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Abstract. Relevance of mode coupling to energy/information transfer during protein

function, particularly in the context of allosteric interactions is widely accepted.

However, existing evidence in favor of this hypothesis comes essentially from model

systems. We here report a novel formal analysis of the near-native dynamics of myosin

II, which allows us to explore the impact of the interaction between possibly non-

Gaussian vibrational modes on fluctutational dynamics. We show that, an information-

theoretic measure based on mode coupling alone yields a ranking of residues with a

statistically significant bias favoring the functionally critical locations identified by

experiments on myosin II.
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1. Introduction

Fluctuation based analysis of protein dynamics has long proven to be an invaluable tool

for investigating the interplay between protein dynamics and function [1, 2]. Despite

the past success enjoyed by the bead-and-spring-type linear models (such as, elastic,

Gaussian, and anisotropic network models), it is well known that, both experimental

evidence and simulations reveal strong departure from purely Gaussian (harmonic)

behavior at physiological temperatures [3]. Deviations from harmonicity are most

pronounced in slow, collective modes which are significant, for example, in the context

of vibrational absorption spectrometry [4], dimensional reduction [5, 6], and the role of

hydration effects [7].

On the other hand, the decomposition of MD fluctution data into independent,

possibly anharmonic modes is only the first step in an infinite cascade of corrections

that bridge the gap between the dynamics of actual proteins and Gaussian models.

The contribution of higher-order corrections signifies the degree to which the

experimental/computational free energy landscape fails to conform to a representation

composed of independent modes (harmonic or anharmonic). In other words, they

are “mode-coupling” corrections which yield valuable information on means of energy

transfer and associated correlated activity within the protein [8, 9, 10, 11, 12, 13].

Characterization of the confirmational population sampled by near-native dynamics is

believed to be the key to understanding the functioning of allosteric proteins [14, 15], if

not all [16]. The interactions between vibrational modes play an essential role in shaping

this population.

Recently, we introduced a systematic mathematical analysis of the fluctuational

data (for example obtained from full-atomistic simulations), that naturally distinguishes

the anharmonic and mode-coupling contributions to the free energy [17]. Here, we

combine this analytical formulation with computer simulations of the near-native

dynamics of myosin II and demonstrate that the mode-coupling alone highlights

functionally critical sites of this allosteric protein. The relevance of coupling between

vibrational modes in the context of allosteric transitions in myosin II was also pointed

out in an earlier work [18].

The paper is organized as follows: Section 2 describes the theoretical framework

used for isolating the contribution of mode-coupling from other anharmonic effects in

the MD fluctuation data; Section 3 discusses how the formulation above can be used

to select out residues that are highlighted by mode-coupling; Section 4 introduces the

motor protein myosin II which we use here as a test case; Section 5 gives the details

of the molecular dynamics (MD) simulations performed on myosin II; Section 6 reports

and Section 7 discusses our results.
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2. Modal expansion and beyond

Our raw data is the time-series for the space coordinates of the α-carbons obtained

from a full-atomistic molecular dynamics (MD) simulation whose details are given in

Section 5. Using the MD trajectory, we derive a multivariate probability distribution

function p(∆R), where ∆Ri, ∆Ri+N , and ∆Ri+2N with i = 1, ..., N are the deviations

from the mean position along the coordinate axes x, y, and z, respectively, of the i-th

Cα atom in a protein with N amino acids. The covariance matrix Γ =
〈
∆R∆RT

〉
is then used to transform the coordinate system by means of a scaling and a rotation

into the modal space: ∆r = Γ−1/2∆R. For a purely harmonic system, the resulting

distribution function is given by

f(∆r) =
∏
i

exp[−∆r2
i /2]√

2π
(1)

while deviations from Eq.(1) due to anharmonicity and mode-coupling are observed in

proteins, as mentioned before.

