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Abstract

Relevance of mode coupling to energy/information transfer during protein
function, particularly in the context of allosteric interactions is widely ac-
cepted. However, existing evidence in favor of this hypothesis comes es-
sentially from model systems. We here report a novel formal analysis of
the near-native dynamics of myosin I, which allows us to explore the im-
pact of the interaction between possibly non-Gaussian vibrational modes on
fluctutational dynamics. We show that, an information-theoretic measure
based on mode couplirgjone yields a ranking of residues with a statisti-
cally significant bias favoring the functionally critical locations identified by

experiments on myosin Il.

1 Introduction

Fluctuation based analysis of protein dynamics has longgorto be an invaluable
tool for investigating the interplay between protein dymasrand function([11, 2].
Despite the past success enjoyed by the bead-and-sppedhitgar models (such
as, elastic, Gaussian, and anisotropic network modeis)wiell known that, both
experimental evidence and simulations reveal strong tieqeairom purely Gaus-
sian (harmonic) behavior at physiological temperaturgs)@viations from har-
monicity are most pronounced in slow, collective modes Wiaie significant, for
example, in the context of vibrational absorption specttiyn[4], dimensional
reduction [[5[ 6], and the role of hydration effects [7].

On the other hand, the decomposition of MD fluctution data intlepen-

dent, possibly anharmonic modes is only the first step in &nite cascade of



corrections that bridge the gap between the dynamics oékgtateins and Gaus-
sian models. The contribution of higher-order correctisigmifies the degree to
which the experimental/computational free energy langsdails to conform to
a representation composed of independent modes (harmoaitharmonic). In
other words, they are “mode-coupling” corrections whichklgivaluable infor-
mation on means of energy transfer and associated codeatwity within the
protein [8,9/ 10, 11,12, 13]. Characterization of tumformationapopulation
sampled by near-native dynamics is believed to be the keydenstanding the
functioning of allosteric proteins [14, 115], if not all [L6The interactions between
vibrational modes play an essential role in shaping thisuadon.

Recently, we introduced a systematic mathematical anabfsise fluctua-
tional data (for example obtained from full-atomistic siations), that naturally
distinguishes the anharmonic and mode-coupling contdbstto the free en-
ergy [17]. Here, we combine this analytical formulation witomputer simu-
lations of the near-native dynamics of myosin Il and denratstthat the mode
couplingalone highlights functionally critical sites of this allostenmotein. The
relevance of coupling between vibrational modes in theexdrdf allosteric tran-
sitions in myosin Il was also pointed out in an earlier worg][1

The paper is organized as follows: Secfiod 2.1 describeth&wzetical frame-
work used for isolating the contribution of mode couplingrfr other anharmonic
effects in the MD fluctuation data; Sectibn 2.3 discusses ttmvformulation
above can be used to select out residues that are highligtetbde coupling;
Section 2.6 introduces the motor protein myosin Il which vge tiere as a test
case; Sectioh 2.6 gives the details of the molecular dyr&fMi®) simulations

performed on myosin II; Sectidd 3 reports and Sedfion 4 dises our results.



2 Materialsand Methods

2.1 Modal expansion and beyond

Our raw data is the time-series for the space coordinatesenfiicarbons ob-
tained from a full-atomistic molecular dynamics (MD) siratibn whose details
are given in Section 2.6. Using the MD trajectory, we derivenaltivariate
probability distribution functiorp(AR), whereAR;, AR, n, andAR; o With

1 = 1,..., N are the deviations from the mean position along the cooteliages

x, y, andz, respectively, of the-th C* atom in a protein withV amino acids. The
covariance matrix' = (ARART) is then used to transform the coordinate sys-
tem by means of a scaling and a rotation into the modal space= I'"'/2AR.

For a purely harmonic system, the resulting distributiamction is given by

fan =1] Mﬁ—ﬁm (1)

i

while deviations from Ed.{1) due to anharmonicity and modepting are ob-

served in proteins, as mentioned before.

