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ABSTRACT

This thesis introduces a new paradigmatic representation of word contexts. Paradig-
matic representations of word context are constructed from the potential substitutes of a
word, in contrast to syntagmatic representations, which are constructed from the properties
of neighboring words. The potential substitutes are calculated by using a statistical lan-
guage model that is trained on raw text without any annotation or supervision. Thus, each
context is represented as a distribution of substitute words. This thesis introduces models
with different properties that can incorporate the new paradigmatic representation, and dis-
cusses the applications of these models to the tagging task in natural language processing
(NLP).

In a standard NLP tagging task, the goal is to build a model in which the input is a
sequence of observed words, and the output, depending on the level of supervision, is a
sequence of cluster-ids or predefined rags. We define 5 different models with different
properties and supervision requirements. The first model ignores the identity of the word,
and clusters the substitute distributions without requiring supervision at any level. The
second model represents the co-occurrences of words with their substitute words, and thus
incorporates the word identity and context information at the same time. To construct the
co-occurrence representation, this model discretizes the substitute distribution. The third
model uses probabilistic voting to estimate the distribution of tags in a given context. Unlike
the first and second models, this model requires the availability of a word-tag dictionary
which can provide all possible tags of each given word. The fourth model proposes two

extensions to the standard HMM-based tagging models in which both the word identity
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and the dependence between consecutive tags are taken into consideration. The last one
introduces a generative probabilistic model, the noisy channel model, for the taggin tasks
in which the word-tag frequencies are available. In this model, each context C' is modeled
as a distinct channel through which the speaker intends to transmit a particular tag 7’ using
a possibly ambiguous word W. To reconstruct the intended message (71'), the hearer uses
the distribution of possible tags in the given context Pr(7'|C') and the possible words that
can express each tag Pr(W|T).

The models are applied and analyzed on NLP tagging tasks with different character-
istics. The first two models are tested on unsupervised part-of-speech (POS) induction in
which the objective is to cluster syntactically similar words into the same group. The prob-
abilistic voting model is tested on the morphological disambiguation of Turkish, with the
objective of disambiguating the correct morphological parse of a word, given the available
parses. The HMM-based model is applied to the part-of-speech tagging of English, with
the objective of determining the correct POS tag of a word, given the available tags. Finally,
the last model is tested on the word-sense disambiguation of English, with the objective of

determining the correct sense of a word, given the word-sense frequencies.



OZETCE

Bu tez kelime baglamlarimi temsil etmek i¢in yeni bir diisey baginti tanimlamaktadir.
Bir kelimenin diisey bagintis1 kelimenin baglaminda degistirim sonucu onun yerine gelebilen
olas1 kelimelerin olusturdugu bagitidir. Ote yandan yatay bagint1 bir kelimenin dncesindeki
ya da sonrasindaki kelimeler arasinda kurulan bagmtidir. Bir kelimenin yerini alabile-
cek olas1 kelimeler iglenmemis veri iizerinde egitilmis bir istatistiksel dil modeli ile hesa-
planmaktadir. Sonug¢ olarak kelime baglamlari, o baglamda goriilebilecek olast kelime
dagilimlar ile temsil edilmektedir. Bu tez bahsi gecen yeni diisey bagintiy1 kullanabilen
farkli dogal dil igleme modelleri tanimlamakta ve bu modellerin dogal dil islemede kul-
lanilan farkli dizisel etiketleme problemleri {izerindeki uygulamalarin1 gostermektedir.

Dogal dil isleme problemlerindeki dizisel etiketlemenin temel amaci verilen bir ke-
lime dizisine birebir denk gelen dizisel etiketileri bulamaktadir. Bu nedenle modeller girdi
olarak kelime dizisi almakta ve ¢ikt1 olarak her kelimeye bir etiket gelecek sekilde bir etiket
dizisi vermektedir. Ogreticisiz modellerde ¢ikti dizisi her kelimeye ait kiime isimleri iken
ogreticili modellerde cikti dizisi her kelimeye ait 6nceden tanimlanmig etiketlerdir. Bu
tezde 5 farkli model tanimlanmaktadir. Ik model dgreticisiz bir modeldir ve olas1 ke-
lime dagilimlarini kullanarak kelimeleri kiimelemeyi amacglamaktadir. Ikinci model ver-
ilen bir kelime ile o kelimeye ait olas1 kelimelerin birlikte goriilme sikliklarin1 modelliyen
ogreticisiz bir modeldir. Uciinci model kelimenin yerini alabilecek kelimeleri kullanarak
olasiliksal oylama yapan bir modeldir. Bu model ilk iki modelin aksine, her kelimenin
olas1 etiketlerine ihtiya¢ duyan 6g8reticili bir modeldir. Dordiincii model dizisel etiketleme

probleminde siklikla kullanilan sakli Markof modelleriyle birlikte kullanilabilen 2 yontem



onermektedir. Bir 6nceki model gibi bu model de her kelimeye ait olasi etiketlere ihtiyac
duyar. Tezdeki son model giiriiltiilii kanal modelidir ve bu model giiriiltiilii kanal ve alinan
mesaj1 kullanarak esas gonderilmek istenen mesaji bulmayr amacglar. Bu modelde her
baglam bir kanal, her kelime alinan mesaj ve kelimeye ait etiket ise gonderilmek istenen
esas mesajdir.

Tezin son kisminda yukarida bahsi gecen modeller farkli 6zelliklerdeki etikeleme prob-
lemlerine uygulanmustir. 11k iki model 6greticisiz sozciik tiirii bulma problemine uygulanmistir.
Olasiliksal oylama modeli ise Tiirk¢ce ekbicim belirsizligi giderme problemi iizerinde denenmistir.
Sakli Markof modeline dayanan yontemler ise Ogreticili sozciik tiirii bulma problemine
uygulanmustir. Son olarak giiriiltiilii kanal modeli kelime anlam belirsizligi giderme prob-

lemi iizerinde denenmistir.
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Chapter 1

INTRODUCTION

The amount of online raw (unstructured) text is rapidly increasing as a result of exten-
sive usage and coverage of the Internet. We will propose an unsupervised learning frame-
work for NLP tagging tasks', which, under some constraints, will allow us to incorporate
vast amounts of raw data into the learning phase by means of a paradigmatic representation
and a statistical language model.

