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Abstract

Relevance of mode coupling to energy/information transfer during protein

function, particularly in the context of allosteric interactions is widely ac-

cepted. However, existing evidence in favor of this hypothesis comes es-

sentially from model systems. We here report a novel formal analysis of

the near-native dynamics of myosin II, which allows us to explore the im-

pact of the interaction between possibly non-Gaussian vibrational modes on

fluctutational dynamics. We show that, an information-theoretic measure

based on mode couplingalone yields a ranking of residues with a statisti-

cally significant bias favoring the functionally critical locations identified by

experiments on myosin II.

1 Introduction

Fluctuation based analysis of protein dynamics has long proven to be an invaluable

tool for investigating the interplay between protein dynamics and function [1, 2].

Despite the past success enjoyed by the bead-and-spring-type linear models (such

as, elastic, Gaussian, and anisotropic network models), itis well known that, both

experimental evidence and simulations reveal strong departure from purely Gaus-

sian (harmonic) behavior at physiological temperatures [3]. Deviations from har-

monicity are most pronounced in slow, collective modes which are significant, for

example, in the context of vibrational absorption spectrometry [4], dimensional

reduction [5, 6], and the role of hydration effects [7].

On the other hand, the decomposition of MD fluctution data into indepen-

dent, possibly anharmonic modes is only the first step in an infinite cascade of
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corrections that bridge the gap between the dynamics of actual proteins and Gaus-

sian models. The contribution of higher-order correctionssignifies the degree to

which the experimental/computational free energy landscape fails to conform to

a representation composed of independent modes (harmonic or anharmonic). In

other words, they are “mode-coupling” corrections which yield valuable infor-

mation on means of energy transfer and associated correlated activity within the

protein [8, 9, 10, 11, 12, 13]. Characterization of theconformationalpopulation

sampled by near-native dynamics is believed to be the key to understanding the

functioning of allosteric proteins [14, 15], if not all [16]. The interactions between

vibrational modes play an essential role in shaping this population.

Recently, we introduced a systematic mathematical analysisof the fluctua-

tional data (for example obtained from full-atomistic simulations), that naturally

distinguishes the anharmonic and mode-coupling contributions to the free en-

ergy [17]. Here, we combine this analytical formulation with computer simu-

lations of the near-native dynamics of myosin II and demonstrate that the mode

couplingalone highlights functionally critical sites of this allostericprotein. The

relevance of coupling between vibrational modes in the context of allosteric tran-

sitions in myosin II was also pointed out in an earlier work [18].

The paper is organized as follows: Section 2.1 describes thetheoretical frame-

work used for isolating the contribution of mode coupling from other anharmonic

effects in the MD fluctuation data; Section 2.3 discusses howthe formulation

above can be used to select out residues that are highlightedby mode coupling;

Section 2.5 introduces the motor protein myosin II which we use here as a test

case; Section 2.6 gives the details of the molecular dynamics (MD) simulations

performed on myosin II; Section 3 reports and Section 4 discusses our results.
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2 Materials and Methods

2.1 Modal expansion and beyond

Our raw data is the time-series for the space coordinates of the α-carbons ob-

tained from a full-atomistic molecular dynamics (MD) simulation whose details

are given in Section 2.6. Using the MD trajectory, we derive amultivariate

probability distribution functionp(∆R), where∆Ri, ∆Ri+N , and∆Ri+2N with

i = 1, ..., N are the deviations from the mean position along the coordinate axes

x, y, andz, respectively, of thei-thCα atom in a protein withN amino acids. The

covariance matrixΓ =
〈

∆R∆R
T
〉

is then used to transform the coordinate sys-

tem by means of a scaling and a rotation into the modal space:∆r = Γ−1/2∆R.

For a purely harmonic system, the resulting distribution function is given by

f(∆r) =
∏

i

exp[−∆r2i /2]√
2π

(1)

while deviations from Eq.(1) due to anharmonicity and mode coupling are ob-

served in proteins, as mentioned before.