2.2 Hermite expansion

Building on an earlier proposal [19], we recently developedaaalytical for-

malism that naturally extends Hd.(1) into the regime wherertonicity breaks



down [17)13]. In this frameworkf(Ar) is expressed as an infinite sum:
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where H; is the Hermite polynomial of rank The choice of the Hermite ba-
sis ensures that the expansion coefficients are giveri by (H,(Ar;))/v! and
&, = () (H,(Ar;)H,—p(Ar;))/v!, where(-) denotes the time average evalu-
ated over the MD data. Ref.[l17] describes how the symmetrpesties of Her-
mite tensor polynomials can be exploited to reduce the coatipnal complexity
associated with estimating these coefficients from the N2 ttory.

The leading term in Ed.[2), which is identical to Ed.(1), responds to a
purely harmonic dynamics and is referred fashere. This zeroth-order form
is the basis for many protein fluctuation modéls| [20,21, R¢maining terms
within the square brackets in Hd.(2) reflect all possibleaxiions due to non-
Hookian modes, as well as pairwise, threesome, and higler-onode-mode
interactions. We wish to focus on the impact of mode coupimgur study,
therefore our first goal is to distinguish the contributidhat yield anharmonic
(and still independent) modes from those that are due tontieeaictions among
such modes. Here, we wilkferto the former asnarginal anharmonicity, since
this contribution is uniquely determined by the deviatiofshe marginal distri-
butionsf(Ar;) = [ ], dr;jf(Ar) from Gaussian.

To this end, letf; refer to the best possible description of the data under the
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assumption of marginal anharmonicity:

fi(Ar) = ﬁe‘ i Arg/2 H {1 + iﬁf cf,HV(Ari)} (3)
7 v=3

wherev,,,, IS a cut-off degree imposed by practical considerations Sec-
tion[2.3). This approximation to the conformational distition function obtained
from near-native dynamics yields exact single-mode (nmatyjhistograms in the
limit ... — oo. Note that,f; is fully specified by the coefficients’ }. Never-

theless, marginal anharmonicity is reflected at all ordeyg§ Ar) (i.e. and

’sz—p
higher-order coefficients are typically nonzero). At firghg, these high-order
contributions may be confused with mode coupling since #reyin the form of
a product involving multiple vibrational modes. Howevérisi transparent from
Eq.(3) that, the information on mode-mode interaction®igained ineverything

but f1 .

2.3 Mode-coupling based ranking of residues

It is tempting at this point to attempt to identify pairs of d&s which interact
strongly and/or have the most impact on protein functionmirous studies in
this spirit can be found in the literature (see, e.q.,| [1§, 2Bwever, interpret-
ing such data usually requires an understanding of the ifuradtdynamics and
does not immediately relate to experiments. Furthermopaimvise interaction
picture is incomplete in the current context, because tineections to the fluctu-
ational free energy are not additive in mode pairs. In otherds, higher-order
contributions exist.

Instead, we here focus directly on the critical residuesefdrotein which are



highlighted by mode coupling at all orders. This kind of imf@tion is not only
easier to compare with available experimental data (susheslirected mutation
scans), but, as it turns out, it is also computationally plee#o access. As is ev-
ident from Eql(R), estimating mode-coupling correctioes mode pair involves
calculating second and higher-order coefficietjfs associated with the individ-
ual mode pair, repeated fcé@’) pairs; a CPU demanding task. The cumulative
effect of mode coupling, however, is already available endifference betweefi
and f;. This information can be projected onto the protein’s seqgaexis by the
procedure outlined in Sectign 2.4. The outcome is a scorfdefor each amino
acid in the protein, reflecting the degree to which their fesive fluctuations are

modulated by mode coupling.

