknikleri kullanılarak zor ce-

vaplanabilecek bazı çıkarım sorularına, gerçek dünyayı canlandırarak sadece dilden

elde edebileceği bilgilerin yanında 3 boyutlu dünya ile ilgili fazladan edindiğı bilgileri

kullanarak cevap vermesini sağlayan yöntemler anlatılmaktadır.
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Chapter 1

INTRODUCTION

Language visualization is a domain that combines natural language processing

with computer graphics. In this thesis, we present a novel language visualization

system that can generate static 3D scenes from full natural language sentences by

understanding some concrete nouns, visualizable adjectives and spatial prepositions.

In addition to the text-to-scene conversion engine, our system includes a question

answering module which can answer questions about spatial relations of the objects

in the scene. In this work, it has been shown that this type of a visualization system

can aid solving spatial inference problems since such a system is free of the limitations

of just using shallow semantics to answer these types of questions.

One of the primary aims of this research is to develop and discover methods and

techniques to visualize natural language by constructing 3D scenes. These methods

can have many practical uses. It has been shown in previous studies that these

methods are used in applications like car accident simulations [3], storytelling [14] and

scene placement tasks [2]. Some other areas such as delivery of news, storyboarding

process of games and movies, illustration task of books and magazines can also benefit

from an automatized language visualization system.

One of the difficulties in natural language processing is dealing with the uncer-

tainty and ambiguity of the language. Another motivation of this research is to
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investigate ways to improve natural language understanding by supporting an under-

standing system with extra information about the physical world. Our system uses

some predefined defaults and estimation when necessary in order to overcome the

ambiguities and generality in the language. Our generated 3D scenes serve the pur-

pose of improving understanding by adding geometric properties of 3D models and

their spatial relations as extra information. This makes it possible to build a question

answering module that can answer spatial relation questions even if the existence of

the particular spatial relation is not directly mentioned in the text. This is a scalable

system since the scene placement and manipulation procedures are independent of the

words themselves and any particular 3D model. Every 3D model is treated equally

by the procedures and every computed property used in the scene generation process

is dependent on the model itself.

Design of a language visualization system is complex since it has many compo-

nents like language analyzers, lexical resources, graphics tools and 3D model galleries.

In this work, we suggest a language visualization system architecture with a question

answering engine where all these components work together in harmony. The details

of the system and related studies on the subject are investigated in full detail in their

related chapters.

The structure of the thesis is as follows:

Chapter 2 summarizes previous works on language visualization. There are many

studies in this domain where natural language is combined with other modal-

ities. The presented works are important historically or as an inspiration for

our system. However, language visualization literature is not limited with these

studies. A more interested researcher should follow other studies from citations
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of our references.

Chapter 3 describes third party components that our system depends on. These

components include a 3D environment, lexical resources, 3D model galleries

and language analysis tools. A reader should be familiar with these pieces since

our system uses them heavily. Therefore an entire chapter is dedicated to the

details of these components.

Chapter 4 describes the implementation details of our language visualization sys-

tem. This chapter solidifies the connection between the separate components

that the previous chapter introduces and describes how our work is built on top

of them. This chapter shows how language analysis works in our system and

how sentences are converted to static scenes. This chapter also covers meth-

ods to overcome some problems in natural language processing. The question

answering module is covered in this chapter as well.

Chapter 5 concludes the thesis with the summary of contributions and provides the

reader with future directions for language visualization. The future work section

is organized from short term to long term goals.
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Chapter 2

RELATED WORK

In this chapter, we investigate previous studies on language visualization. These

multimodal systems include a graphics and a language processing component. The

studies in this chapter include rule based text-to-scene and text-to-animation genera-

tion systems, question answering systems with virtual agents in virtual environments

and learning scene-to-text systems that cover different parts of the language visual-

ization domain.

2.1 SHRDLU

SHRDLU [1] is one of the early systems which uses natural language to interact with

a robot living inside a virtual world. This virtual world includes blocks with different

shapes, sizes and colors. The user manipulates the robot using natural language and

interacts with the virtual world. Blocks can be moved and placed on each other using

natural language. SHRDLU interface is shown in Figure 2.1.

SHRDLU has a memory of actions it has taken and these can be queried by the

user as well. The user can also query the current state of the world. Normally user

picks the objects by describing them with adjectives. However it is also possible to

name the objects in the scene. The named object can be referred by its name at a

later time. SHRDLU also has a physics engine and it can determine whether two

objects can stay on top of each other or not. These properties of SHRDLU enable
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it to handle many different cases and scenarios. A sample dialog with the SHRDLU

system is shown below.

Figure 2.1: A display of SHRDLU blocks world.

Person: PICK UP A BIG RED BLOCK.

Computer: OK. (does it)

Person: GRASP THE PYRAMID.

Computer: I DON’T UNDERSTAND WHICH PYRAMID YOU MEAN.

Person: FIND A BLOCK WHICH IS TALLER THAN THE ONE YOU ARE

HOLDING AND PUT IT INTO THE BOX.

Computer: BY "IT", I ASSUME YOU MEAN THE BLOCK WHICH IS

TALLER THAN THE ONE I AM HOLDING.

Computer: OK. (does it)

Person: WHAT DOES THE BOX CONTAIN?

Computer: THE BLUE PYRAMID AND THE BLUE BLOCK.

Person: WHAT IS THE PYRAMID SUPPORTED BY?

Computer: THE BOX.
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Person: HOW MANY BLOCKS ARE NOT IN THE BOX?

Computer: FOUR OF THEM.

Person: IS AT LEAST ONE OF THEM NARROWER THAN THE ONE

WHICH I TOLD YOU TO PICK UP?

Computer: YES, THE RED CUBE.

Person: IS IT SUPPORTED?

Computer: YES, BY THE TABLE.

SHRDLU is limited in the sense that all the actions are available and applied to

the blocks that already exist in the virtual world. It uses a limited set of vocabulary

and objects.

2.2 Put System

The Put system [2] is an object placement system that uses simplified natural language

commands. The aim of this system is to make scene construction task easier by using

a strict subset of English and direct manipulation. 3D scene construction can be

difficult in a 2D projected window. Mouse and keyboard input may not be always

sufficient and suitable for such a task. Different views of the 3D scene is needed as

well to check if the placement of an object is correct.

Put includes a modeling environment and an application programming interface.