2.1. Hermite expansion

Building on an earlier proposal [19], we recently developed an analytical formalism that

naturally extends Eq.(1) into the regime where harmonicity breaks down [17, 13]. In

this framework, f(∆r) is expressed as an infinite sum:

f(∆r) =
1√

(2π)3N
e−

∑
i ∆r2i /2

[
1 +

∑
i

∞∑
ν=3

ciνHν(∆ri)

+
∑
i 6=j

∞∑
ν=3

ν−1∑
p=1

cijp,ν−pHp(∆ri)Hν−p(∆rj)

+
∑
i 6=j 6=k

· · ·
]

(2)

where Hi is the Hermite polynomial of rank i. The choice of the Hermite basis

ensures that the expansion coefficients are given by ciν = 〈Hν(∆ri)〉/ν! and cijp,ν−p =(
ν
p

)
〈Hp(∆ri)Hν−p(∆rj)〉/ν!, where 〈·〉 denotes the time average evaluated over the MD

data. Ref.[17] describes how the symmetry properties of Hermite tensor polynomials

can be exploited to reduce the computational complexity associated with estimating

these coefficients from the MD trajectory.

The leading term in Eq.(2), which is identical to Eq.(1), corresponds to a purely

harmonic dynamics and is referred as f0 here. This zeroth-order form is the basis

for many protein fluctuation models [20, 21, 22]. Remaining terms within the square

brackets in Eq.(2) reflect all possible corrections due to non-Hookian modes, as well as

pairwise, threesome, and higher-order mode-mode interactions. We wish to focus on

the impact of mode-coupling in our study, therefore our first goal is to distinguish the

contributions that yield anharmonic (and still independent) modes from those that are
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due to the interactions among such modes. Here, we will prefer to the former as marginal

anharmonicity, since this contribution is uniquely determined by the deviations of the

marginal distributions f(∆ri) =
∫ ∏

j 6=i drjf(∆r) from Gaussian.

To this end, let f1 refer to the best possible description of the data under the

assumption of marginal anharmonicity:

f1(∆r) =
1√

(2π)3N
e−

∑
i ∆r2i /2

∏
i

[
1 +

∑
i

νmax∑
ν=3

ciνHν(∆ri)

]
(3)

where νmax is a cut-off degree imposed by practical considerations (see Section 4). This

approximation to the conformational distribution function obtained from near-native

dynamics yields exact single-mode (marginal) histograms in the limit νmax →∞. Note

that, f1 is fully specified by the coefficients {ciν}. Nevertheless, marginal anharmonicity

is reflected at all orders in f(∆r) (i.e., cijp,ν−p and higher-order coefficients are typically

nonzero). At first sight, these high-order contributions may be confused with mode-

coupling since they are in the form of a product involving multiple vibrational modes.

However, it is transparent from Eq.(3) that, the information on mode-mode interactions

is contained in everything but f1.

3. Mode-coupling based ranking of residues

It is tempting at this point to attempt to identify pairs of modes which interact strongly

and/or have the most impact on protein function. Numerous studies in this spirit can

be found in the literature (see, e.g., [18, 23]. However, interpreting such data usually

requires an understanding of the functional dynamics and does not immediately relate

to experiments. Furthermore, a pairwise interaction picture is incomplete in the current

context, because the corrections to the fluctuational free energy are not additive in mode

pairs. In other words, higher-order contributions exist.

Instead, we here focus directly on the critical residues of the protein which are

highlighted by mode-coupling at all orders. This kind of information is not only easier

to compare with available experimental data (such as site-directed mutation scans),

but, as it turns out, it is also computationally cheaper to access. As is evident from

Eq.(2), estimating mode-coupling corrections per mode pair involves calculating second

and higher-order coefficients cij...νη... associated with the individual mode pair, repeated for(
N
2

)
pairs; a CPU demanding task. The cumulative effect of mode coupling, however,

is already available in the difference f\f1. This information can be projected onto the

protein’s sequence axis by the procedure outlined in Section 3.1. The outcome is a score

profile for each amino acid in the protein, reflecting the degree to which their near-native

fluctuations are modulated by mode coupling.

3.1. Identifying per residue impact of mode-coupling

In order to identify the residues highlighted by marginal anharmonicity and mode

coupling, separately, we back-project the distributions f0 and f1 onto the space of Cα
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atomic coordinates:

p0,1(∆R) = f0,1(∆r(∆R))/
√

det Γ .

p0 and p1 are approximations, at two different levels (Gaussian and marginally

anharmonic), to the original distribution p(∆R) obtained from the MD trajectory.