2.4 ldentifying per residue impact of mode coupling

In order to identify the residues highlighted by margingtammonicity and mode
coupling, separately, we back-project the distributiginand f; onto the space of

C'® atomic coordinates:
o1 (AR) = fo1(Ar(AR))/Vdetl .

po and p; are approximations, at two different levels (Gaussian aadgmally

anharmonic), to the original distributiogrit AR ) obtained from the MD trajectory.
Next, we consider the marginal distributiopAR;) = [ [, dR; p(AR)

for individual coordinate§’® and measure the Kullback-Leibler (KL) divergence [24],

dx 1, betweerp andp;, as well as between, andp, for a given residueé. The

former distance yields quantitative information on thesexto which mode cou-



pling governs fluctutations of the given coordin&tg, while the latter yields a
similar measure as regards to marginal anharmonicity. Brilltionsp andg

of a continuous random variabte KL-divergence is defined to be the integral

o) = [ pla) B do. @

The integration steps involved in the KL divergence estiomatequire the discrete
probability distributions obtained from the MD data to becgthened out into
continuous functions. To this end, we use kernel densitynesibn (KDE) [25,

26] which yields a continuous probability distributigtiz) from a set of samples

{z;} as

~ i 1 - r — T;
where K is the kernel function (chosen to be Gaussian) ansl the bandwidth
parameter (determined by the method in Refl [27]).

The total impact for a given residue is taken to be the sumeoKthrdivergence

values for its three spatial coordinates:

Sl.mc: Z dKL[p<ARi,a)Hp1(ARi,a)]7 (6)
a=x,Yy,z

S = Y drelp(ARw) (AR - 0
a=x,Yy,z

Above, “mc” and “ma” stand for “mode coupling” and “marginal anharmonicity”,
respectively. We note thas " is a measure of the information added by anhar-
monicity (under the condition of separability) on top of thest fitting harmonic

(fo) reference distribution, whil&™* measures the information added by mode



coupling on top ofits reference distribution which is the best separable functio
that matches the data. With this perspective, the chosesuree& naturally an
asymmetric one under the exchange of its argument functieimslly, for com-
parison, we also consider the mean residue displacemdmtst@aexperimental

B-factors) measured by the variation
oF = / AR;’p(AR;)dAR; (8)

as the fluctuation-based score for a residue. Below, we apjgyanhalysis to the
MD data from myosin Il, a molecular motor protein, and congdae performance
of the above ranking schemes in distinguishing functignsilijnificant locations
on the protein. Note that, once the MD data is availablepegion of the residue

scores above is a mechanical process, without any tuniragzders.

2.5 Myosinll

Dictyostelium discoideum myosin Il is an allosteric protein which has been ex-
tensively studied both experimentally and computatignatlis an actin-binding
molecular motor protein crucial for various biological pesses, such as, cell
movement, muscle contraction in higher organisms, menebramsport and sev-
eral signaling pathways. Among the 35 known classes of myds appear in
Human [28]. The motor domain of myosin Il shown in Eig.1 gde®tigh con-
formational changes at each stage of its four-stroke datatycle which con-
verts the chemical energy derived from ATP hydrolysis intechmnical work.
The results presented below are obtained from MD simulatafrthe structure

PDB:1VOM [29], where an ADP is bound on the protein.



Figure 1

There exist several, well-studied functionally relevatdtions on the struc-
ture. Switch Il and P-loop shown in Fig.1a are known to cdrniine MgADP
release mechanism [29]. Structural changes during thecteaistic cleft closure
motion in the motor domain is believed to be related to atytivi Switch | region,
which opens the binding pocket and modifies the relativegoteant of the P-loop
and Switch Il regions [30]. The actin-binding pocket of theisture is composed
of the Myopathy loop and Loop-2, shown in Eig.1b. The intéac between
Loop-2 and the negatively charged parts of the actin is ateoichented [31].

Below, we perform the proposed fluctuational analysis on tb®ndomain of
myosin Il and identify the residues whose fluctuations arstraignificantly mod-
ified by mode coupling. We find that, there is a statisticaliygicant correlation
between these and the functional regions mentioned absweelhas a subset of
critical residues of the protein determined by experimientthods (such as point

mutations).