It provides a multi window environment for viewing, direct scene manipulations and

linguistic input. The input of the system is a file that describes the scene and the

output can be a new Put file or an image. The input file includes references to

the entities in the scene with names and it provides a link to the geometry file for

each entity. The scene is rendered by satisfying spatial constraints independent of

the geometry that is provided for each object. After the input file is rendered by
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the system, the user can work more on the scene with linguistic input or direct

manipulation.

The Put system uses a simple syntax for its natural language commands. The

system commands are in the form Verb Trajector (TR) [spatial relation Landmark

(LM)]. For instance, a user might say:

put "book" on "table"

Here “book” is the trajector and “table” is the landmark object that “book” is put

relative to. “On” in this format is the spatial relation that connects objects “book”

and “table”. It is possible to chain multiple spatial relations with multiple entities.

The user can also provide a specific location for an entity. More complex examples

are the following:

put "table" on "floor"

put "plant" on "table" under "lamp"

hang "picture" on "wall" at (0 10)

The Put system includes a parser for this simplified syntax and it does not deal

with the complexities of the natural language processing. 3D geometry information

of entities are matched with a name and then they are referred later using that

name. The Put system differentiates uses of spatial relations based on the objects.

Contact points or any other related properties for placement task is defined for each

object. While constructing scenes, it takes into account different senses of the spatial

relations. Different uses of ”on” or ”in” are handled correctly by the system. To ease

the computation, PUT uses axis aligned bounding boxes for entities. This also helps

to determine front, top and side surfaces and interior of the objects.
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Since the Put system focuses only on the scene construction task, its natural

language processing capabilities are limited. The system is not able to construct a

scene from natural language text for instance from a newspaper article since it requires

manual steps to define objects in the scenes and their properties. However their work

in defining properties and rules for spatial relations is significant.

2.3 CarSim

CarSim [3] is an automatic text-to-scene conversion system that simulates car acci-

dents from written accident reports in a 3D environment. CarSim architecture has two

modules that communicate via a formal description of the accident. The first module

does the language analysis and it converts accident reports into a formal description.

The second module is the 3D visualizer and it converts the formal description into

3D animated scenes. A generated scene from CarSim system is shown in Figure 2.2

below [4].

The language analysis module is capable of understanding collision verbs and ob-

jects that are part of the accident. This module uses WordNet and Link Dependancy

Parser and regular expressions to determine the collision verbs and actors in the ac-

cident [4]. Three main components are extracted from the written reports by this

module [5]. First is the scene that describes static parameters such as weather and

road conditions. Second is the road objects such as cars, trucks and trees. The

third is the collisions between road objects. After these components are identified by

the language analysis module and converted to the formal description, the scene is

generated.

The visualization module of CarSim takes the formal description as input and

converts it into a scene. This process includes a planner. The planner sets the scene
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Figure 2.2: A generated scene from CarSim system shows collision of two trucks.

by placing static and dynamic objects and sets a start and end point for vehicles. The

planner also determines a path for the vehicles and fixes the path by adding collisions.

CarSim uses a few 3D models and a limited vocabulary since it is very domain

specific. However it is an important system that converts real world text into not

only static scenes but animations. CarSim generates animated scenes from written

text in a restricted domain successfully.

2.4 WordsEye

WordsEye [6, 7] is an automatic text-to-scene conversion system. It converts natural

language input into static 3D scenes. WordsEye aims to ease the 3D scene generation
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process using a more natural interaction and aid classical scene creation tools. The

system can be used online1 and many example scenes created by the system is available

on the web as well.

WordsEye is an ambitious project with a large collection of 3D models and lexical

sources. WordsEye database includes over 12000 models, and many 2D images for

textures or to decorate scenes. In addition to model mesh data, WordsEye defines

extra information for 3D models. These are skeleton data for human and animal

models, information of model parts, default sizes, functional properties. Another

extra properties defined for 3D models are spatial tags [8]. The spatial tags are

very important in the depiction of spatial relations. For spatial relations, certain

interaction areas like canopy area, base area, cup area, enclosures, side surfaces, top

surfaces, stems and touch points are defined for each model. The manual tagging of

3D models enable the system to cover many different use cases for spatial relations.

WordsEye handles verbs by using a method called posing. The model is turned

into a pose that resembles a specific verb. For human and animal models this is

achieved by using the skeleton data. Poses are predefined for specific actions and

model takes that pose if the specified verb is encountered. The pose of the model

changes as needed if the specific action interacts with another model. For instance, a

human model can be posed while riding a bicycle and the legs and arms of the model

takes appropriate positions.

WordsEye uses a lexical and real world knowledge resource called Scenario-Based

Lexical Knowledge Resource (SBLR)[9]. The SBLR contains lexical, semantic, and

contextual information. Some parts of SBLR are built semi-automatically from

WordNet[10] and FrameNet[11] but the knowledge is also extended by adding data

1http://www.wordseye.com/
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Figure 2.3: A scene from the WordsEye system of “The small dog is on the red stool.
The flower texture is on the ground. The texture is 2 feet wide. The large white cat
is under the stool.”

about 3D models and additional resources like Wikipedia, PropBank[12] and other

corpora.

WordsEye is an inspiration for our scene construction work. However, WordsEye

focuses on creating visually more detailed scenes where we present a modest scene

generation system and instead focus on question answering and reasoning about the

scene. As WordsEye, our system is rule based and depends on lexical resources that

are mostly built manually. Rule based approaches are good enough for establishing

the scene construction framework. However, extending rule based systems manually

is a daunting process. As part of the future work, we believe that the connection

between natural language and visual scenes can be learned with statistical machine
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learning algorithms.

2.5 DESCRIBER

DESCRIBER [13] is a system that generates spoken language to describe objects in a

computer generated scene. The system demonstrates a statistical learning based ap-

proach for such a task. In this system, randomly generated rectangles (random sizes,

positions and colors) are matched with their natural language descriptions. DE-

SCRIBER learns the descriptions of these computer generated images in a grounded

learning framework. It has been shown that the machine can successfully describe

unseen rectangles.

The aim of DESCRIBER is to develop a system which can learn domain spe-

cific rules of language generation with supervised training. This system deals with

computer generated images instead of real images since this has many advantages.

Computer generated images are noise free and they can be reproduced easily in large

amounts. They have well defined digital features such as RGB color and position on

screen. A sample scene from DESCRIBER system is shown in Figure 2.4 where rect-

angles with different visual properties are placed and one of them is targeted with the

pointer. The user is expected to describe the target object by speaking in a natural

way. At this stage, natural spoken descriptions are obtained from a male speaker for a

target object in the scene. Later these are transcribed manually and together fed into

the system with their paired visual scenes. Then syntactic and semantic structures

are extracted by learning algorithms. Firstly the words are clustered into classes.