Next, we consider the marginal distributions p(∆Ri) =
∫ ∏

j 6=i dRj p(∆R) for

individual coordinates Cα
i and measure the Kullback-Leibler (KL) divergence [24], dKL,

between p and p1, as well as between p1 and p0 for a given residue i. The former

distance yields quantitative information on the extent to which mode-coupling governs

fluctutations of the given coordinate Cα
i , while the latter yields a similar measure as

regards to marginal anharmonicity. For distributions p and q of a continuous random

variable x, KL-divergence is defined to be the integral

dKL(p‖q) =

∫ ∞
−∞

p(x) ln
p(x)

q(x)
dx . (4)

The integration steps involved in the KL divergence estimation require the discrete

probability distributions obtained from the MD data to be smoothened out into

continuous functions. To this end, we use kernel density estimation (KDE) [25, 26]

which yields a continuous probability distribution p̂(x) from a set of samples {xi} as

p̂h(x) =
1

nh

n∑
i=1

K

(
x− xi
h

)
(5)

whereK is the kernel function (chosen to be Gaussian) and h is the bandwidth parameter

(determined by the method in Ref. [27]).

The total impact for a given residue is taken to be the sum of the KL-divergence

values for its three spatial coordinates:

Smci =
∑

α=x,y,z

dKL[p(∆Ri,α)‖p1(∆Ri,α)] , (6)

Smai =
∑

α=x,y,z

dKL[p1(∆Ri,α)‖p0(∆Ri,α)] . (7)

Above, “mc” and “ma” stand for “mode coupling” and “marginal anharmonicity”,

respectively. As a reference, we also consider the mean residue displacements (akin to

experimental B-factors) measured by the variation

σ2
i ≡

∫
∆Ri

2p(∆Ri)d∆Ri (8)

as the fluctuation-based score for a residue. Below, we apply this analysis to the MD

data from myosin II, a molecular motor protein, and compare the performance of the

above ranking schemes in distinguishing functionally significant locations on the protein.

Note that, once the MD data is available, estimation of the residue scores above is a

mechanical process, without any tuning paramaters.
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4. Myosin II

Dictyostelium discoideum myosin II is an allosteric protein which has been extensively

studied both experimentally and computationally. It is an actin-binding molecular

motor protein crucial for various biological processes, such as, cell movement, muscle

contraction in higher organisms, membrane transport and several signaling pathways.

Among the 35 known classes of myosin, 13 appear in Human [28]. The motor domain of

myosin II shown in Fig.6 goes through conformational changes at each stage of its four-

stroke catalytic cycle which converts the chemical energy derived from ATP hydrolysis

into mechanical work. The results presented below are obtained from MD simulations

of the structure PDB:1VOM [29], where an ATP is bound on the protein.

(a) 1VOM structure (b) Ligand binding pocket

Figure 1: Functional sites of myosin II (PDB:1VOM). The full structure of the motor

domain is shown on the left (a). Actin- and ADP-binding loops are indicated in red. On

the right, the ligand binding pocket is shown in greater detail (b). The ADP molecule

in the middle is surrounded by functional elements Switch I (red), Switch II (blue) and

P-loop (orange). (1a)

There exist several, well-studied functionally relevant locations on the structure.

Switch II and P-loop shown in Fig.1b are known to control the MgADP release

mechanism [29]. Structural changes during the characteristic cleft closure motion in

the motor domain is believed to be related to activity in Switch I region, which opens

the binding pocket and modifies the relative placement of the P-loop and Switch II

regions [30]. The actin-binding pocket of the structure is composed of the Myopathy

loop and Loop-2, shown in Fig.1a. The interaction between Loop-2 and the negatively

charged parts of the actin is also documented [31].

Below, we perform the proposed fluctuational analysis on the motor domain of

myosin II and identify the residues whose fluctuations are most significantly modified
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by mode-coupling. We find that, there is a statistically significant correlation between

these and the functional regions mentioned above, as well as a subset of critical residues

of the protein determined by experimental methods (such as point mutations).

5. MD simulations and the eigenmodes

The structure is composed of 730 residues and the ligand whose atomic coordinates (the

initial configuration of the MD simulation) were extracted from the PDB database.