2.2 Hermite expansion

Building on an earlier proposal [19], we recently developed an analytical for-

malism that naturally extends Eq.(1) into the regime where harmonicity breaks
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down [17, 13]. In this framework,f(∆r) is expressed as an infinite sum:

f(∆r) =
1

√

(2π)3N
e−

∑
i
∆r2

i
/2

[

1 +
∑

i

∞
∑

ν=3

ciνHν(∆ri)

+
∑

i 6=j

∞
∑

ν=3

ν−1
∑

p=1

cijp,ν−pHp(∆ri)Hν−p(∆rj)

+
∑

i 6=j 6=k

· · ·
]

(2)

whereHi is the Hermite polynomial of ranki. The choice of the Hermite ba-

sis ensures that the expansion coefficients are given byciν = 〈Hν(∆ri)〉/ν! and

cijp,ν−p =
(

ν
p

)

〈Hp(∆ri)Hν−p(∆rj)〉/ν!, where〈·〉 denotes the time average evalu-

ated over the MD data. Ref.[17] describes how the symmetry properties of Her-

mite tensor polynomials can be exploited to reduce the computational complexity

associated with estimating these coefficients from the MD trajectory.

The leading term in Eq.(2), which is identical to Eq.(1), corresponds to a

purely harmonic dynamics and is referred asf0 here. This zeroth-order form

is the basis for many protein fluctuation models [20, 21, 22].Remaining terms

within the square brackets in Eq.(2) reflect all possible corrections due to non-

Hookian modes, as well as pairwise, threesome, and higher-order mode-mode

interactions. We wish to focus on the impact of mode couplingin our study,

therefore our first goal is to distinguish the contributionsthat yield anharmonic

(and still independent) modes from those that are due to the interactions among

such modes. Here, we willrefer to the former asmarginal anharmonicity, since

this contribution is uniquely determined by the deviationsof the marginal distri-

butionsf(∆ri) =
∫
∏

j 6=i drjf(∆r) from Gaussian.

To this end, letf1 refer to the best possible description of the data under the
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assumption of marginal anharmonicity:

f1(∆r) =
1

√

(2π)3N
e−

∑
k
∆r2

k
/2
∏

i

[

1 +
νmax
∑

ν=3

ciνHν(∆ri)

]

(3)

whereνmax is a cut-off degree imposed by practical considerations (see Sec-

tion 2.5). This approximation to the conformational distribution function obtained

from near-native dynamics yields exact single-mode (marginal) histograms in the

limit νmax → ∞. Note that,f1 is fully specified by the coefficients{ciν}. Never-

theless, marginal anharmonicity is reflected at all orders in f(∆r) (i.e.,cijp,ν−p and

higher-order coefficients are typically nonzero). At first sight, these high-order

contributions may be confused with mode coupling since theyare in the form of

a product involving multiple vibrational modes. However, it is transparent from

Eq.(3) that, the information on mode-mode interactions is contained ineverything

but f1.

2.3 Mode-coupling based ranking of residues

It is tempting at this point to attempt to identify pairs of modes which interact

strongly and/or have the most impact on protein function. Numerous studies in

this spirit can be found in the literature (see, e.g., [18, 23]. However, interpret-

ing such data usually requires an understanding of the functional dynamics and

does not immediately relate to experiments. Furthermore, apairwise interaction

picture is incomplete in the current context, because the corrections to the fluctu-

ational free energy are not additive in mode pairs. In other words, higher-order

contributions exist.

Instead, we here focus directly on the critical residues of the protein which are
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highlighted by mode coupling at all orders. This kind of information is not only

easier to compare with available experimental data (such assite-directed mutation

scans), but, as it turns out, it is also computationally cheaper to access. As is ev-

ident from Eq.(2), estimating mode-coupling corrections per mode pair involves

calculating second and higher-order coefficientscij...νη... associated with the individ-

ual mode pair, repeated for
(

N
2

)

pairs; a CPU demanding task. The cumulative

effect of mode coupling, however, is already available in the difference betweenf

andf1. This information can be projected onto the protein’s sequence axis by the

procedure outlined in Section 2.4. The outcome is a score profile for each amino

acid in the protein, reflecting the degree to which their near-native fluctuations are

modulated by mode coupling.