Natural language problems such as word-sense disambiguation, part-of-speech (POS)
induction, POS tagging, morphological disambiguation, or named-entity recognition have
three common properties: (1) there exists an observed word sequence, (2) a hidden tag
sequence is paired with that observed text, and (3) the objective is to determine the hid-
den tag sequence values that match the given observation. Therefore, we group the NLP
problems with these three properties under a general framework which is called the tagging
task. Thus any problem with the above-mentioned structure can be reduced to this general
framework and solved by the procedures that will be described in the thesis.

Supervised methods in the NLP literature require both the input word sequence and
corresponding tag sequence for training. However, it takes far more effort to manually
annotate or organize this vast amount of data by expert human annotators than to directly
use the data. The main drawback of the supervised approach is the difficulty of acquiring
sufficiently large amounts of training data, also known as the knowledge acquisition bot-

tleneck. For example, Yarkowsky and Florian (2002) report that each successive doubling

I'These tasks are also known as disambiguation or induction tasks depending on the availability of the
tagged corpus.



of the training data for word-sense disambiguation problem, i.e. selecting the correct sense
of a word from the possible senses, leads to only a 3—4% error reduction within their ex-
perimental range. Banko and Brill (2001) experiment with the problem of selection among
confusable words, and show that the learning curves do not converge even after a billion
words of training data. They suggest active-learning, unsupervised learning or lower levels
of supervision to take advantage of large datasets when labeling is expensive. Yuret (2004)
observes that in a supervised Naive Bayes WSD system trained on SemCor, approximately
half of the test instances do not contain any of the contextual features (e.g. neighboring
content words or local collocation patterns) observed in the training data. SemCor is the
largest publicly available corpus of sense-tagged text, and has only about a quarter million
sense-tagged words, while the largest English raw text data available has about 10'? words.

Moreover, not all of the languages have the variety of tagged resources that English
has. For example, the largest available corpus of Turkish morphological disambiguation
problem, i.e. selecting the correct affix parse of a word, is a corpus of 1 million semi-
automatically tagged words, and because of the semi-automatic tagging this training cor-
pus itself has inconsistencies (Hakkani-Tiir et al., 2002). On the other hand, the largest
untagged Turkish web corpus consists of 440 million Turkish words derived from a variety
of domains (Sak et al., 2008), while the supervised corpus contains 1 million words from a

specific news domain.

1.1 Relationships Between Linguistic Units

Relationships between linguistic units can be classified into two types: syntagmatic (con-
cerning positioning), and paradigmatic (concerning substitution). Syntagmatic relations
determine which units can combine to create larger groups and paradigmatic relations deter-
mine which units can be substituted for one another. Figure 1.1 illustrates the paradigmatic

vs syntagmatic axes for words in a simple sentence and their possible substitutes.
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Figure 1.1: Syntagmatic vs. paradigmatic axes for words in a simple sentence (Chandler,

2007).

In this thesis, we represent the paradigmatic axis directly by building substitute distri-
butions for each word position in the text using an n-gram statistical language model. The
domain of a substitute distribution represent words in the vocabulary, and the magnitudes
represent the probability of occurrence in the given position. Note that the substitute dis-
tribution for a word position (e.g. the second word in Fig. 1.1) is a function of the context
only (i.e. “the ___cried”), and does not depend on the word that does actually appear there
(i.e. “man”) given the context. Thus substitute vectors represent individual word contexts,
not word types. We refer to the use of features based on substitute distributions as paradig-
matic representations of word context and the use of features based on neighboring words
as syntagmatic representation of word context.

The two examples below illustrate the advantages of the paradigmatic representation
in uncovering similarities where no overt similarity that can be captured by a syntagmatic
representation exists. The word director from the first sentence and the word chief from the
second one have no common neighbors in their 4-gram neighborhood. The paradigmatic
representation captures the similarity of these words by suggesting the same top substitutes
for both (the numbers in parentheses give substitute probabilities):

13



(1) “Pierre Vinken, 61 years old, will join the board as a nonexecutive director
Nov. 29.”
director: chairman (.8242), director (.0127), directors (.0127) ...

(2) “... Joseph Corr was succeeded by Frank Lorenzo , chief of parent Texas
Air.”
chief: chairman (.09945), president (.0031), directors (.0012) . ..

The high probability substitutes reflect both semantic and syntactic properties of the
context. Top substitutes for “director” and “chief” are not only nouns, but specifically
nouns compatible with the semantic context. Top substitutes for the word “the” in the first

example consist of words that can act as determiners: its (.9011), the (.0981), a (.0006), . . ..

1.2 Scope

The goal of this thesis is to incorporate paradigmatic context representations, constructed by
using the raw text, into the natural language processing (NLP) tagging tasks such as word-
sense disambiguation, part-of-speech tagging, morphological disambiguation, and part-of-
speech induction. We assume that words in a similar context have similar properties, and
are hence interchangeable without affecting the meaning or the structure of the original
sentences. We use a statistical language model (SLM) to construct substitute distribution
in a given context, and use these distributions to improve the accuracy of tagging tasks. In
order to observe the effectiveness of our framework on special cases of the tagging tasks,

we conducted experiments on certain well known NLP problems, as follows:

1. Word-sense disambiguation of English: The senses of the substitute words are used
to determine the correct sense of the target ambiguous word. Substitute words can be

used to determine the natural clustering of the word senses.
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2. Part-of-speech tagging: The correct POS tag of the target word is determined using
the likely substitutes. Alternatively, substitute words are used to prune the word-
tag dictionary. This implicitly decreases the ambiguity level of the dictionary, and
therefore improves the estimation quality of the probabilistic models in certain cases,

such as expectation maximization.