2.6 MD simulations and the eigenmodes

The structure is composed of 730 residues and the ligand evatasnic coor-
dinates (the initial configuration of the MD simulation) wegxtracted from the
PDB database. The MD simulations were carried out using NAMDsoftware
packagel[32] with CHARMMZ27 force field [33] in explicit solvefwater) at 310
K. Langevin dynamics was used to control the temperaturdtagdressure in an
NPT ensemble. A water box with a i5cushion and periodic boundary condi-

tions were applied. The integration time step in the sinoetvas selected as 1
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fs for both non-bonded and electrostatic forces and no bgittls were used. The
trajectory was captured every 50 fs within several windows-@ ns duration,
for a total run of 10 ns.

Note that, a much longer simulation time would be requiredliserve the
functional dynamics of the protein. The purpose of our satiah, however,
is merely to monitor the fluctuations and to gather sufficiéata on the non-
Gaussian nature of the conformational distribution. Theeedure may be crudely
likened to recording a short bike ride and then analyzingsthall displacements
of various components in order to identify the elements #natcritical for me-
chanical energy transfer (except, of course, thermal faicins are much more

significant in the current system.)

Figure 2

The MD output was analysed in several time windows. Let usiclan the
steps of the analysis on the first 2 ns of the simulation datx afjuilibration,
where snapshots taken 0.5 ps apart amouiittci000 data points: We first con-
struct the vectoAR(?) of the C* positions in each snapshot, with= 1,....T.
We next calculate the covariance matfixgiven in Sectioi 2]1, and identify the
modal coordinateaA R for the 2184 fluctuation modes (out 30 x 3 = 2190
degrees of freedom, excluding six associated with the cegftenass transla-
tion/rotation). At this point, the zeroth-order approximd, to f(Ar®) (and
to f(AR®), through the inverse transform) is already available. Nexet find
the best marginally anharmonic description of the détagiven by Eql(B). This
is done by estimating, in Eq.(3) as averages over the MD snapshots, up to a suf-

ficiently high cut-off degree,,... = 32 which is obtained empirically (see Hig.2).
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Finally, we calculate the residue scores using EH{d.(6-8).

Figure 3

Each time window considered was subjected to the same aaWe here
present results for the first 1, 2, 5, and the full 10 ns of tmeutation. Fid.B
shows that the eigenvectors corresponding to the 1 and Iihed$rames, ordered
with respect to the amplitude of the corresponding eigemyalre in visible agree-
ment for the slow modes (lower left corner of the figure). Tdliservation is in
line with earlier work which argues that the slow modes reteir identity across
different time scales, even if the eigenvalue spectrum rhayge [34] 35]. Early
identifyability of these most relevant modes points to thterinal consistency of
our approach and supports our observation that, a mere lithokson is suffi-
cient to extract meaningful information about the biol@djig critical correlations

in the dynamics which are imprinted into the protein’s coexptructure.

3 Resaults

Figure 4

Figld is a side-by-side comparison of residue rankingsiobtefrom the first 1
ns, 2 ns, 5 ns and 10 ns simulations of the ligand-bound motoiaih. The initial
configuration for both simulations was the structure PDB:W&énd the analysis
was performed on the data collected after equilibratioredoh column, we con-

sider three scoring schemes based on: (1) mode cougdjffg,(2) marginal an-
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harmonicity,S™*; (3) mean residue fluctuation? = (AR?). In Fig[4, the scores
of the residues are shown for each time frame and evaluatitmion, alongside
the functional regions indicated by different colored eoohs. We find that, the
high-scoring residues are marked by distinct peaks in noodgling based rank-
ing (more so than that based on fluctuation amplitudes),ewmihrginal anhar-
monicity is noisy and displays less selectivity among nesgd Upon comparing
the magnitudes on the vertical axes in the first two columrfsigi, the relative
weight of mode coupling in an amino acid’s fluctutational é&abr is found to be
larger by an order of magnitude than that of marginal anharaity. A similar
observation was made on Crambin earlier[17]. Thereforeydsen the two non-
Gaussian contributions, mode coupling appears as the dorfiactor in shaping
the configurational landscape. Consistently, only the tesgpecific information
gathered from mode-coupling corrections yields a rank lerofisignificant agree-
ment with site-specific mutation data available for myosjra$ demonstrated in
Sectior 3.1.