2.4 Identifying per residue impact of mode coupling

In order to identify the residues highlighted by marginal anharmonicity and mode

coupling, separately, we back-project the distributionsf0 andf1 onto the space of

Cα atomic coordinates:

p0,1(∆R) = f0,1(∆r(∆R))/
√

detΓ .

p0 andp1 are approximations, at two different levels (Gaussian and marginally

anharmonic), to the original distributionp(∆R) obtained from the MD trajectory.

Next, we consider the marginal distributionsp(∆Ri) =
∫
∏

j 6=i dRj p(∆R)

for individual coordinatesCα
i and measure the Kullback-Leibler (KL) divergence [24],

dKL, betweenp andp1, as well as betweenp1 andp0 for a given residuei. The

former distance yields quantitative information on the extent to which mode cou-
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pling governs fluctutations of the given coordinateCα
i , while the latter yields a

similar measure as regards to marginal anharmonicity. For distributionsp andq

of a continuous random variablex, KL-divergence is defined to be the integral

dKL(p‖q) =
∫ ∞

−∞

p(x) ln
p(x)

q(x)
dx . (4)

The integration steps involved in the KL divergence estimation require the discrete

probability distributions obtained from the MD data to be smoothened out into

continuous functions. To this end, we use kernel density estimation (KDE) [25,

26] which yields a continuous probability distribution̂p(x) from a set of samples

{xi} as

p̂h(x) =
1

nh

n
∑

i=1

K

(

x− xi

h

)

(5)

whereK is the kernel function (chosen to be Gaussian) andh is the bandwidth

parameter (determined by the method in Ref. [27]).

The total impact for a given residue is taken to be the sum of the KL-divergence

values for its three spatial coordinates:

Smc
i =

∑

α=x,y,z

dKL[p(∆Ri,α)‖p1(∆Ri,α)] , (6)

Sma
i =

∑

α=x,y,z

dKL[p1(∆Ri,α)‖p0(∆Ri,α)] . (7)

Above, “mc” and “ma” stand for “mode coupling” and “marginal anharmonicity”,

respectively. We note that,Sma
i is a measure of the information added by anhar-

monicity (under the condition of separability) on top of thebest fitting harmonic

(f0) reference distribution, whileSmc
i measures the information added by mode
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coupling on top ofits reference distribution which is the best separable function

that matches the data. With this perspective, the chosen measure is naturally an

asymmetric one under the exchange of its argument functions. Finally, for com-

parison, we also consider the mean residue displacements (akin to experimental

B-factors) measured by the variation

σ2
i ≡

∫

∆Ri
2p(∆Ri)d∆Ri (8)

as the fluctuation-based score for a residue. Below, we apply this analysis to the

MD data from myosin II, a molecular motor protein, and compare the performance

of the above ranking schemes in distinguishing functionally significant locations

on the protein. Note that, once the MD data is available, estimation of the residue

scores above is a mechanical process, without any tuning paramaters.

2.5 Myosin II

Dictyostelium discoideum myosin II is an allosteric protein which has been ex-

tensively studied both experimentally and computationally. It is an actin-binding

molecular motor protein crucial for various biological processes, such as, cell

movement, muscle contraction in higher organisms, membrane transport and sev-

eral signaling pathways. Among the 35 known classes of myosin, 13 appear in

Human [28]. The motor domain of myosin II shown in Fig.1 goes through con-

formational changes at each stage of its four-stroke catalytic cycle which con-

verts the chemical energy derived from ATP hydrolysis into mechanical work.

The results presented below are obtained from MD simulations of the structure

PDB:1VOM [29], where an ADP is bound on the protein.
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Figure 1

There exist several, well-studied functionally relevant locations on the struc-

ture. Switch II and P-loop shown in Fig.1a are known to control the MgADP

release mechanism [29]. Structural changes during the characteristic cleft closure

motion in the motor domain is believed to be related to activity in Switch I region,

which opens the binding pocket and modifies the relative placement of the P-loop

and Switch II regions [30]. The actin-binding pocket of the structure is composed

of the Myopathy loop and Loop-2, shown in Fig.1b. The interaction between

Loop-2 and the negatively charged parts of the actin is also documented [31].