3. Morphological disambiguation: The correct morphological parse of the target word
is determined using the likely substitutes. This problem is a more complex version
of the English POS tagging problem because the number of unique tags are much
higher then the tags in a typical English corpus (Yuret and Ture, 2006). This high

number of tags causes data sparseness.

4. Part-of-speech induction: In contrast to part-of-speech tagging and morphological
disambiguation, this problem induces word categories without using any tagged data.
It clusters words according to their contexts, and the number of clusters can be set to

any arbitrary number or determined by the data itself.

1.3 Overview

This thesis presents a framework that enables the usage of raw text together with a statistical
language model to improve the performance of tagging tasks. We will define the basics
of the tagging tasks, and present concrete results of this framework on some well-known
tagging tasks. These problems are presented in respective chapters, together with the review
of the relevant literature, as follows:

Chapter 2 explains the usage of the raw text together with a statistical language model.
It presents the algorithm to output the likely substitutes of a target word in a context with the
help of a statistical language model constructed from the raw text data. This replacement

algorithm plays the central role in the methods proposed in the following chapters.
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Chapter 3 defines the different types of contexts and reviews the literature of context
representations.

Chapter 4 introduces 4 tagging models that can incorporate substitute distributions. This
chapter details the assumptions, weaknesses, strengths and required level of supervision of
each model. The rest of the thesis presents selected applications of the models that are
defined in this chapter.

Chapter 5 defines the part-of-speech (POS) disambiguation problem and introduces sev-
eral applications of the substitute words in POS disambiguation problem.

Chapter 6 defines the morphological disambiguation problem and introduces an appli-
cation of the substitute words in the morphological disambiguation problem.

Chapter 7 defines the word-sense disambiguation (WSD) problem and introduces the
noisy channel model that determines the correct sense of an English word in a given context
with the help of substitute words.

Chapter 8 formulates the unsupervised POS induction problem, reviews the literature,
and describes a POS induction system that models the co-occurrence of words and their

substitutes to construct word or word-instance clusters.
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1.4 Contribution

This thesis introduces a new context representation by using the substitute word distribu-
tions that are calculated according to a statistical language model and presents the possible
ways of incorporating these distributions into the well known NLP tagging tasks. This the-
sis makes the following research contributions:

Representation

e [tintroduces a new paradigmatic context representation by using the substitute words.
This new representation enables the integration of unlabeled raw text into the NLP

tagging tasks.

e The substitute distributions are constructed by using an n-gram statistical language
model. Compared to syntagmatic representations they do not suffer as much from

the data sparsity as the context size, n, becomes larger.

e Calculation of substitute distributions does not require any tagged corpus therefore

can be applied to any language.

e Unlike syntagmatic representations it can capture the semantic or syntactic similarity

between word-instances even when they appear in totally different contexts.

e Substitute distribution reflects both semantic and syntactic properties of the context.

Therefore, it can be used both with semantic and syntagmatic tagging tasks.

Models and Applications

e [introduce a clustering model that can construct both word-based and instance-based
clusters of substitute distributions. The model is tested and analyzed on the unsuper-

vised part-of-speech induction task of English.
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I demonstrate that representing contexts with paradigmatic representations and mod-
eling co-occurrences of word and context types give superior results in unsupervised

part-of-speech induction task when compared to its syntagmatic counterpart.

I extend the co-occurrence modeling framework to incorporate morphological and
orthographic features and test the co-occurrence model with features on unsupervised

part-of-speech induction task of 15 languages.

Iintroduce an instance based POS induction system that can handle ambiguous words

and is competitive with the word-based systems in overall accuracy.

I present a probabilistic voting model that estimates the tag distribution of a specific
context by using the corresponding substitute distribution. This model is tested and

analyzed on the Turkish morphological disambiguation task.

I introduce two methods that create artificial sentences using the substitute distribu-
tions and incorporate them into the HMM based probabilistic tagging models. Both
of the methods are tested and analyzed on the part-of-speech disambiguation task of

English.

I introduce a noisy channel model that is a probabilistic generative model and seam-
lessly integrates substitute distributions into the model building process. The model

is tested and analyzed on the word-sense disambiguation task of English.
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Chapter 2

CALCULATING SUBSTITUTE DISTRIBUTIONS

In this thesis, we represent the paradigmatic axis directly by building the substitute
distribution for each word position in the text. Note that the substitute distribution is a
function of the context only and is conditionally independent of the target word in a given
context. Substitute distributions represent individual word contexts, not words. Table 2.1
shows the most likely substitutes of words in a sample sentence calculated with a 4-gram
language model. This chapter provides the details of calculating the substitute distribution

of a given context.

will: will (0.9985), would (0.0007), to (0.0006), also (0.0001), . ..

join: join (0.6528), leave (0.2140), oversee (0.0559), head (0.0262), rejoin (0.0074), . ..
the: its (0.9011), the (0.0981), a (0.0006), . ..

board: board (0.4288), company (0.2584), firm (0.2024), bank (0.0731), strike (0.0030), . ..

Table 2.1: The substitute word distributions (with probabilities in parentheses) for some of
the positions in the example sentence “Pierre Vinken, 61 years old, will join the board as a

nonexecutive director Nov. 29.” according to a 4-gram language model.

2.1 Statistical Language Modeling

A statistical language model (SLM) is a probability distribution over a set of strings where

the probability of each string is estimated by using a large amount of raw text of the target



language. The estimation procedure for a given string can become cumbersome since (1)
not all strings are observed in the raw text and (2) the strings can be arbitrarily long. Thus,
the probability of a given string S = wywyws, . . ., w, that maximizes the likelihood can

be approximated by

P(S) = []Pwilwios,... ,w) 2.1)
i=1
X H P(wilwi—la ce 7wi—n+1) (2.2)
i=1
- C(wh Wi—1y - - - >wifn+1)
2.
* H C<wi—1a---awi—n+1) 3

1

where n — 1 is the number of words that the target word is conditioned by, and C(.5)
is the frequency of the string .S in the corpus. Eq. 2.2 can be derived from Eq. 2.1 by the
Markov assumption (i.e., each word depends only on the previous n — 1 words). Eq. 2.2 can
be estimated by various smoothing techniques, whose detailed analysis together with the
review of SLM, can be found in (Chen and Goodman, 1999; Rosenfeld, 2000; Goodman,

2001). Eq. 2.3 presents the maximum-likelihood estimation of Eq 2.2.