A closer inspection of mode-coupling based scores in diffetime frames
(first column in Fig[#) reveals an interesting progressidlie observe an in-
creasing level of activity in the ligand binding pocket ahgithe first half of the
simulation, but not later. On the other hand, the contrduto the second half
of the simulation is mostly from the ends of the relay helixiethis known to
mechanically couple the ligand- and actin-binding pock&sch shifts in activ-
ity in different time frames may be reminiscent of the comptemmunication
patterns established through energy transfer betweegretiif vibrational modes
in the system[[9, 11]. The scoring based on residue fluctuatoplitudes alone

(last row in Fig[4) shows little difference between differéime frames, as one
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might expect.

Comparing first and last columns of Fip.4, we observe thattlsesome over-
lap between regions accentuated by mode coupkndpy mean fluctuation am-
plitudes. This is expected, not only because our analysigedefrom fluctuation
data, but also because some functional sites reside onl&@dgitp regions. We
find that the Myopathy loop and Loop-2, which are essentialfdin binding,
yield a strong signal in both fluctuation and mode-coupliagdnd rankings. In
contrast, loop regions in the ligand binding pocket (P-loBwitch 1/11) do not
fluctuate as much (presumably due to the presence of thedligget, they are

still highlighted by mode coupling.

3.1 Comparison with point mutation data

Score profiles in Figl4(a-d) further single out few locatiamhich are not in the
immediate vicinity of the color coded functional regionsr Example, Ser-443,
such a site selected by mode coupling, coincides with thedighe distal end of
the long helix between residues 411-440, known to promaeviiiopathy loop

to bind actin [36]. These may correspond to further residhasare critical for

protein function, for example relaying information betweke ligand- and actin-
binding regions. For an unbiased evaluation of all suctaimsts, a higher resolu-
tion target set is desirable. To this end, we performed aotigir literature survey
for residue-specific experimental data on myosin Il. Téhke d comprehensive
list of amino acids that we could gather for myosin Il, whicdwvl been experi-
mentally verified (mostly through point mutations) to beical for its function.

It is possible that, some of these are important structleshents, say, required
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for folding, and not necessarily critical in the sense oidiag) on a functional site
or maintaining allosteric communication. Neverthelels list comprises a solid

target set, free from theoretical considerations or imeggtions of structural data.

Table |

We next compare various ranking methods (including randagajinst this
target set. Figl5 shows for each case, the percentage oésapues that need to
be considered (vertical axis) in order to capture a certaiction of the target set
(horizontal axis). For a random ordering of the residues,dbrve is expected to
lie on the diagonal, with fluctuations typically less tha®d.fr the current data.
A perfect ordering which places the target residues on tapefist would yield
another straight line following the upper edge of the fodeid gray region at the
bottom.

Figure 5

Upon inspecting Figl]5, we observe that fluctuations and makrgnhar-
monicity display no preference for the target set. The caag®n scores show
the best correlation with the experimentally determinedets. This is hardly
surprising, since experimental studies are in fact guideddmservation scores.
The key result of our study is the green curve representiegribde-coupling
based ordering. The clear deviation from the diagonal irdtthvenward direction
demonstrates that coupling between vibrational modes isnaortant physical
mechanism for protein function and that this information b& cast into a pre-