Below, we perform the proposed fluctuational analysis on the motor domain of

myosin II and identify the residues whose fluctuations are most significantly mod-

ified by mode coupling. We find that, there is a statistically significant correlation

between these and the functional regions mentioned above, as well as a subset of

critical residues of the protein determined by experimental methods (such as point

mutations).

2.6 MD simulations and the eigenmodes

The structure is composed of 730 residues and the ligand whose atomic coor-

dinates (the initial configuration of the MD simulation) were extracted from the

PDB database. The MD simulations were carried out using NAMD2.7 software

package [32] with CHARMM27 force field [33] in explicit solvent(water) at 310

K. Langevin dynamics was used to control the temperature andthe pressure in an

NPT ensemble. A water box with a 15Å cushion and periodic boundary condi-

tions were applied. The integration time step in the simulation was selected as 1
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fs for both non-bonded and electrostatic forces and no rigidbonds were used. The

trajectory was captured every 50 fs within several windows of ∼ 2 ns duration,

for a total run of 10 ns.

Note that, a much longer simulation time would be required toobserve the

functional dynamics of the protein. The purpose of our simulation, however,

is merely to monitor the fluctuations and to gather sufficientdata on the non-

Gaussian nature of the conformational distribution. The procedure may be crudely

likened to recording a short bike ride and then analyzing thesmall displacements

of various components in order to identify the elements thatare critical for me-

chanical energy transfer (except, of course, thermal fluctuations are much more

significant in the current system.)

Figure 2

The MD output was analysed in several time windows. Let us consider the

steps of the analysis on the first 2 ns of the simulation data after equilibration,

where snapshots taken 0.5 ps apart amount toT= 4000 data points: We first con-

struct the vector∆R
(i) of theCα positions in each snapshot, withi = 1, . . . ,T .

We next calculate the covariance matrixΓ given in Section 2.1, and identify the

modal coordinates∆R
(i) for the 2184 fluctuation modes (out of730 × 3 = 2190

degrees of freedom, excluding six associated with the center of mass transla-

tion/rotation). At this point, the zeroth-order approximant f0 to f(∆r
(i)) (and

to f(∆R
(i)), through the inverse transform) is already available. Next, we find

the best marginally anharmonic description of the data,f1, given by Eq.(3). This

is done by estimatingciν in Eq.(3) as averages over the MD snapshots, up to a suf-

ficiently high cut-off degreeνmax = 32 which is obtained empirically (see Fig.2).
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Finally, we calculate the residue scores using Eqs.(6-8).

Figure 3

Each time window considered was subjected to the same analysis. We here

present results for the first 1, 2, 5, and the full 10 ns of the simulation. Fig.3

shows that the eigenvectors corresponding to the 1 and 10 ns time frames, ordered

with respect to the amplitude of the corresponding eigenvalue, are in visible agree-

ment for the slow modes (lower left corner of the figure). Thisobservation is in

line with earlier work which argues that the slow modes retain their identity across

different time scales, even if the eigenvalue spectrum may change [34, 35]. Early

identifyability of these most relevant modes points to the internal consistency of

our approach and supports our observation that, a mere 10 ns simulation is suffi-

cient to extract meaningful information about the biologically critical correlations

in the dynamics which are imprinted into the protein’s complex structure.