2.2 Language Model Quality

In this thesis the quality of a language model is measured by perplexity, which is defined to
be the geometric average of inverse probabilities of the words in the test corpus (7'), and is

explicitly formulated as

N n
. 1
e = (Mg ) 09

1=
where w; represents the i*" word and N is the total number of words in 7. Each word in

Equation 2.4 depends on the previous n — 1 words, where n is the n-gram order of the

language model.
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The log, of perplexity is entropy which is simply the average number of bits per word
required to encode the test corpus. Thus the least ambiguous language model' on a given
test corpus will have the lowest entropy and perplexity. Perplexity calculations do not
require any annotated corpus or supervision; therefore, one can tune the parameters of a

language model for a development corpus with the help of Eq.2.4.

2.3 The Substitute Distribution of a Word Context

It is best to use both the left and the right context when estimating the probabilities for
potential lexical substitutes. For example, in “He lived in San Francisco suburbs.”, the
token San would be difficult to guess from the left context but it is ascertained easily from
the right context. We define c as the (2n — 1)-word window centered on the target word, wy,
position: w_,41...wq...w,_1. The probability of a substitute word w in a given context

¢ can be estimated as:

P(wg = w|cy) o« PW_pi1...Wo...Wy_1) (2.5)
= P(w_nt1)Pw_pi2|w_ni1) ... Pwn_1|w™2;) (2.6)
~  P(wolwZa ) Plwi|w?,s) .. P(wy—|wg™?) 2.7)

where w? represents the sequence of words w;w; . .. w;. In Equation 2.5, P(w|c,,) is pro-
portional to P(w_,1 ... wq ... w,_1) because the words of the context are fixed. Since in
Equation 2.6 the terms without wy are identical for each substitute, they have been dropped
in Equation 2.7. Finally, because of the Markov property of n-gram language models, only
the closest n — 1 words are used in the experiments.

Certain terms near sentence boundaries were truncated in Equation 2.7. Specifically,
shorter n-gram contexts were used at the beginning of the sentence, and the tokens beyond

the end-of-sentence were dropped.

'Goodman (2001) refers to the least ambiguous model as the True model.
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Estimating substitute words for each context is expensive due to the large number of vo-
cabulary words that need to be considered as substitutes. For example, the Web 1T dataset
(Brants and Franz, 2006a) contains 13.5 million unique words, and thus has 13.5 million
candidate substitutes for every context. In order to keep computations feasible, we limit the
set of candidate substitute words by replacing low-frequency vocabulary words with the
unknown-word tag, <unk> . Moreover, most of the time, 90% of the total probability is
distributed among the top 100 substitutes of a target word. To calculate the most likely %
substitutes of a context ¢, a naive substitute algorithm would need to calculate Pr(w|c) for
all w in the vocabulary. To take advantage of the skewed distribution structure of substitute
words, we use the FASTSUBS algorithm (Yuret, 2012) which calculates Pr(w|c) for only
the most likely candidates in c instead of for all of the words in the vocabulary. Thus it
can generate the top k£ most likely substitutes of a given word much faster than the naive
substitute algorithms. On a typical 2012 workstation, FASTSUBS accomplishes the top 100
substitute generation task for a 1M-word corpus in about 5 hours, while a naive algorithm
that looks at the whole vocabulary would take more than 6 days. To calculate the final sub-
stitute vectors used in the rest of this study, the probability vectors for each position were

normalized to add up to 1.0 .

2.4 Sampling from a Substitute distribution

Substitute vectors are continuous representation of contexts. However, it is also possible
to construct discrete representation of contexts by using the substitute distributions. To
discretize the continuous representation, one can sample random substitutes (with replace-
ment) from a substitute word distribution, and then represent the corresponding context

using these small number of substitutes as discrete contextual features. The sample space
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of the substitute word distribution is the vocabulary of the language model”. In effect, we
are using substitute word distributions and the sampled random substitutes as contextual

features that represent the properties of a word’s position.

2Sampled substitutes might include the unknown word tag <unk>> that represents the words outside the
fixed size vocabulary of the language model. For example, proper nouns typically have <unk> as a
substitute.
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Chapter 3

REPRESENTING WORD CONTEXT

This chapter demonstrates the various contextual representations of a word in tagging
literature, and introduces the substitute words as an alternative to the current contextual
representations. In this thesis, words in the vocabulary of a corpus are referred to as a
word, and each occurrence of a word is referred to as a word instance or instance. The
contextual representations can be categorized, depending on the way these representations
incorporate the local context information of the target word or instance, into three groups:
(1) syntagmatic representations, (2) Hidden Markov Models (HMM), and (3) paradigmatic

representations.

3.1 Syntagmatic Representation

In the syntagmatic representation, the context, which is called the “frame,” is defined with
the neighboring words, typically co-occurrences with a single word on the left or a single
word on the right word (e.g., the dog is; the cat is) (Schiitze and Pedersen, 1993; Redington
et al., 1998; Mintz, 2003; St Clair et al., 2010; Lamar et al., 2010b; Maron et al., 2010).
Turney and Pantel (2010) give a broad overview of syntagmatic approaches and their appli-
cations within the Vector Space Modeling framework. Depending on the way they incorpo-

rate co-occurrences, these models can perform hard (word-based) or soft (instance-based)



clustering.

target word

o ~ .
...itwill also  offer buyers the option...
_—

J/

left syntagmatic context right syntagmatic context

Schiitze and Pedersen (1993) represent the context of a word instance by concatenating
its left and right co-occurrence vectors. These vectors are calculated for each word by using
the left and the right neighbors of the word instances, thus characterizing the distribution
of the left and right neighbors of the word. One constraint of this representation is that it
represents words rather than word instances, and hence it performs word-based clustering.