This step is used to separate words related to size, colors and spatial relations. Then

the visual features like color, area, height-to-width ratio and position on screen are

associated with word clusters. Then the word order constraints are modeled. After
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that stage, the system is able to generate spoken descriptions of novel scenes. These

spoken descriptions include syntactically accurate adjective-noun phrases and relative

spatial clauses. The generated spoken language is found to be satisfying by human

judges. The system is evaluated by measuring the users’ ability to select the intended

rectangle from the description.

Figure 2.4: A image from visual description task of DESCRIBER system.

The DESCRIBER system is not without constraints. DESCRIBER works with

very constrained visual objects (rectangles and squares) that have well defined prop-

erties (2D coordinates, RGB colors etc). The system uses task specific simplifications

which will cause problems when the system is expanded to a more complex domain.
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2.6 CONFUCIUS

CONFUCIUS [14] is a storytelling system that visualizes single English sentences into

3D animations. It combines natural language and computer graphics techniques to

generate complex high-level animations, sounds and speech. An example scene from

the CONFUCIUS system is shown in Figure 2.5 below.

Figure 2.5: A generated animation from the CONFUCIUS system of “John put a cup
on the table.”

CONFUCIUS is a more complex system in the sense that it creates not only

static scenes but high level animations and speech. It is one of the systems that

handles action verbs that takes a span of time. The system currently handles a single

sentence with an action verb. The sentences are picked from the children stories

and used during the development and evaluation of the system. In order to visualize
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the natural language input, semantic information is extracted from the sentences.

For nouns, CONFUCIUS uses WordNet, a proper noun list and a popular given

names list to mark proper nouns, persons and gender. These semantic features are

needed for the animation generation module. Semantic features of the verbs are used

to determine verb categories. Based on the category, a verb is associated with a

predefined animation or if it is a verb of speaking, the words in quotation marks

are fed in to the text-to-speech (TTS) engine and lip movement is generated for the

speaker model. Semantic features of adjectives correspond to the visually or audio

presentable properties. Currently, CONFUCIUS has 40 models and it covers 25 verbs

like “walk”, “jump” or “push” which are considered as the building blocks of more

complex actions.

The overview of the architecture of CONFUCIUS is as follows; the NLP module

parses the input sentence and extracts semantic information. Then the media allo-

cator assigns the content to three different media which are animation, character’s

speech and narration. The animation engine takes semantic representations and vi-

sual knowledge to generate 3D animations. The output of the text-to-speech engine

and animation engine are combined by the synchronizing module and a VRML[15]

file is produced. Finally, narration integration module integrates VRML file with the

narrator agent and completes the presentation.

CONFUCIUS uses the H-Anim standard[16] for character modeling and anima-

tions [17]. H-Anim provides different levels of detail for different applications. CON-

FUCIUS uses a moderate level of detail as it is sufficient for a language visualization

system. The system is also capable of running two parallel animations for the upper

and lower body of human models. As speech is part of the CONFUCIUS system, the

system handles lip syncing and facial expressions.
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The aim of the CONFUCIUS system is to create a narrator system that visualizes

natural language input into animations as accurately as possible by animating human

body parts, handling lip synching and facial expressions. Our work shares similar aims

as CONFUCIUS on the language visualization side although we only work with the

static scenes. As a secondary aim, we investigate the possible uses of a language

visualization system that can aid answering certain types of inference problems which

cannot be easily answered by only analyzing the language itself.
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Chapter 3

COMPONENTS

A language visualization system is composed of many different components that

can be categorized under two broad subjects which are 3D graphics and natural

language processing. The aim of this work is to use theories and practical solutions

from both of these fields and bring them together to propose a method to construct 3D

scenes from language. Our system is also capable of answering certain types of spatial

inference problems using 3D object geometry and basic language understanding.

The three critical components our system uses are Alice, WordNet and CoreNLP.

Alice is an open-source 3D programming environment and it forms the basis of our

language visualization system. WordNet is a large electronic lexical database of En-

glish and it is used heavily by our system as well. CoreNLP suite from Stanford is a

collection of natural language processing tools and they are used for language related

tasks in our system. This chapter describes these components which our system is

built upon and gives details about how each individual part contributes to it.

3.1 Alice

Alice [18, 19] is a 3D graphics programming environment developed at Carnegie Mel-

lon University. In the beginning, the goal of Alice was to ease 3D behavior pro-

gramming for the novices, but later the tool is found to be useful to teach problem

solving, computational thinking and computer programming to students from college
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to mid-school [20, 21, 22, 23].

Alice comes with a 3D scene editor, a tree view for 3D objects and a drag-drop

programming interface for scripting [24]. A screenshot is shown in Figure 3.1 below.

A typical Alice workflow has two phases, first a scene is created by placing 3D models

into the scene and then the user begins scripting for behavior using the drag and drop

interface.

Figure 3.1: A screenshot from Alice v2.4. The toolbar is present at the top to play
animations in the scene. The object tree can be seen on the left side. Detail view
for model details is shown below it. The scene editor is present in the middle. On
the right side, declared events are shown. The drag and drop scripting area is below
them.

The design of Alice makes it a great educational tool for problem solving and

object oriented programming. There are many contributions of Alice and we should

list some of them to give reader a better understanding of why it is an important

tool. Alice removes the need to use a global coordinate system, instead it attaches a
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coordinate system to every object in the scene. The modification of the objects are

done relative to themselves or the objects around them. This enables a more natural

interaction where an object can be moved forward or it can be turned to a side without

referencing a global coordinate system. The object tree on the left side provides a

instant view of the objects in the scene and makes selection easier in a complex scene.

The parts of the objects or the child - parent relationship between objects can be

viewed on the tree view as well. The drag and drop interface for programming lets

novices avoid syntax errors and saves typing time. The object oriented programming

concepts can be easily taught with Alice as each 3D model in a scene corresponds

to objects in the program and methods are basically actions of those objects. The

user can instantly see the effect of their code in the scene, which makes learning and

debugging easier.

Alice has an extensive gallery of 3D models consisting of many categories like

people, animals, vehicles, furniture etc. In our system, 528 models are used from the

Alice gallery. At first we were only interested in using Alice models in our system.

Later, we found out that Alice models use a proprietary format and that caused some

problems during the implementation. We also realized that many of the functionality

built in Alice was needed to be reimplemented in our system. Alice API was already

mature with many years of research and had already been tested with many users

therefore we decided to build our system on top of Alice.