3 Results

Figure 4

Fig.4 is a side-by-side comparison of residue rankings obtained from the first 1

ns, 2 ns, 5 ns and 10 ns simulations of the ligand-bound motor domain. The initial

configuration for both simulations was the structure PDB:1VOM and the analysis

was performed on the data collected after equilibration. Ineach column, we con-

sider three scoring schemes based on: (1) mode coupling,Smc
i ; (2) marginal an-
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harmonicity,Sma
i ; (3) mean residue fluctuation,σ2

i = 〈∆R2
i 〉. In Fig.4, the scores

of the residues are shown for each time frame and evaluation criterion, alongside

the functional regions indicated by different colored columns. We find that, the

high-scoring residues are marked by distinct peaks in mode-coupling based rank-

ing (more so than that based on fluctuation amplitudes), while marginal anhar-

monicity is noisy and displays less selectivity among residues. Upon comparing

the magnitudes on the vertical axes in the first two columns ofFig.4, the relative

weight of mode coupling in an amino acid’s fluctutational behavior is found to be

larger by an order of magnitude than that of marginal anharmonicity. A similar

observation was made on Crambin earlier[17]. Therefore, between the two non-

Gaussian contributions, mode coupling appears as the dominant factor in shaping

the configurational landscape. Consistently, only the residue-specific information

gathered from mode-coupling corrections yields a rank profile in significant agree-

ment with site-specific mutation data available for myosin II, as demonstrated in

Section 3.1.

A closer inspection of mode-coupling based scores in different time frames

(first column in Fig. 4) reveals an interesting progression.We observe an in-

creasing level of activity in the ligand binding pocket during the first half of the

simulation, but not later. On the other hand, the contribution to the second half

of the simulation is mostly from the ends of the relay helix which is known to

mechanically couple the ligand- and actin-binding pockets. Such shifts in activ-

ity in different time frames may be reminiscent of the complex communication

patterns established through energy transfer between different vibrational modes

in the system [9, 11]. The scoring based on residue fluctuation amplitudes alone

(last row in Fig. 4) shows little difference between different time frames, as one
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might expect.

Comparing first and last columns of Fig.4, we observe that there is some over-

lap between regions accentuated by mode couplingvs. by mean fluctuation am-

plitudes. This is expected, not only because our analysis derives from fluctuation

data, but also because some functional sites reside on flexible loop regions. We

find that the Myopathy loop and Loop-2, which are essential for actin binding,

yield a strong signal in both fluctuation and mode-coupling based rankings. In

contrast, loop regions in the ligand binding pocket (P-loop, Switch I/II) do not

fluctuate as much (presumably due to the presence of the ligand), yet, they are

still highlighted by mode coupling.

3.1 Comparison with point mutation data

Score profiles in Fig.4(a-d) further single out few locations which are not in the

immediate vicinity of the color coded functional regions. For example, Ser-443,

such a site selected by mode coupling, coincides with the bent at the distal end of

the long helix between residues 411-440, known to promote the Myopathy loop

to bind actin [36]. These may correspond to further residuesthat are critical for

protein function, for example relaying information between the ligand- and actin-

binding regions. For an unbiased evaluation of all such instances, a higher resolu-

tion target set is desirable. To this end, we performed a thorough literature survey

for residue-specific experimental data on myosin II. Table Iis a comprehensive

list of amino acids that we could gather for myosin II, which have been experi-

mentally verified (mostly through point mutations) to be critical for its function.

It is possible that, some of these are important structural elements, say, required
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for folding, and not necessarily critical in the sense of residing on a functional site

or maintaining allosteric communication. Nevertheless, this list comprises a solid

target set, free from theoretical considerations or interpretations of structural data.

Table I

We next compare various ranking methods (including random)against this

target set. Fig.5 shows for each case, the percentage of top residues that need to

be considered (vertical axis) in order to capture a certain fraction of the target set

(horizontal axis). For a random ordering of the residues, this curve is expected to

lie on the diagonal, with fluctuations typically less than 10% for the current data.

A perfect ordering which places the target residues on top ofthe list would yield

another straight line following the upper edge of the forbidden gray region at the

bottom.

Figure 5

Upon inspecting Fig. 5, we observe that fluctuations and marginal anhar-

monicity display no preference for the target set. The conservation scores show

the best correlation with the experimentally determined targets. This is hardly

surprising, since experimental studies are in fact guided by conservation scores.