Véronis (2004) constructs an undirected word co-occurrence graph of a given target
word and its neighboring words. The nodes of the graph represent words, and an undirected
edge between two nodes represents the co-occurrence of the corresponding two words in the
context of the target word. Each edge is assigned a weight according to the co-occurrence
frequency of the nodes (words). Although this model can handle larger context window
sizes, it discards the order of the context words.

Mintz (2003) shows on a subset of the child-directed speech corpus (CHILDES) (MacWhin-
ney, 2000) that the non-adjacent most frequent bi-gram frames are useful for language
learners on the syntactic categorization of instances. For example, the instances that are
observed at “_” in the frame “the _ is” are usually assigned to the same category. Using
the “top-45 frequent frames” (the 45 most frequent frames), Mintz achieved an average of
98% unsupervised accuracy'. The main limitation of the top-45 frequent frames is that,
because of the sparsity, they can analyze only 6% of the word instances on average. An-
other drawback is that word instances even with one common neighbor could not exchange

information.

'Unsupervised accuracy is defined as the number of hits (when two intervening word instances observed
in the frame are from the same category) divided by number of false alarms (when two intervening word
instances observed in the frame are from different categories).
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St Clair et al. (2010) extend the work of Mintz (2003) and introduce the flexible bi-gram
frames which represent the context by using the left and the right bi-grams separately. As a
result, instances with a common left or right bi-gram can exchange information and might
be grouped together. For instance, two instances that are observed at “‘_” in “the _is” and
“a _is” can be assigned the same category because of the shared right bi-gram “is”. Using
a feed forward connectionist model, they showed that the flexible frames are statistically
better than the frequent frames in terms of the supervised accuracy”. They also showed that
representing instance contexts only with the left or the right bi-gram is statistically better
than the frequent frames but worse than the flexible frames in terms of supervised accuracy.
Neither Mintz (2003) nor St Clair (2010) report any results with contexts larger than a bi-

gram, since, as the context is enriched, the re-occurrence frequency of a frame decreases,

causing data sparsity (Manning and Schiitze, 1999).

3.2 HMM

ORONONCEONORORCRO

it will also offer buyers the option

Figure 3.1: A bi-gram HMM-based context of an example sentence.

Prototypical HMMs in tagging literature use a bi-gram structure in which instances are

2In order to perform meaningful comparisons, they used all of the frequent frames instead of the top-45
ones.
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generated by latent categories and which learns the latent category sequence to generate
the given word sequence (see Figure 3.1) (Brown et al., 1992; Blunsom and Cohn, 2011;
Goldwater and Griffiths, 2007b; Johnson, 2007a; Ganchev et al., 2010; Berg-Kirkpatrick
and Klein, 2010; Lee et al., 2010). The tagging literature has focused on the first- and
second-order HMMs since the higher-order HMMs have additional complicating factors®
and requires more complex training procedures (Johnson, 2007a). Depending on the design

and the training procedure, the HMMs can group words or word instances.

3.3 Paradigmatic Representation

In the paradigmatic representation, context is represented by the distribution of substitute
words. Schiitze (1995) incorporates paradigmatic information by concatenating the left co-
occurrence and the right co-occurrence vectors of the right and the left token, respectively,
and groups the tokens with similar vectors. The vectors from the neighbors include poten-
tial substitutes. Similarly, Schiitze and Pedersen (1993) define the words that frequently
co-occur together as the syntagmatic associates and words that have similar left and right
neighbors as the paradigmatic parallels.

Sahlgren (2006) gives a detailed analysis of paradigmatic and syntagmatic relations in
the context of word-space models used to represent the word meanings. Sahlgren’s paradig-
matic model represents words using co-occurrence counts of their frequent neighbors, in
contrast to his syntagmatic model that represents words using counts of contexts (docu-
ments, sentences) they occur in. Our substitute vectors do not represent words at all, but
they represent contexts of word instances determined from the probabilities of likely sub-
stitutes. Sahlgren finds that more nearest neighbors share the same part of speech in the

word-spaces built by frequent neighbor vectors than in the word-spaces built by context

3The number of parameters in a prototypical HMM increases quadratically with the HMM order.
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vectors.

target word

. . /\ .
..it will also offer buyers the option. ..
give(.7032)
help(.1203)

attract(.1081)

In this thesis, the context of a given word is represented by a distribution of substitute
words. The entries of the substitute distribution reflect how likely it is to observe each
substitute in the context of the target word. The above example illustrates the likely sub-
stitutes of the target word offer. We calculate the most likely substitute words in a given
context using a statistical language model. Our paradigmatic representation is related to the
second-order co-occurrences used in (Schiitze, 1995). Our method improves on his foun-
dation in two aspects: (1) it uses a 4-gram language model rather than bi-gram statistics,
(3) it includes the whole corpus vocabulary rather than the most frequent 250 words. More
importantly, rather than simply concatenating the left and right context vectors of the target

word, we use a statistical language model.
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Chapter 4

MODELS

In this thesis, we focus on incorporating the paradigmatic representation into the models
with different levels of supervision, and on applying these models to certain tagging tasks
in natural language processing (NLP). In a standard NLP tagging task, the goal is to build
a model in which the input is a sequence of observed words, and the output, depending on
the level of supervision, is a sequence of cluster-ids or predefined tags.

The definition of tags depends on the nature of the tagging task at hand. For exam-
ple: if the task is word-sense-disambiguation (WSD), then the output (of the tagging task
solver) would be the corresponding sense sequence of the input; if the task is part-of-speech
(POS) disambiguation, then the output would be the corresponding POS tag sequence of
the input; or if it the task is morphological disambiguation, then the output would be the
corresponding morphological parse sequence of the input.