dictive tool by means of the computational/analytical feavork described above.
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We also noticed that the scoring functigh= S5¢/o? which is also shown
in Fig[3 (the curve labeled as “MC/Fluc”) is consistentlytbethanS! in terms
of highlighting the target set listed in Taljle I. We checkiadttthe general trend
and the relative performances of considered scoring @&itge robust under dif-
ferent methods one might choose while harnessing the irsfoom from several
time windows (such as, considering, for each amino acidn@emum of a score
among those calculated from successive time intervaltgadsof a single score
obtained from the full simulation). Note that, a gap buildsthe tail of Fid.b
between conservation and mode-coupling rankings. Th@elsncy may reflect
that some residues in the target list are relevant for thairfglprocess (therefore
have high conservation scores), but not the functional aycewhere we expect
mode coupling to play a role. Further investigations on nirytisand other pro-
teins are in progress to confirm this hypothesis, as well aetify the generality
of the present approach.

FigslD presents a direct validation of the fact that, cayplietween vibrational
modes, as formulated here, is a significant physical meshannderlying myosin
II's functional dynamics. This is the main message we wisledavey in this
paper. Since the existing data on myosin Il is far from beiitpeistive, it is likely
that further experiments will identify more essential desgs for this protein. The
method introduced here may also help in these future endewasua new guide
for target selection (for example, Ser-443 appears to b@mipng candidate).
The distribution of top amino acids with high mode-couplisgpres shown in
Fig.[8 is further encouraging in this respect. One obseitvas the top scoring
residues (from the mode-coupling perspective) are notmashgdistributed across

the structure. Rather, they accumulate around the core ahtiter domain, in
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visible agreement with the distribution of the residuesimtarget set in Tablé I.

Figure 6

3.2 Relevant modes and mode pairs

A key aspect of the above analysis is that the coupling betweemodes is taken
into account at all orders and is not restricted to pairwmgeractions. Never-
theless, it is instructive to investigate the strongly dedpmode pairs and their
influence in the real (residue) domain. To this end, we catedl the second-

order coefficients”,_ in Eq.[2) for the slowest 25 modes and determined the

pv—p
impact of the interactions between @P) mode pairs on the configurational free
energy of the system, as described in Ref.[17]. Repeatingthlgss for the first
and second half of the MD run, we obtained the coupling majikign in Fig??a.
Consistent with Figl4(a-d), we observe that the modes the the strongest pair-
wise coupling change in time. In particular, 3-4, 1-4, an@ dre the prominent
pairs in the first half of the simulation, while mode pairs & 1-10 interact
strongly in the second half. Consistently, upon analysincidlations of Ser-443

(singled out in the first half) during the time evolution otbanode, we find that

this residue is mostly driven by the modes 1,3,4, and 6 PPm).

Figure 7

We finally computed, for each residue, the difference betwibe fluctu-
ation amplitudes due to modes obtained from the first half faoioh the sec-

ond half, shown in Fig?c. We found that, the ligand-binding pocket residues
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(green/red/cyan columns in the figure) mostly carry a pesisignal (meaning
they are driven more by the first mode set), while the oppdsiieie for the relay
helix (yellow column). Although these observations supjporr earlier findings,
we stress that, mode coupling has a significant “many-bodpéet and a pair-
wise analysis as above only partially reflects the impact @fiencoupling on the

protein’s complex dynamics.

4 Discussion

It is generally accepted that the coupling between diffevésrational modes is
an important physical mechanism driving correlated fuorai dynamics in pro-
teins, particularly in the context of allosteric communica. However, this wis-
dom generated little input for experimentalists so far. \Weehpropose an ana-
lytical/computational framework where the “noninteragti limit is composed of
already anharmonic modes (consistent with the observedmslmdes in proteins).
Mode coupling is then defined as everything that falls oettie best possible de-
scription of the configurational distribution (obtainedrr simulations) as a func-
tion factorizable in such modes. The information contenthef mode-coupling
contribution obtained by this operational definition canubézed to highlight
certain locations on the protein. Despite the fact that tHe $imulations are
much shorter than the time required to observe functionallgvant dynamics,
we show here that these locations correlate with criticgitiiees/regions obtained
from experiments on the motor domain of myosin II.