The key result of our study is the green curve representing the mode-coupling

based ordering. The clear deviation from the diagonal in thedownward direction

demonstrates that coupling between vibrational modes is animportant physical

mechanism for protein function and that this information can be cast into a pre-

dictive tool by means of the computational/analytical framework described above.
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We also noticed that the scoring functionfi ≡ Smc
i /σ2

i which is also shown

in Fig.5 (the curve labeled as “MC/Fluc”) is consistently better thanSmc
i in terms

of highlighting the target set listed in Table I. We checked that the general trend

and the relative performances of considered scoring criteria are robust under dif-

ferent methods one might choose while harnessing the information from several

time windows (such as, considering, for each amino acid, themaximum of a score

among those calculated from successive time intervals, instead of a single score

obtained from the full simulation). Note that, a gap builds in the tail of Fig.5

between conservation and mode-coupling rankings. This discrepancy may reflect

that some residues in the target list are relevant for the folding process (therefore

have high conservation scores), but not the functional dynamics where we expect

mode coupling to play a role. Further investigations on myosin II and other pro-

teins are in progress to confirm this hypothesis, as well as toverify the generality

of the present approach.

Figs.5 presents a direct validation of the fact that, coupling between vibrational

modes, as formulated here, is a significant physical mechanism underlying myosin

II’s functional dynamics. This is the main message we wish toconvey in this

paper. Since the existing data on myosin II is far from being exhaustive, it is likely

that further experiments will identify more essential residues for this protein. The

method introduced here may also help in these future endevours as a new guide

for target selection (for example, Ser-443 appears to be a promising candidate).

The distribution of top amino acids with high mode-couplingscores shown in

Fig. 6 is further encouraging in this respect. One observes that, the top scoring

residues (from the mode-coupling perspective) are not randomly distributed across

the structure. Rather, they accumulate around the core of themotor domain, in
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visible agreement with the distribution of the residues in the target set in Table I.

Figure 6

3.2 Relevant modes and mode pairs

A key aspect of the above analysis is that the coupling between the modes is taken

into account at all orders and is not restricted to pairwise interactions. Never-

theless, it is instructive to investigate the strongly coupled mode pairs and their

influence in the real (residue) domain. To this end, we calculated the second-

order coefficientscijp,ν−p in Eq.(2) for the slowest 25 modes and determined the

impact of the interactions between all
(

25
2

)

mode pairs on the configurational free

energy of the system, as described in Ref.[17]. Repeating the analysis for the first

and second half of the MD run, we obtained the coupling matrixgiven in Fig.??a.

Consistent with Fig.4(a-d), we observe that the modes that have the strongest pair-

wise coupling change in time. In particular, 3-4, 1-4, and 1-6 are the prominent

pairs in the first half of the simulation, while mode pairs 1-2and 1-10 interact

strongly in the second half. Consistently, upon analysing fluctuations of Ser-443

(singled out in the first half) during the time evolution of each mode, we find that

this residue is mostly driven by the modes 1,3,4, and 6 (Fig.??b).

Figure 7

We finally computed, for each residue, the difference between the fluctu-

ation amplitudes due to modes obtained from the first half andfrom the sec-

ond half, shown in Fig.??c. We found that, the ligand-binding pocket residues

16



(green/red/cyan columns in the figure) mostly carry a positive signal (meaning

they are driven more by the first mode set), while the oppositeis true for the relay

helix (yellow column). Although these observations support our earlier findings,

we stress that, mode coupling has a significant “many-body” aspect and a pair-

wise analysis as above only partially reflects the impact of mode coupling on the

protein’s complex dynamics.

4 Discussion

It is generally accepted that the coupling between different vibrational modes is

an important physical mechanism driving correlated functional dynamics in pro-

teins, particularly in the context of allosteric communication. However, this wis-

dom generated little input for experimentalists so far. We here propose an ana-

lytical/computational framework where the “noninteracting” limit is composed of

already anharmonic modes (consistent with the observed slow modes in proteins).