The models in this section can be placed, depending upon how much supervision is
available, in several categories.

Supervised tagging models require an annotated training corpus in which word se-
quences and the corresponding tag sequences are both available. Thus the output tag se-
quence of a given test input will only contain the tags that are observed in the annotated
training corpus. Supervised models usually perform better in comparison to unsupervised
models. However, since the annotation process of raw text is generally expensive and error-
prone, resource-poor languages lack annotated corpora. For example, two different occur-
rences of the word the in the same context (i.e., “Meet _ Press”) are erroneously labeled

as determiner (D7) and proper-noun (NNP) in the 1M-word Wall Street Journal Section of



Unsupervised

tagging

Notation

the Penn Treebank (PTB) corpus. Most importantly, children do not require any annotated
corpora to perform similar tasks during their language acquisition.

Unsupervised tagging models observe only the word sequences, without requiring any
annotated corpora. These models have no information regarding the possible tag set or the
number of available tags, and hence output only the cluster-id sequences of the input word
sequence. The main advantage of these models is that they can be applied to any language.
The number of clusters is not fixed, and clusterings with different granularities can be
constructed. Finally, they perform constructive learning which, arguably, better resembles
the language acquisition by children (Tomasello, 2009).

There are also models that do not require the tag sequences of observed input sequences,
yet require some level of supervision for performing the desired NLP task'. The level
of required supervision can be further assigned one of two categories according to the
availability of (1) the word-tag dictionary and (2) the word-tag distribution. The word-tag
dictionary has the mapping information between words and their possible tags, while the
word-tag distribution provides the frequency information of a word with a particular tag, or
vice versa. Similarly to the supervised models, the output tag sequences of these models can
only contain the tags that are observed in the word-tag dictionary or distribution. Table 4.1
presents the word-tag dictionary entries and word-tag distributions of the words of and a
according to the PTB corpus.

We denote a sequence of n words (or a sentence) by wy . . . w,, (or w{ in an abbreviated
form), its corresponding context sequence by cy...c, (c), and output tag or cluster-id
sequence by ty...%, (t;). The substitute distribution of the i'" word w; in a sequence is
denoted by s;, and the possible tag set of w; is denoted by 7,,. . In some sections, we use the

non-indexed symbols w, ¢, t, and s to represent, respectively, the target word, its context,

'The NLP literature has been using different naming conventions for these models, such as “weakly
supervised” or “minimally supervised”. However, since none of the naming convention clearly specifies
the nature of supervision, we explicitly state the level of supervision when referring to these models.
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Organization

Word Word-Tag | Word-Tag
Dictionary | Distribution
of IN IN(28334)
RP RP(2)
RB RB(2)
a DT DT(23647)
SYM SYM(11)
1 11(2)
LS LS(2)
NNP NNP(2)
IN IN(1)

Table 4.1: The word-tag dictionary entries and distributions of the words of and a in the

PTB corpus for POS tagging.

tag (cluster-id), and substitute distribution. Random variables that sample w;, ¢;, and ¢; are
denoted by W, C', and T'. The set of possible substitutes of a word in a given context is
represented by S.. The definition of the tag set depends on the context of the task to which
the model is being applied. For example, in the context of WSD, ¢ and T, stand for the
sense and possible senses of w, respectively.

Section 4.1 and 4.2 describe the possible applications of unsupervised models that clus-
ter words or instances according to their substitute distributions (Section 4.1), or model
co-occurrences with their random substitutes that are sampled from the substitute distribu-
tions (Section 4.2). Section 4.3 presents a probabilistic voting algorithm that assigns tags
to contexts instead of instances, while Section 4.4 introduces two methods that incorporate
the substitute distribution into the standard HMM-based probabilistic models. Models in

Section 4.3 and 4.4 require the availability of a word-tag dictionary. Section 4.5 presents a
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noisy channel model that uses the word-tag distributions to figure out the most likely tag of

a given word.

4.1 Model 1: Clustering of the Substitute Distributions

Clustering-based tagging models are members of unsupervised models, and hence they
require only the input sequences in order to output the corresponding cluster-id sequences.

Model 1 assumes that w( and ¢ are independent, given cj. Each context c; is repre-
sented by the substitute word distribution s; at that position, and tags are assigned to the
corresponding substitute distributions. Thus, word-instances with similar substitute distri-
butions are assigned to the same clusters. The similarity between two substitute distribu-
tions can be defined by using any kind of function, as long as it satisfies the conditions of
non-negativity, identity, symmetry, and triangular inequality.

The main limitation of this model is that the identity or the features of target words
are ignored during tagging, because of the independence of w and ¢ for a given c. An-
other important limitation is that tags ¢; and ¢, ; of the consecutive words w; and w;,; are
independent of each other for the given contexts c; and ¢; 1.

The substitute distributions are high-dimensional vectors, and they are problematic with
many learning algorithms because of high computational costs and the curse of dimension-
ality. However, these drawbacks can be overcome by applying a dimensionality reduction
algorithm prior to clustering. Finally, the choice of clustering algorithm is highly specific
to the tagging task, and needs to be made carefully.

The unsupervised model in the next section removes the independence assumption of
w and ¢ for given ¢ by modeling the co-occurrence of the target word with its substitutes

and features.
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4.2 Model 2: Co-occurrence Modeling

Model 2 constructs Euclidean embeddings for words and their contextual features repre-
senting their co-occurrence statistics, and clusters these embeddings to induce word cate-
gories. In this section, we combine the substitute distributions of the word context with fea-
tures of target word within the co-occurrence data embedding (CODE) framework (Glober-
son et al., 2007; Maron et al., 2010). In the previous section, the clustering model assumes
the independence of w and ¢ for a given ¢, and hence it does not incorporate the target
word identity or features into the tagging task. On the other hand, Model 2 relaxes the
independence assumption by modeling the joint probability of w and ¢ according to the
co-occurrence of w with c.