Alice is an open-source program and that made it possible for us to build our

language visualization system upon. Alice source code is available through their

website for the version 2.0. However, we could not make the source code work as

it is downloaded and we spent a significant amount of time to make it usable. Our

version of the code will be released with our contributions, enhancements and fixes
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(and bugs) 1. This will save a significant amount of work for the interested user.

Figure 3.2: A screenshot from our LangVis system.

We have made many changes to Alice code and interface. Our changes to Alice

interface is shown in Figure 3.2. We removed drag and drop scripting area, details

view and toolbar since they are not needed for our purposes. We kept the object tree

view since it gives a quick summary about objects in the scene. Instead we placed

a textarea on top which is used to input natural language text. Several buttons are

also placed to convert the text to 3D scene, to clean the scene, to set the camera and

also to switch to question answering mode.

For our language visualization system, we use model modification and rendering

capabilities of Alice so that we can focus more on implementing language related

features rather than re-implementing 3D scene manipulation functionalities. Alice has

1http://github.com/ai-ku/langvis

http://github.com/ai-ku/langvis
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many built-in functionalities like loading meshes for a 3D model, applying textures,

transforming models, basic animations, placing light and camera for a scene. Built-in

3D manipulation capabilities of Alice makes it easier to test quick ideas and debug

the problems. This is critical for the implementation of such a system.

3.2 WordNet

WordNet [25] is a large lexical database of English that consists of nouns, verbs,

adjectives and adverbs that are grouped into categories called synonym sets (synsets).

Each synset represents a distinct concept (word sense) and these synsets are linked

to others by semantic relations.

WordNet is a popular lexical resource in natural language processing community

and it has been used in other language tools like VerbNet and Ontonotes [26]. The

usefulness of WordNet comes from the way it is structured. The main relation between

words in WordNet is synonymy. These synonyms denote the same concept and they

are grouped together to form synsets. WordNet has 117000 synsets and it also defines

semantic relations between these synsets. In addition to that, WordNet includes a

definition(gloss) for each synset.

The semantic relations between words and word senses that are incorporated into

WordNet are listed below [10].

• Synonymy is the main relation between words in WordNet since the words in

WordNet are grouped into synsets. If two word forms have at least one common

word sense then they are synonymous and grouped into the same synset that

represents that sense. It is a symmetric relation between words.

e.g. board - plank
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• Antonymy is the opposite semantic relation between word forms. It is also

a symmetric relation and it is important in the organization of adjectives and

adverbs.

e.g. dry - wet, friendly - unfriendly

• Hyponymy is the ’is-a’ relation between words. This relation is important to

organize nouns into hierarchical structure.

e.g. crimson - red

• Hypernymy is the semantic relation that is inverse of hyponymy.

e.g. red - crimson

• Meronymy is a complex semantic relation where a word is part-of another

word.

e.g. window - building

• Holonymy is the semantic relation that is inverse of meronymy.

e.g. building - window

• Troponymy is for verbs what hyponymy is for nouns. However the resulting

hierarchies are much shallower.

e.g. lisp - talk

• Entailment relations between verbs are also present in WordNet.

e.g. snore - sleep

The presence of each relation for each word category is shown in the Table 3.2

below.
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Semantic Relation Syntactic Category

Synonymy N, V, Aj, Av

Antonymy Aj, Av

Hyponymy N

Hypernymy N

Meronymy N

Holonymy N

Troponymy V

Entailment V

N: Nouns, V: Verbs, Aj: Adjectives, Av: Adverbs

Table 3.1: Semantic Relations in WordNet

These semantic relations are used heavily in our system, and in the next chapter

we will discuss how they are integrated with the rest of the system.

3.2.1 JWI

JWI [27] is a Java library for interfacing with WordNet written by Mark Alan Fin-

layson at MIT. We are using WordNet 3.0 in our language visualization system and

JWI provides excellent support for all WordNet features needed by our system. JWI

also includes a stemmer which we use to stem words before querying the WordNet

database. The library is open source and distributed with a MIT license so that it

can be used freely for any purpose. The library is used heavily in our system and it

saved a tremendous amount of time.
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3.3 CoreNLP

CoreNLP [28] suite from Stanford provides many useful natural language analysis

tools like parser, named entity recognizer, part of speech tagger and a coreference

resolution system for English. These tools make a solid foundation for our language

visualization system as they are vital for understanding written text. These tools are

used in conjunction with our system to create accurate scenes from a written text

input and then answering questions about the scene.

3.3.1 Part-Of-Speech Tagger

One of the critical tools for our language visualization system is the part-of-speech

(POS) tagger from CoreNLP. A POS tagger is a program that assigns parts of speech

to each word such as noun or verb. POS tags are used in many places in our system.

We use them to query the WordNet database or to take certain actions based on the

tag when generating the scenes. They are also used by the parser. POS tagger for

English in CoreNLP uses PENN Treebank POS tags [29]. A total of 45 different Penn

Treebank POS tags are shown in Appendix A.

3.3.2 Parser

Another important tool we use from CoreNLP package is the parser. Stanford parser

is a probabilistic natural language parser and it outputs probabilistic context free

grammar (PCFG) phrase structure trees and also Stanford dependencies [30, 31].

Stanford Dependencies are grammatical relations between words in a sentence. They

are triplets in the form of name of the relation, governor and dependent. These

grammatical relations are organized in a hierarchy and the most general grammatical

relation is dependent(dep). If a more specific relation is identified between a head



Chapter 3: Components 25

and its dependent, then the relations down in the hierarchy are used. The hierarchy

of typed dependencies (Stanford dependencies) [32] are shown in Appendix B.

Stanford dependencies are designed to be useful in practical applications. The

dependency output is uniform and the relationship is binary. A grammatical relation

is present between two words or not. The output of the parser including the parse

tree and typed dependencies for a sample sentence is shown below.

“Alice noticed with some surprise that the pebbles were all turning into little cakes
as they lay on the floor, and a bright idea came into her head.”