Our work simultaneously confirms the relevance of mode gogjb function

and proposes a new computational tool for predicting fmetily critical loca-
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tions on proteins. However, considering the multitude ctdes that contribute
to the evolutionary design these complex machines, it fecdlf to imagine our
approach (or any other non-hybrah initio method) to singlehandedly yield pre-
dictions sufficiently accurate for use in drug design or Emiechnologies. As-
suming our tests currently in progress on several otheep®yield favorable re-
sults, a more apt use of the present computational framewoukd be to employ
it as a module in a multifaceted prediction algorithm thakseconsensus between

complementary approaches. Several such tools are publiailable [37].
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Figure 1: Functional sites of myosin Il (PDB:1VOM). The futhscture of the
motor domain is shown on the left (a). Actin- and ADP-bindlogps are indi-
cated in red. On the right, the ligand binding pocket is showgreater detail (b).
The ADP molecule in the middle is surrounded by functionahents Switch |
(red), Switch Il (blue) and P-loop (orange). (Fig. 1a)

Figure 2: A comparison of the slowest mode’s amplitude idlistion for differ-

ent choices for the maximum Hermite degree considered ifBEqThe cut-off
degreev,,.. = 32 was determined according to the criterion that the marginal
distributions for all modes are captured with an accuraayesas above or better.

Figure 3: The overlap between the first 100 eigenvectorseespanding to the
slowest fluctuational modes, ordered according to theereiglues, obtained from
the first 1 ns (horizontal axis) and 10 ns (vertical axis) tinaenes. The accumu-
lation along the lower diagonal indicates that the modaspabe spanned by slow
eigenvectors retains its identity to a significant degrath some amount of mix-
ing between nearby modes.

Figure 4: The residue scores obtained using E§$.(6,7) ifi$tel ns, 2 ns, 5
ns, and 10 ns of the simulatiomir.t. mode coupling (first column), marginal
anharmonicity (second column), and residue fluctuatidnied(tolumn). Colored
bars in each figure indicate functionally relevant regidtoop (green), Switch
| (red), Myopathy loop (grey), Switch Il (cyan), relay helixellow), and Loop-2
(purple), reported in the literature and described in 8a®.5. 30 threshold is
shown by the dashed line. The residue IDs of prominant peatsde the3o
margin are given in red.

26



Figure 5: The performance of each ranking scheme considerdee paper is
shown together with that of a random (dashed) and a perfppiefuedge of the
forbidden black region) rank assignment. Each data poimesponds to the frac-
tion of target residues captured out of a total of 43 (horiabaxis) by the top
ranking residues covering a given percentage (verticad)aofi 730 residues in

total.

Figure 6: A side-by-side comparison of the locations ofdess in (a) the exper-
imentally determined target set and (b) top 10% w.r.t. moaigsling scores. Hot
colors indicate higher scores.

N483, F487, 1499, F506, Ref.[38] D403, V405 Ref. [39]

L508, 1687, F692, F745

N464, C470,N472,Y473, Ref.[40] || Y494, W501 Ref. [38/41]

N475, F481, E746

D590, P591, L592, Q593 | Ref. [42] S181 Ref. [43]

E467, E586,G624, G740 | Ref. [41] S236 Ref. [44]

N233, S237, R238 Ref. [45] E459 Ref. [46/40]

1499, F692, R738 Ref. [47] F482 Ref. [43[48]

D454, G457, F458 Ref. [46] G680 Ref. [43[41[40,
48]

E531, P536, R562 Ref. [50] G691 Ref. [41]49]

Table I: Amino acids that are experimentally verified to biécal for myosin I
function. This list is used in the text as a target set forstahg the relevance of
various physical processes, namely, marginal anharmygnmode coupling, and

fluctuation amplitudes, to protein’s function.
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