Model 2 models the pairwise joint distributions between target words and their contex-
tual, morphological, and orthographic features by embedding the frequently co-occurring
pairs closer in Euclidean space. In other words, words, substitutes and features that are fre-
quently observed as pairs in the co-occurrence data will have close embeddings while pairs
not observed together will have embeddings that are far apart from each other. The final
step of the co-occurrence modeling consists of clustering the embeddings in order to assign
cluster-ids to words or word-instances. In this behavior, co-occurrence modeling seems
very similar to Model 1. However, the main difference is that in co-occurrence modeling
both w and c are involved in the construction of embeddings, while in Model 1 the sub-
stitute distributions are independent of w for a given c. Similar to Model 1, co-occurrence
models require only raw text in order to output the cluster-id sequence of a given input
sequence. One limitation of Model 2 is that it assumes the tags of the consecutive words to
be independent of each other for given contexts.

As an example, the co-occurrence data in Figure 4.1 consists of word-substitute pairs
such as (W:director, S:chairman) and (W:chief, S:chairman). Model 2 therefore forces

the embeddings of W:director and W:chief to be close to the embedding of S:chairman.
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/"W:director

Word Substitute

W:director S:chairman

W:chief S:chairman

-----

’
./ W:Pierre \

™~ S:John

W:Pierre S:John
W:Frank S:John

W:Frank ,"

-

Figure 4.1: The table on the left is the sample input co-occurrence data, and the figure
on the right is the final embeddings of the words and substitutes that are observed in this
sample co-occurrence data after embedding algorithm converges. To distinguish between

the target words and substitute words, we use the prefix W: and S:, respectively.

Similarly to the former case, the embeddings of W:Pierre and W:Frank will be close to
the embedding of S:John, because they are frequently co-occurring pairs. As a result, the
final embeddings of W:director and W:chief will be close to each other, as they share the
common substitute S:chairman, but will be apart from W:Pierre and W: Frank, as these lack
a common substitute. (Similarly, the embeddings of W:Pierre and W: Frank will be close to
each other because of the substitute S:John). After Model 2 constructs embeddings on the
sphere, we apply a clustering algorithm on these embeddings to induce word categories.
Section 4.2.1 describe in detail the representation of words and their substitutes as
co-occurrence data. Section 4.2.2 describes the CODE embedding algorithm and details
the model likelihood and its training procedure in our setup. The spherical optimization

(S-CODE) described in (Maron et al., 2010) is used for efficiency and is detailed in Sec-
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tion 4.2.2. Finally, Section 4.2.3 describes the different ways in which words and substitutes

can be clustered to produce word-based and instance-based clusters.

4.2.1 Co-occurrence Data

To capture the relation between each word and its context, we construct a co-occurrence
representation by pairing the words with randomly sampled substitutes. The calculation of
substitute distributions and random substitute sampling are detailed in Chapter 2.

Table 4.2 shows an example sentence with random substitutes of each of its words and
their pairwise co-occurrence representation input to the co-occurrence embedding algo-
rithm. It is possible (and advantageous) to sample more than one substitute and generate
multiple pairs for the same word-context pair as seen in Table 4.2. A target word might
appear both as a word and a random substitute. Therefore, to clarify this ambiguity, we

prepend “W:” and “S:” to words and substitutes, respectively, in the co-occurrence data.
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Word Random Substitutes
Pierre Mr. | Pierre | John
Vinken <unk> | Beregovoy | Cardin
, WAVE
61 48152141
years years | years | years
old old / old | old
, L
will will [ will | will
join head | join / leave
the its / its / the
board board | company [ firm
as as/as/as
a alala
nonexecutive nonexecutive | non-executive | nonexecutive
director chairman | chairman / director
Nov. April | May | of
29 16/29/9
S

Table 4.2: The table on the left shows three possible substitutes sampled with replacement
for each position in an example sentence based on a 4-gram language model. The table on

the right is the pairwise co-occurrence data fed to S-CODE derived from these samples.

Word Substitute
W:Pierre S:Mr.
W:Pierre S:Pierre
W:Pierre S:John
W:Vinken S:<unk>
W:Vinken S:Beregovoy
W:Vinken S:Cardin
W:join S:head
W:join S:join
W:join S:leave
W:the S:its

W:the S:its

W:the S:the
W:director  S:chairman
W:director  S:chairman
W:director  S:director

The prefixes “W:” and “S:” are used to distinguish target words and substitutes.

The next section describes CODE and S-CODE which take the pairwise co-occurrence

data as input, and calculate the Euclidean embeddings of the words and their substitutes on

an n-dimensional unit sphere.
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4.2.2 The CODE Model

In this section, we review the unsupervised method that we use to model co-occurrence
statistics: the Co-occurrence Data Embedding (CODE) (Globerson et al., 2007) method
and its spherical extension (S-CODE) introduced by (Maron et al., 2010).

Let W and C be two categorical variables with finite cardinalities |I¥/| and |C|. We
observe a set of pairs {w;, ¢;}?_, drawn IID from the joint distribution of 1 and C. The
basic idea behind CODE and related methods is to represent (embed) each value of W
and each value of C' as points in a common Euclidean space R¢ such that the values that
frequently co-occur lie close to each other. There are several ways to formalize the relation-
ship between the distances and co-occurrence statistics. In this thesis, we use the following:

1 _ d2

plw.) = —plw)p(c)e e

where d, . is the squared distance between the embeddings of w and ¢, j(w) and p(c) are

4.1)

empirical probabilities, and Z = 3 . p(w)p(c)e % is a normalization term. If we use
the notation ¢,, for the point corresponding to w, and . for the point corresponding to c,
then d2, . = ||¢u — ¥c||>. The log-likelihood of a given embedding ¢(¢, 1) can be expressed
as:

(¢, 0) =Y plw,c)log p(w, c) (4.2)

w,c

_ Z p(w, ¢)(—log Z + log p(w)p(c) — d2 )