(ROOT

(S

(S

(NP (NNP Alice))

(VP (VBD noticed)

(PP (IN with)

(NP (DT some) (NN surprise)))

(SBAR (IN that)

(S

(NP (DT the) (NNS pebbles))

(VP (VBD were) (RB all)

(VP (VBG turning)

(PP (IN into)

(NP (JJ little) (NNS cakes)))

(SBAR (IN as)

(S
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(NP (PRP they))

(VP (VBD lay)

(PP (IN on)

(NP (DT the) (NN floor))))))))))))

(, ,)

(CC and)

(S

(NP (DT a) (JJ bright) (NN idea))

(VP (VBD came)

(PP (IN into)

(NP (PRP$ her) (NN head)))))

(. .)))

nsubj(noticed-2, Alice-1)

root(ROOT-0, noticed-2)

det(surprise-5, some-4)

prep_with(noticed-2, surprise-5)

mark(turning-11, that-6)

det(pebbles-8, the-7)

nsubj(turning-11, pebbles-8)

aux(turning-11, were-9)

advmod(turning-11, all-10)

ccomp(noticed-2, turning-11)

amod(cakes-14, little-13)

prep_into(turning-11, cakes-14)
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mark(lay-17, as-15)

nsubj(lay-17, they-16)

advcl(turning-11, lay-17)

det(floor-20, the-19)

prep_on(lay-17, floor-20)

det(idea-25, a-23)

amod(idea-25, bright-24)

nsubj(came-26, idea-25)

conj_and(noticed-2, came-26)

poss(head-29, her-28)

prep_into(came-26, head-29)

In our language visualization system, we use typed dependencies instead of the

parse tree representation. The Stanford Parser outputs typed dependencies in two

different formats, in one all words are present in the output, in the other the parser

gives a collapsed representation for the dependencies. For our system, we use the

collapsed form which is sufficient for our needs. The details of the implementation

will be discussed in the next chapter.
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Chapter 4

IMPLEMENTATION

This chapter describes the implementation details of our language visualization

system. Starting with the high level workflow of our system, we will go deeper and

cover the details of language analysis, converting output of language analysis to inter-

mediate data structures and then translating them to 3D static scenes. Construction

of 3D scenes include the steps of finding the accurate 3D models, applying modifica-

tions on models and placing them in the scene. These steps will be covered in this

chapter as well. After the scene construction section, we will cover the details of the

question answering module.

Our system consists of three main components. First one is the language analysis

component, the second is the scene construction component and the third is the

question answering module. Language Components section will cover the problems

in language understanding for a visualization system and how we cope with those.

Scene Construction section will talk about converting the language analysis results

into scenes by using many different resources, applying modifications and satisfying

constraints. Lastly, Question Answering section will describe how the constructed

scene can be queried by the user and how our system is capable of solving certain

types of spatial inference problems. Each of these parts are covered in full detail in

its dedicated section in this chapter but first we will look at the general workflow.
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4.1 Workflow

Before going into the details of three main components, it is important to understand

the general workflow in our system. The process of converting natural language to

3D scenes in our system is shown in Figure 4.1.

Figure 4.1: Text-To-Scene conversion process

Interaction with our language visualization system starts with the natural lan-

guage input. This input might be more than a single sentence. After the generate

the scene button is pressed, these sentences are fed into a sentence splitter and then

processed one at a time by our system. Each sentence is then parsed by the Stanford

parser which outputs the dependency structure of the sentence. The parser also uses

POS tagger to annotate word types for each token in the sentence. After this stage,
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our model picker module tries to come up with an accurate model for the nouns in the

sentence. It uses lexical resources like WordNet, our own datasources and 3D model

gallery. After an accurate model is picked, if there is an adjective in the sentence

that modifies the properties of that model then these modifications are applied by

the model modifier module. Lastly the models are positioned in the scene to satisfy

any spatial relation constraints if they are present.

This is the general workflow of the system which we will explain more in the

following sections. The following section may refer to different parts of the system in

a non-sequential order so a general overview of the system is given here.

4.2 Language Components

Our system currently covers three main word types which are nouns, adjectives and

prepositions. Dynamic verbs are intentionally left out at this stage as we limited

ourselves to only static scenes. Even though they are covered by other systems using

posing [6] we believe that this approach is not necessary for our question answering

and spatial inference task. Our system only accepts verbs like to be and stand that

contain no actions. The other three word types (nouns, adjectives and prepositions)

are sufficient to describe static scenes when combined with these verbs.

The part of speech (POS) tagger and parser from CoreNLP is used to extract POS

tags for the given piece of text. The tagger outputs Penn Treebank POS tags [12] for

each word. Our system has defined procedures for each POS category that are run in

a particular order to generate a scene. The following sections discuss how each part

of speech is handled by our system.
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4.2.1 Nouns

In our system, nouns correspond to 3D models from the Alice gallery. The system

tries to come up with an accurate model for the noun when it is encountered in a

sentence. Although this sounds trivial, processing nouns requires many computational

steps which may not be obvious at first. The following are some of the problems in

representing nouns visually:

• A noun may refer to a non-physical entity.

• A noun may refer to a physical entity but it might be too general.

• A physical entity can be referred to in multiple ways.

• There is not always a one-to-one correspondence with a noun and a 3D model

but sometimes a noun phrase can refer to it. The opposite is true as well. A

noun can refer to more than one object.

• A noun can be ambiguous. It is impossible to get the word sense by just using

the word itself without the context.

For our language visualisation system, we are not concerned with abstract or

conceptual nouns. We are only interested in physical entities which can be seen and

touched in a physical world that our model gallery covers. These constraints remove

many nouns in language from our candidate set because they cannot be visualized. It

is easier to agree on a depiction of a physical entity, however this is not the case for

abstract concepts like democracy. Although there are attempts by other systems[6] to

visualize these concepts by using 3D text or some representative images, we decided

to eliminate them for the purposes of this research.
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For a system that needs to pick accurate models for words, it must have a mapping

between these two. However listing all physical entities in language and matching

them with 3D models appears to be infeasible. The main reasons for this is that

there are many words in language whereas 3D model libraries are limited in size and

nouns do not always have one-to-one relationships with them. The relationship can

be one-to-many and many-to-one. There is a need for another layer between these

two lists of models and words. WordNet helps us to form this middle layer.

Every word in WordNet belongs to a synset (synonym set) and words in a synset

have the same sense [25]. We matched our 3D models to the synsets that describe

them best. Therefore we formed a relationship between a word and its synset and

then by using that synset the system can reach the model for that word. A synset

can also be matched by more than one model in a library. For example, there does

not need to be only one cat model in our object database. This mapping was done

manually for the 528 models in the Alice object gallery. As a synset consists of many

different words, our system can handle a much larger number of nouns.