Mode coupling is then defined as everything that falls outside the best possible de-

scription of the configurational distribution (obtained from simulations) as a func-

tion factorizable in such modes. The information content ofthe mode-coupling

contribution obtained by this operational definition can beutilized to highlight

certain locations on the protein. Despite the fact that the MD simulations are

much shorter than the time required to observe functionallyrelevant dynamics,

we show here that these locations correlate with critical residues/regions obtained

from experiments on the motor domain of myosin II.

Our work simultaneously confirms the relevance of mode coupling to function

and proposes a new computational tool for predicting functionally critical loca-
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tions on proteins. However, considering the multitude of factors that contribute

to the evolutionary design these complex machines, it is difficult to imagine our

approach (or any other non-hybrid,ab initio method) to singlehandedly yield pre-

dictions sufficiently accurate for use in drug design or similar technologies. As-

suming our tests currently in progress on several other proteins yield favorable re-

sults, a more apt use of the present computational frameworkwould be to employ

it as a module in a multifaceted prediction algorithm that seeks consensus between

complementary approaches. Several such tools are publiclyavailable [37].
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Figure 1: Functional sites of myosin II (PDB:1VOM). The full structure of the
motor domain is shown on the left (a). Actin- and ADP-bindingloops are indi-
cated in red. On the right, the ligand binding pocket is shownin greater detail (b).
The ADP molecule in the middle is surrounded by functional elements Switch I
(red), Switch II (blue) and P-loop (orange). (Fig. 1a)

Figure 2: A comparison of the slowest mode’s amplitude distribution for differ-
ent choices for the maximum Hermite degree considered in Eq.(3). The cut-off
degreeνmax = 32 was determined according to the criterion that the marginal
distributions for all modes are captured with an accuracy same as above or better.

Figure 3: The overlap between the first 100 eigenvectors corresponding to the
slowest fluctuational modes, ordered according to their eigenvalues, obtained from
the first 1 ns (horizontal axis) and 10 ns (vertical axis) timeframes. The accumu-
lation along the lower diagonal indicates that the modal subspace spanned by slow
eigenvectors retains its identity to a significant degree, with some amount of mix-
ing between nearby modes.

Figure 4: The residue scores obtained using Eqs.(6,7) in thefirst 1 ns, 2 ns, 5
ns, and 10 ns of the simulation,w.r.t. mode coupling (first column), marginal
anharmonicity (second column), and residue fluctuations (third column). Colored
bars in each figure indicate functionally relevant regions,P-loop (green), Switch
I (red), Myopathy loop (grey), Switch II (cyan), relay helix(yellow), and Loop-2
(purple), reported in the literature and described in Section 2.5. 3σ threshold is
shown by the dashed line. The residue IDs of prominant peaks outside the3σ
margin are given in red.
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Figure 5: The performance of each ranking scheme consideredin the paper is
shown together with that of a random (dashed) and a perfect (upper edge of the
forbidden black region) rank assignment. Each data point corresponds to the frac-
tion of target residues captured out of a total of 43 (horizontal axis) by the top
ranking residues covering a given percentage (vertical axis) of 730 residues in
total.

Figure 6: A side-by-side comparison of the locations of residues in (a) the exper-
imentally determined target set and (b) top 10% w.r.t. mode-coupling scores. Hot
colors indicate higher scores.

N483, F487, I499, F506,
L508, I687, F692, F745

Ref. [38] D403, V405 Ref. [39]

N464, C470,N472,Y473,
N475, F481, E746

Ref. [40] Y494, W501 Ref. [38, 41]

D590, P591, L592, Q593 Ref. [42] S181 Ref. [43]
E467, E586,G624, G740 Ref. [41] S236 Ref. [44]
N233, S237, R238 Ref. [45] E459 Ref. [46, 40]
I499, F692, R738 Ref. [47] F482 Ref. [43, 48]
D454, G457, F458 Ref. [46] G680 Ref. [43, 41, 49,

48]
E531, P536, R562 Ref. [50] G691 Ref. [41, 49]

Table I: Amino acids that are experimentally verified to be critical for myosin II
function. This list is used in the text as a target set for evaluating the relevance of
various physical processes, namely, marginal anharmonicity, mode coupling, and
fluctuation amplitudes, to protein’s function.
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