The MD simulations were carried out using NAMD 2.7 software package [32] with

CHARMM27 force field [33] in explicit solvent (water) at 310 K. Langevin dynamics

was used to control the temperature and the pressure in an NPT ensemble. A water

box with a 15Å cushion and periodic boundary conditions were applied. The integration

time step in the simulation was selected as 1 fs for both non-bonded and electrostatic

forces and no rigid bonds were used. The trajectory was captured every 50 fs within

several windows of ∼ 2 ns duration, for a total run of 10 ns.

Note that, a much longer simulation time would be required to observe the

functional dynamics of the protein. The purpose of our simulation, however, is merely

to monitor the fluctuations and to gather sufficient data on the non-Gaussian nature

of the conformational distribution. The procedure may be crudely likened to recording

a short bike ride and then analyzing the small displacements of various elements in

order to identify the components that are critical in transfer mechanical energy (except,

thermal fluctuations are significantly more influential in the current system.)

Figure 2: A comparison of the slowest mode’s amplitude distribution for different choices

for the maximum Hermite degree considered in Eq.(3). The cut-off degree νmax = 32

was determined according to the criterion that the marginal distributions for all modes

are captured with an accuracy same as above or better.
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The MD output was analysed in several time windows. Let us consider the steps of

the analysis on the first 2 ns of the simulation data after equilibration, where snapshots

taken 0.5 ps apart amount to N = 4000 data points: We first construct the vector

∆R(i) of the Cα positions in each snapshot, with i = 1, . . . , N . We next calculate the

covariance matrix Γ given in Section 2, and identify the modal coordinates ∆R(i) for

the 2184 fluctuation modes (out of 730 × 3 = 2190 degrees of freedom, excluding six

associated with the center of mass translation/rotation). At this point, the zeroth-

order approximant f0 to f(∆r(i)) (and to f(∆R(i)), through the inverse transform) is

already available. Next, we find the best marginally anharmonic description of the

data, f1, given by Eq.(3). This is done by estimating ciν in Eq.(3) as averages over

the MD snapshots, up to a sufficiently high cut-off degree νmax = 32 which is obtained

empirically (see Fig.2). Finally, we calculate the residue scores using Eqs.(6-8).

Figure 3: The overlap between the first 100 eigenvectors corresponding to the slowest

fluctuational modes, ordered according to their eigenvalues, obtained from the first 1

ns (horizontal axis) and 10 ns (vertical axis) time frames. The accumulation along the

lower diagonal indicates that the modal subspace spanned by slow eigenvectors retains

its identity to a significant degree, with some amount of mixing between nearby modes.

Each time window considered was subjected to the same analysis. We here present

results for the first 1, 2, 5, and the full 10 ns of the simulation. Fig.3 shows that the

eigenvectors corresponding to the 1 and 10 ns time frames, ordered with respect to the

amplitude of the corresponding eigenvalue, are in visible agreement for the slow modes

(lower left corner of the figure). This observation is in line with earlier work which

argues that the slow modes retain their identity across different time scales, even if the

eigenvalue spectrum may change [34, 35]. Early identifyability of these most relevant

modes points to the internal consistency of our approach and supports our observation

that, a mere 10 ns simulation is sufficient to extract meaningful information about the
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biologically critical correlations in the dynamics which are imprinted into the protein’s

complex structure.

6. Results

Figure 4: The residue scores obtained using Eqs.(6,7) in the first 1 ns, 2 ns, 5 ns, and 10

ns of the simulation, w.r.t. mode-coupling (first row), marginal anharmonicity (second

row), and residue fluctuations (third row). Colored columns indicate functionally

relevant regions, P-loop (green), Switch I (red), Myopathy loop (grey), Switch II (cyan),

relay helix (yellow), and Loop-2 (purple), reported in the literature and described in

Section 4. 3σ threshold is shown by the dashed line. The residue IDs of prominant

peaks outside the 3σ margin are given in red.