A small portion of our Synset-to-3D model map datasource is shown below. Each

synset has different attributes which are gloss, hint and id. Gloss describes the synset,

it is included as it makes the sense clear for the human reader. Hint attribute is

included since it is much more easier for human reader to understand which object

the synset refers by just looking at the hint. These two attributes are added because

the name of the model may not always be descriptive. Id attribute is the synset

identifier in the WordNet database. Our system is only interested in this identifier

and uses that internally in many places. Synset identifiers are unique for the word

sense. Therefore many models that are referred by the nouns in the same synset

should be listed under the same synset identifier. It can be seen below that synset
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entry of blender, book and bookcase include only a single model whereas synset entries

of town house and bird include more than one.

In our data source, each model is appended as a child to the synset entry it belongs

to. Models only have one attribute which is the relative path of the model in the 3D

model gallery. These are the 3D models from the Alice gallery. We did not make any

changes to Alice models and used them as is in our system.

<Synsets>

...

<Synset gloss="an electrically powered mixer with whirling blades that

mix or chop or liquefy foods" hint="blender" id="SID-02850732-N">

<Model path="Kitchen/Blender.a2c"/>

</Synset>

<Synset gloss="a written work or composition that has been

published (printed on pages bound together)" hint="book" id="SID-06410904-N">

<Model path="Objects/Book.a2c"/>

</Synset>

<Synset gloss="a piece of furniture with shelves for storing books"

hint="bookcase" id="SID-02870880-N">

<Model path="Furniture/Bookcase.a2c"/>

</Synset>

<Synset gloss="a house that is one of a row of identical houses situated

side by side and sharing common walls" hint="town_house" id="SID-04115256-N">

<Model path="City/Townhouse1.a2c"/>

<Model path="City/Townhouse2.a2c"/>

<Model path="City/Townhouse3.a2c"/>
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<Model path="City/Townhouse4.a2c"/>

<Model path="City/Townhouse5.a2c"/>

<Model path="City/Townhouse6.a2c"/>

</Synset>

<Synset gloss="warm-blooded egg-laying vertebrates characterized by

feathers and forelimbs modified as wings" hint="bird" id="SID-01503061-N">

<Model path="Animals/Bird1.a2c"/>

<Model path="Animals/Bluebird.a2c"/>

</Synset>

...

</Synsets>

For the representation of nouns, we also benefit from the hyponym and hypernym

relationships (is-a or kind-of relationship) of WordNet. A noun in WordNet is posi-

tioned in a tree structure where the root node is “entity”. Every noun is a subclass

of that root node which means that every noun is an entity. Nouns become more

detailed and specific deeper in the tree structure. This kind of hierarchical relation

between words gives useful information like “A cat is an animal” and “A car is a

vehicle”.

For all nouns we know their parent categories. This knowledge enables us to show

a model for a specific type of noun when the user enters a more general name instead.

When the user asks for an animal it is perfectly acceptable and reasonable for our

system to show a bird or a cat or a dog or any other it finds as a child of the animal

noun. This requires us to match our 3D models to the synset of the deepest noun

we can find in the tree. By doing that we can fetch the model that the user typed

specifically or we can again find a suitable model for a more general word.
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In our system, we do not disambiguate word senses, but we use the first word

sense (or synset) that is associated with that word. The first word sense in the

WordNet is the most commonly used sense of the word [25]. In future work, word

sense disambiguation can be integrated and this can improve the overall accuracy of

natural language understanding.

4.2.2 Adjectives

In grammar, adjectives are the describing words for nouns and noun phrases. They

give more information about the object signified. In our system, we use the CoreNLP

parser to parse natural language sentences and it gives us the modifier(s) of each noun

in the sentence.

One important observation about adjectives in language is that many of them

cannot be visualized in a 3D scene. In our language visualization system, every 3D

model is associated with nouns and these models have six different properties which

are visibility, size, position, orientation, color and transparency. The three of these

properties (size, color and transparency) can be modified by adjectives. The adjectives

that modify these three properties can be called depictable or visualizable adjectives.

We can also refer to them as model modifying adjectives since they have a visual

effect on the appearance of the 3D model in a 3D scene.

For instance jealous is a type of adjective that does not change one of the three

properties listed above and therefore it is not visualizable in our system. Our system

knows which adjectives have a visual effect we can control and does the necessary

modifications for the model. If it is not depictable, the system just skips that modifier.

However, a jealous girl model can be present that is separate from the girl model.

It should be picked and shown even if jealous is not a depictable. The sequence is
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important here. The system first searches for a corresponding model for the ‘adjective

+ noun’ pair. This is done while the system is processing the nouns. If a model for that

pair is found, that would be a more accurate result and system would show that. If

the adjective is a model-modifying type, the system modifies the model accordingly.

If not, it ignores the adjective and just retrieves the corresponding model for that

noun.

For the spatial inference task we only focused on depictable adjectives related to

size. The color and transparency properties of a model can also be changed manually,

but it is not automated yet. In the future versions, that can be implemented as well.

The adjectives related to size can modify one or more of the three size related prop-

erties which are width, height and depth. As adjectives modify nouns in a language,

in our language visualisation system they correspond to procedures that are applied

to models. Similar to what we did about nouns before, for these kinds of adjectives,

we did a matching between their WordNet synsets and corresponding procedures.

These procedures scale the model by using a scalar value that is obtained based on

the synset. By forming a map with synsets, the adjectives that have the same word

sense are associated with the same procedure. The user sees the same effect on the

scene no matter which word she picks. The mapping between adjective synsets and

scalar values are shown in Appendix C.

WordNet does not have hypernym or hyponym relations for adjectives since it is

not very meaningful for adjectives to have hierarchical relations. However another

important information extracted from WordNet is the attribute information of an

adjective. For example, for the adjective tall, WordNet tells that it modifies the

height attribute or for fat it returns fatness. These attributes of the adjectives are

matched to the attributes of the 3D models and when the system encounters any
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of them it modifies the related attribute accordingly by using a scalar value for the

degree of the adjective.

4.2.3 Prepositions

Prepositions are the word types which denote temporal and spatial relations. They

have complements which they relate to the context they occur in. For our spatial

inference task we limited ourselves to spatial relations. These are the prepositions

that denote location and direction. Since our system only handles static verbs, direc-

tion related prepositions are not covered. Location related spatial prepositions like in

front of, behind, near, next to, beside, above, below, on, in are mapped to procedures

in our system. The complete list of these procedures are shown in Appendix D. These

procedures take two arguments where one of them is a landmark object which the

other object is placed relative to. The object is placed by translating it in the corre-

sponding direction denoted by the preposition. The translation amount is determined

by the size of the objects. Collisions may occur when two objects are placed based

on the same spatial relation. In the future versions, collision prevention can be added

as well. The spatial relations are held true for the facing direction of the models.

However, at the current stage of our system, the models are not automatically turned

around therefore the spatial relations are valid for the position of the camera therefore

the view angle of the user as well. For prepositions like near, multiple directions are

possible and in that case the direction is chosen randomly. First these procedures

try to place an object according to the spatial relation while keeping the position

of the other object fixed. If these objects already have other spatial constraints on

them, then they are placed without breaking the previously applied constraints. This

is done by reversing the spatial relation and the landmark object or by moving the
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other objects that are part of the previous spatial relations. Prepositions are not

included in WordNet, so a mapping from the synsets to procedures is not possible.

We directly mapped words to related procedures in this case.

This section summarized how each POS contributes to our system. In the next

section, we will discuss scene construction which makes use of these to construct

scenes from natural language sentences.

4.3 Scene Construction

4.3.1 Model Placement

After an empty scene is presented, the user can directly enter a piece of text that

describes a scene with multiple sentences or she may choose to build the scene incre-

mentally providing one sentence at a time. In either case, after the text entering is

complete, the system splits sentences (if there is more than one) using CoreNLP and

parses each sentence. For each sentence, nouns are extracted and the system searches

WordNet for the synset of the target word. The word types other than nouns are pro-

cessed at a later stage in the system. For the nouns, the search is done by supplying

the word itself and the part-of-speech tag of the word. POS tag comes from the POS

tagger in the previous step where the sentence is parsed. If the synset of the target

word is found in the WordNet database, then the system searches for a 3D model in

our synset-model mapping data source by using the synset identifier.

If there is not a suitable model for that synset, the system switches to the children

of the synset using hyponym relations in the hierarchy of WordNet. If there is more

than one model for that particular synset, the system picks a model randomly. If

there is no exact match, to come up with a similar model for the noun, our system

asks user whether to search coordinate terms or not. These are the nodes that share
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a hypernym in the WordNet hierarchy. It asks the user because the result may not

be always close to what the user has in mind. For instance when the user asks for

cheese the system cannot find it and comes up with banana which are both children

of food. After these efforts if a suitable match is not found, the system just skips that

noun. This is the case for abstract concepts.

4.3.2 Model Modification

When a model is picked succesfully, all of its modifiers (adjectives) are extracted from

the parser output. The parser output for a sample sentence is shown below. It is seen

that adjectives giant and small are marked with amod (adjectival modifier) relation

in the parser output.

A giant dog is behind the small cat.

det(dog-3, a-1)

amod(dog-3, giant-2)

nsubj(is-4, dog-3)

root(ROOT-0, is-4)

det(cat-8, the-6)

amod(cat-8, small-7)

prep_behind(is-4, cat-8)

Currently, our system covers only modifications that are related to the size of the

model. Based on the modifier, width, height and depth properties of the models are

changed. A mapping is done between the synset of the modifier and a scale tuple as

shown in the Appendix C that is used by the scaling procedure. If the modifier of the
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noun is found in that mapping than the procedure is applied to that model. If it is

not found, the system just skips that modifier.

4.3.3 Constraint Resolution

After this stage, our system extracts spatial relations (prepositions) from the sentence.

Models are placed into their correct places to satisfy the constraints in the sentences.

The parser output in section 4.3.2 shows that the cat has a spatial relation behind

with the dog. In this sentence, behind and nsubj grammatical relations give us enough

information to create a constraint on the scene.

As described in the section 4.2.3 about prepositions, a basic constraint resolution

system is used to satisfy the constraints. Constraint resolution is necessary as the

number of models increases in the scene. In addition to that, we expect the user not

to enter any conflicting constraints. In that case, the system cannot satisfy all of

them and produce satisfactory results.

4.3.4 Scene Conversion Result

A fully constructed scene can be seen in Figure 4.2. This is a complex scene as

it includes many different models and spatial relations. After the construction is

complete, the user may go on with the question answering, which will be described

in the next section.

4.4 Question Answering

After the scene construction is completed, the user may switch to question answering

mode and ask questions about the current scene. At any point she may choose to

further describe the scene and then continue with question answering. A question is
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Figure 4.2: There is a room. A sofa is in the room. A table is in front of the sofa. A
man is behind the sofa. A toy is on the table. A car is behind the room.

asked in natural language and based on the keywords in the question it is categorized

into a specific question type.

The system can handle three types of questions. First of all, the user can directly

ask about the position of an object. The system answers this question relative to

other objects (landmarks) in the scene. It knows which prepositions correspond to

which spatial relations and our rule based sentence builder turns these relations into

sentences. It iterates over each spatial constraint in the scene and checks whether the

object in question is part of that relation. If it is, then these relations are converted

to natural language in the form of X is in relation to Y.

Secondly, another type of question a user may ask is a yes/no question. The
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user may test if a certain spatial relation is present between two objects. Again the

system converts prepositions in the questions to the geometric relations and checks if

the target object and landmark object satisfy those criteria.

Questions Answers

Where is the room? It is in front of the car.
Where is the sofa? It is in the room, in front of the man, behind the table.
Is the toy on the table? Yes.
Is the man in the room? Yes.
Is the car in the room? No.
Is the sofa in front of the table? No
Can the man see the sofa? Yes.
Can the man see the car? No.

Table 4.1: Question Answering Examples

Finally, a user can ask whether two objects can see each other or not. For this

case, the system first considers orientation, it checks whether the tested object is in

front of the other object or not. If it is not in front of the other object then it cannot

be seen. If it satisfies this criteria then we draw an imaginary beam from the source

object towards the target object. If it is intersected by another object in the scene,

the system concludes that two objects cannot see each other. Even in very complex

scenes, it is an easy task for our system to come up with the correct answers for these

kinds of questions. Some sample questions and answers are shown in Table 4.4 for

the scene in Figure 4.2.
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Chapter 5

CONCLUSION

In this thesis, we presented a novel natural language to 3D scene conversion system.

The system uses an extensive set of 3D models and a rich vocabulary to construct the

scene. We have shown several techniques to determine the constraints based on the

language and to construct a static 3D scene. In addition to that, a question answering

module is provided. This module enables user to query the state of the scene and it

is capable of solving spatial inference questions.

Although our language visualization system is in its infancy, it has promising

results. It is built as a base for experimentation. All the tools we used is available

for free, our code is available with a free-to-use license and all the data is available to

anyone who wants to test their ideas on top of the platform. We believe that this kind

of openness will invite better ideas and foster innovation on the subject. Our system

consists of many different parts therefore any improvement in each individual part

will result in a better language visualization system. However, the following future

directions have a priority for us.