Fig.4 is a side-by-side comparison of residue rankings obtained from the first 1

ns, 2 ns, 5 ns and 10 ns simulations of the ligand-bound motor domain. The initial

configuration for both simulations was the structure PDB:1VOM and the analysis was

performed on the data collected after equilibration. In each column, we consider three

scoring schemes based on: (1) mode-coupling, Smci ; (2) marginal anharmonicity, Smai ;

(3) mean residue fluctuation, σ2
i = 〈∆R2

i 〉. In Fig.4, the scores of the residues are shown

for each time frame and evaluation criterion, alongside the functional regions indicated

by different colored columns. We find that, the high-scoring residues are marked by

distinct peaks in mode-coupling based ranking (more so than that based on fluctuation

amplitudes), while marginal anharmonicity is noisy and displays less selectivity among

residues. Upon comparing the magnitudes on the vertical axes in the first two rows of

Fig.4, the relative weight of mode coupling in an amino acid’s fluctutational behavior

is found to be larger by an order of magnitude than that of marginal anharmonicity. A

similar observation was made on Crambin earlier[17]. Therefore, between the two non-

Gaussian contributions, mode-coupling appears as the dominant factor in shaping the
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configurational landscape. Consistently, only the residue-specific information gathered

from mode-coupling corrections yields a rank profile in significant agreement with site-

specific mutation data available for myosin II, as demonstrated in Section 6.1.

A closer inspection of mode-coupling based scores in different time frames (first

row in Fig. 4) reveals an interesting progression. We observe an increasing level of

activity in the ligand binding pocket during the first half of the simulation, but not

later. On the other hand, the contribution to the second half of the simulation is mostly

from the ends of the relay helix which is known to mechanically couple the ligand-

and actin-binding pockets. Such shifts in activity in different time frames may be

reminiscent of the complex communication patterns established through energy transfer

between different vibrational modes in the system [?, 11]. The scoring based on residue

fluctuation amplitudes alone (last row in Fig. 4) shows little difference between different

time frames, as one might expect.

Comparing first and last rows of Fig.4, we observe that there is some overlap

between regions accentuated by mean fluctuation amplitudes vs. by mode coupling.

This is expected, not only because our analysis derives from fluctuation data, but also

because some functional sites reside on flexible loop regions. We find that the Myopathy

loop and Loop-2, which is essential for actin binding, yield a strong signal in both

fluctuation and mode-coupling based rankings. In contrast, loop regions in the ligand

binding pocket (P-loop, Switch I/II) do not fluctuate as much (presumably due to the

presence of the ligand), yet, they are still highlighted by mode coupling.

6.1. Comparison with point mutation data

Score profiles in Fig.4(a-d) further single out few locations which are not in the

immediate vicinity of the color coded functional regions. For example, Ser-443, such

a site selected by mode coupling, coincides with the bent at the distal end of the long

helix between residues 411-440, known to promote the Myopathy loop to bind actin [36].

These may correspond to further residues that are critical for protein function, for

example relaying information between the ligand- and actin-binding regions. For an

unbiased evaluation of all such instances, a higher resolution target set is desirable. To

this end, we performed a thorough literature survey for residue-specific experimental

data on myosin II. Table 1 is a comprehensive list of amino acids that we could gather

for myosin II, which have been experimentally verified (mostly through point mutations)

to be critical for its function. It is possible that, some of these are important structural

elements, say, required for folding, and not necessarily critical in the sense of residing

on a functional site or maintaining allosteric communication. Nevertheless, this list

comprises a solid target set, free from theoretical considerations or interpretations of

structural data.

We next use a standard recall analysis to compare various ranking methods

(including random) against this target set. Fig.5 shows for each case, the percentage

of top residues that need to be considered (vertical axis) in order to capture a certain
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N483, F487, I499, F506,

L508, I687, F692, F745

Ref. [37] D403, V405 Ref. [38]

N464, C470,N472,Y473,

N475, F481, E746

Ref. [39] Y494, W501 Ref. [37, 40]

D590, P591, L592, Q593 Ref. [41] S181 Ref. [42]

E467, E586,G624, G740 Ref. [40] S236 Ref. [43]

N233, S237, R238 Ref. [44] E459 Ref. [45, 39]

I499, F692, R738 Ref. [46] F482 Ref. [42, 47]

D454, G457, F458 Ref. [45] G680 Ref. [42, 40, 48, 47]

E531, P536, R562 Ref. [49] G691 Ref. [40, 48]

Table 1: Amino acids that are experimentally verified to be critical for myosin II

function. This list is used in the text as a target set for evaluating the relevance of various

physical processes, namely, marginal anharmonicity, mode coupling, and fluctuation

amplitudes, to protein’s function.

fraction of the target set (horizontal axis). For a random ordering of the residues, this

curve is supposed to lie on the diagonal, with fluctuations typically less than 10% for

the current data. A perfect ordering which places the target residues on top of the list

would yield a curve following the upper edge of the forbidden gray region at the bottom.