At its current stage, action related verbs are omitted in our language visualization

system. As part of the future work, we plan to integrate actions using dynamic verbs.

This can be done by extending our rule based engine with path planning algorithms,

a physics engine and animations. It will allow us to create more complex scenes and

cover an important part of the language. As these verbs will form animations that last

a certain amount of time, time component will be introduced to our system. Question
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answering will become much more sophisticated, as it should investigate many scenes

and consider the time sequence of events.

Extending a rule based system manually is a very time consuming and an expensive

process. We have two ambitious plans for the future direction of this research. The

first is to implement a web based version of the system to make it accessible to a huge

audience. This will make distribution easier and give us a way to collect data through

the system. The second is to build a new version of the language visualization system

that learns the connection between the language and the virtual world automatically.

The data collected through the web application will be useful during this stage.

Even though the real world and physical interactions are a huge part of the lan-

guage, they are not all of it. The framework described here is not capable of under-

standing ideas, feelings and abstract concepts in general. We believe that these issues

can be addressed with engines similar to our work here for the physical world that

can fill the gap between language and these concepts.
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Appendix A

PENN TREEBANK POS TAGS

Penn Treebank Tagset

CC Coordinating conjunction SYM Symbol
CD Cardinal number TO to
DT Determiner UH Interjection
EX Existential there VB Verb, base form
FW Foreign word VBD Verb, past tense
IN Prep. or subordinating conj. VBG Verb, gerund or present participle
JJ Adjective VBN Verb, past participle
JJR Adjective, comparative VBP Verb, non-3rd person singular present
JJS Adjective, superlative VBZ Verb, 3rd person singular present
LS List item marker WDT Wh-determiner
MD Modal WP Wh-pronoun
NN Noun, singular or mass WP$ Possessive wh-pronoun
NNS Noun, plural WRB Wh-adverb
NNP Proper noun, singular #
NNPS Proper noun, plural $
PDT Predeterminer ”
POS Possessive ending (
PRP Personal pronoun )
PRP$ Possessive pronoun ,
RB Adverb .
RBR Adverb, comparative :
RBS Adverb, superlative “
RP Particle

Table A.1: Penn Treebank POS Tags
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Appendix B

STANFORD TYPED DEPENDENCIES

root - root

dep - dependent

aux - auxiliary

auxpass - passive auxiliary

cop - copula

arg - argument

agent - agent

comp - complement

acomp - adjectival complement

ccomp - clausal complement with internal subject

xcomp - clausal complement with external subject

obj - object

dobj - direct object

iobj - indirect object

pobj - object of preposition

subj - subject

nsubj - nominal subject

nsubjpass - passive nominal subject

csubj - clausal subject

csubjpass - passive clausal subject
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cc - coordination

conj - conjunct

expl - expletive (expletive "there")

mod - modifier

amod - adjectival modifier

appos - appositional modifier

advcl - adverbial clause modifier

det - determiner

predet - predeterminer

preconj - preconjunct

vmod - reduced, non-finite verbal modifier

mwe - multi-word expression modifier

mark - marker (word introducing an advcl or ccomp

advmod - adverbial modifier

neg - negation modifier

rcmod - relative clause modifier

quantmod - quantifier modifier

nn - noun compound modifier

npadvmod - noun phrase adverbial modifier

tmod - temporal modifier

num - numeric modifier

number - element of compound number

prep - prepositional modifier

poss - possession modifier

possessive - possessive modifier (’s)
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prt - phrasal verb particle

parataxis - parataxis

punct - punctuation

ref - referent

sdep - semantic dependent

xsubj - controlling subject
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Appendix C

SYNSET - SCALE MAP

Adjective Hint Synset ID Width, Height, Depth Scale

astronomical SID-01383582-A (3.0, 3.0, 3.0)
giant SID-01385773-A (2.5, 2.5, 2.5)
huge SID-01387319-A (1.5, 1.5, 1.5)
big SID-01382086-A (1.2, 1.2, 1.2)
standard SID-02295998-A (1.0, 1.0, 1.0)
small SID-01391351-A (0.8, 0.8, 0.8)
tiny SID-01392249-A (0.5, 0.5, 0.5)
infinitesimal SID-01393483-A (0.25, 0.25, 0.25)
tall SID-02385102-A (1.0, 1.1, 1.0)
short SID-02386612-A (1.0, 0.9, 1.0)
fat SID-00986027-A (1.3, 1.0, 1.3)
thin SID-00988232-A (0.8, 1.0, 0.8)

Table C.1: Synset - Scale Map For Size Related Adjectives
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Appendix D

SPATIAL RELATIONS

Spatial Relation Procedure

on placeOn(modelA, modelB)
in placeIn(modelA, modelB)
in front of placeInFrontOf(modelA, modelB)
behind placeBehind(modelA, modelB)
next to placeBehind(modelA, modelB)
near placeNear(modelA, modelB)
above placeAbove(modelA, modelB)
below placeBelow(modelA, modelB)

Table D.1: Spatial Relation and Corresponding Procedures

Pseudocodes for placement procedures

placeOn(modelA, modelB):

bottom(modelA) = top(modelB)

placeIn(modelA, modelB):

center(modelA) = center(modelB)

placeInFrontOf(modelA, modelB)

center(modelA) = center(modelB)

orientation(modelA) = orientation(modelB)

amount = (1.5 * depth(B) + depth(A)) * 0.5

moveForward(modelA, amount)
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placeBehind(modelA, modelB)

center(modelA) = center(modelB)

orientation(modelA) = orientation(modelB)

amount = (1.5 * depth(B) + depth(A)) * 0.5

moveBackward(modelA, amount)

placeNextTo(modelA, modelB)

center(modelA) = center(modelB)

orientation(modelA) = orientation(modelB)

amount = (1.5 * width(B) + width(A)) * 0.5

moveLeftOrRight(modelA, amount)

placeNear(modelA, modelB)

center(modelA) = center(modelB)

orientation(modelA) = orientation(modelB)

amount = (width(B) + width(A)) * 0.5

moveLeftOrRight(modelA, amount)

placeAbove(modelA, modelB)

center(modelA) = center(modelB)

orientation(modelA) = orientation(modelB)

amount = (1.5 * height(B) + height(A)) * 0.5

moveUp(modelA, amount)

placeBelow(modelA, modelB)

center(modelA) = center(modelB)

orientation(modelA) = orientation(modelB)

amount = (1.5 *height(B) + height(A)) * 0.5
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moveDown(modelA, amount)
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