Figure 5: The performance of each ranking scheme considered in the paper is shown

together with that of a random (dashed) and a perfect (upper edge of the forbidden black

region) rank assignment. Each data point corresponds to the fraction of target residues

captured out of a total of 43 (horizontal axis) by the top ranking residues covering a

given percentage (vertical axis) of 730 residues in total.
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Upon inspecting Fig. 5, we observe that fluctuations and marginal anharmonicity

display no preference for the target set. The conservation scores show the best

correlation with the experimentally determined targets. This is hardly surprising,

since experimental studies are in fact guided by conservation scores. The key result

of our study is the green curve representing the mode-coupling based ordering.

The clear deviation from the diagonal in the downward direction demonstrates that

coupling between vibrational modes is an important physical mechanism for protein

function and that this information can be cast into a predictive tool by means of the

computational/analytical framework described above.

We also noticed that the scoring function fi ≡ Smci /σ2
i which is also shown in

Fig.5 (the curve labeled as “MC/Fluc”) is consistently better than Smci in terms of

highlighting the target set listed in Table 1. We checked that the general trend and the

relative performances of different scoring criteria are robust under different methods one

might choose while harnessing the information from different time windows (such as,

considering, for each amino acid, the maximum of a score among those calculated from

successive time intervals, instead of a single score obtained from the full simulation).

Note that, a gap builds in the tail of Fig.5 between conservation and mode-coupling

rankings. This discrepancy may be due to some residues in the target list which

are relevant for the folding process (therefore also have high conservation scores), but

not the functional dynamics where we expect mode coupling to play a role. Further

investigations on myosin II and other proteins are in progress to confirm this hypothesis,

as well as to verify the generality of the present approach.

Figs.5 presents a direct validation of the fact that, coupling between vibrational

modes, as formulated here, is a significant physical mechanism underlying myosin II’s

functional dynamics. This is the main message we wish to convey in this paper. Since

the existing data on myosin II is far from being exhaustive, it is likely that further

experiments will identify more essential residues for this protein. The method introduced

here may also help in these future endevours as a new guide for target selection (for

example, Ser-443 appears to be a promising candidate). The distribution of top amino

acids with high mode-coupling scores shown in Fig. 6 is further encouraging in this

respect. One observes that, the top scoring residues are not randomly distributed across

the structure. Rather, they accumulate around the core of the motor domain, in visible

agreement with the distribution of the residues in the target set in Table 1.

7. Discussion

It is generally accepted that the coupling between different vibrational modes is an

important physical mechanism driving correlated functional dynamics in proteins,

particularly in the context of allosteric communication. However, this wisdom generated

little input for experimentalists so far. We here propose an analytical/computational

framework where the “noninteracting” limit is composed of already anharmonic modes

(consistent with the observed slow modes in proteins). Mode coupling is then defined
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(a) experimental residues (b) mode coupling

Figure 6: A side-by-side comparison of the locations of residues in (a) top 10% w.r.t.

mode-coupling scores, (b) the experimentally determined target set. Hot colors indicate

higher scores.

as everything that falls outside the best possible description of the configurational

distribution (obtained from simulations) as a function factorizable in such modes. The

information content of the mode-coupling contribution obtained by this operational

definition can be utilized to highlight certain locations on the protein. Despite the

fact that the MD simulations are much shorter than the time required to observe

functionally relevant dynamics, we show here that these locations correlate with critical

residues/regions obtained from experiments on the motor domain of myosin II.

Our work simultaneously confirms the relevance of mode coupling to function

and proposes a new computational tool for predicting functionally critical locations

on proteins. However, considering the multitude of factors that contribute to the

evolutionary design these complex machines, it is difficult to imagine our approach

(or any other non-hybrid, ab initio method) to singlehandedly yield sufficiently accurate

predictions. Assuming our tests currently in progress on several other proteins yield

favorable results, a more apt use of the present computational framework would be

to employ it as a module in a multifaceted prediction algorithm that seeks consensus

between complementary approaches. Several such tools are publicly available [50].
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