—log Z + const — Zp w, ) d2

w,Cc

The likelihood is not convex in ¢ and . We use gradient ascent to find an approximate
solution for a set of ¢, 1. that maximize the likelihood. The gradient of the d7, , term pulls

neighbors closer in proportion to the empirical joint probability:

% S —p(w,c)d Z2p (w, €) (e — Pu) (4.3)

w,c
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The gradient of the Z term pushes neighbors apart in proportion to the estimated joint

probability:

5 gbx —log Z) = ZQp (w, ) (G — e) (4.4)

Thus the net effect is to pull pairs together if their estimated probability is less than the
empirical probability, and to push them apart otherwise. The gradients with respect to 1.
behave similarly. S-CODE (Maron et al., 2010) additionally restricts all ¢, and 7). to lie on
the unit sphere. With this restriction, Z stays around a fixed value during gradient ascent.
This allows S-CODE to substitute an approximate constant Z in gradient calculations for
the real Z for computational efficiency. In our experiments, we used S-CODE with its

sampling-based stochastic gradient ascent algorithm and smoothly decreasing learning rate.

S-CODE with More than Two Variables

In order to accommodate multiple feature types, the S-CODE model in the previous section
needs to be extended to handle more than two variables. Section 6.2 of Globerson et. al

(2007) suggest the following likelihood function:

o, »W . ) = f(w, ) log p(w, ¢ +Z > pw, f)log p(w, fV)(4.5)

% wf(z

where p(w, ¢) is the empirical joint distribution of context C' with W, and F' O FE)
are K extra different variables whose empirical joint distributions with 17/, namely, p(w, f) ..
are known. Eq. 4.5 then represents a set of CODE models p(w, f*)) in which each F'®)
has an embedding w;k) but all models share the same embedding ¢,,.

We adopt the above likelihood function. Now, let W represent a word, C' represent
a context (i.e., random substitute), and ), ... F&) stand for morphological and ortho-
graphic features of the word. So each co-occurrence is a (K+1)-tuple (W, C, FO) ... F(5)),

With this setup, the training procedure needs to be modified a little: instead of sampling the
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(word (w) , context (c)) pair, we sample the (word (w) , context (c) , features (f1, ..., fx))
tuple, and feed it to the gradient ascent algorithm. The gradient search algorithm updates
the embeddings according to p(w, ¢) and p(w, f*)), where i = 1...k. No updates are
performed between ¢ and f()s, since they do not have any co-occurrence statistics, and w

is the only shared variable.

4.2.3 Clustering Embeddings

At this stage, each word instance and its r substitutes, where r is the number of substitutes
per instance sampled to represent their contexts, are mapped to real vector embeddings on
an n-dimensional sphere’. We apply the instance-weighted k-means clustering algorithm
to three different representations derived from these embeddings, each with its own advan-

tages and disadvantages:

Word embeddings (W): We cluster the word embeddings. Each word has a single
embedding, and gets assigned to a single cluster (which we will refer to as the one-tag-
per-word assumption). Thus clustering words resulting from this representation employ
the one-tag-per-word assumption from the beginning, and cannot handle ambiguous words

with multiple parts of speech.

Average of substitute embeddings (S): We construct a vector representation for each
word-instance with the average of its r substitute embeddings, where r is the number of
sampled substitutes per instance. First, we normalize these average vectors to Euclidean
unit length then cluster the instances obtained from these averaged and normalized vectors,
thus assigning each instance to a cluster. For example, the target word W:Pierre in Table 4.2

will be represented with the average of the embeddings of S:Mr., S:Pierre and S:John, while

%In fact, many words that appear in the text also appear as substitutes, and thus have two embeddings.
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all other instances of Pierre in different contexts are represented with the average of their

own substitute embeddings.

The concatenation of the word embedding and the average of its substitute embed-
dings (W @ S): We construct a vector representation for each word instance by concate-
nating its word embedding and the average of its r substitute embeddings. This results in a
2n-dimensional vector representing an instance. Prior to clustering, we normalize these 2n-
dimensional vectors to Euclidean unit length. Clustering these 2n-dimensional normalized
vectors assigns each instance to a cluster. For instance, the target word Pierre in Table 4.2
will be represented by the concatenation of the embedding of W:Pierre and the average of
the embeddings of S:Mr., S:Pierre and S:John.

To sum up, the first setting applies the one-tag-per-word assumption from the beginning,
and clusters words instead of word-instances. The second setting clusters word-contexts
(as represented by the average of its substitutes), and is able to categorize the individual
word-instances. However, it ignores the identity of the target word. The third setting also
clusters word-instances, but incorporates the word identity by concatenating the word and
the average of the corresponding substitute embeddings.

The clustering and the co-occurrence models require only the input word sequences to
output the corresponding cluster-id sequences. The remaining models in this section require
different levels of supervision to output the tag sequence of a given input sequence. The
next section introduces a probabilistic voting model that requires the word-tag dictionary

to be available in order for it to output the possible tag sequence of a given input.

4.3 Model 3: Probabilistic Voting Model

In this section, we model the tag distribution in a given context, and assign the most likely

tag to the context instead of the target word-instance. The distribution of ¢ in ¢ can be
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defined in terms of the substitutes and their possible tags in a word-tag dictionary or distri-

bution. The model is defined as

argmax Pr(t|c) = ZPr(t|3,c)Pr(s|c) (4.6)
teT seS
= ) Pr(t]s) Pr(s|c) (4.7)
ses

where s is a substitute word in the substitute distribution S of the context c¢. Pr(s|c) is
the probability of observing s in ¢ which is the entry corresponding to s in .S. Eq.(4.6) is
simplified to Eq.(4.7) by making the assumption that the tag of a substitute word and the
context are independent of each other for a given substitute word s.

The model distributes Pr(s|c) among the possible tags of s in a word-tag dictionary,
taking into consideration Pr(¢|s) which is the probability of observing s with tag t. The
estimation of Pr(¢|s) depends on the level of supervision. For example, if the word-tag
dictionary is available, then Pr(¢|s) could be uniform over the possible tags of s, or if the
word-tag distribution is available, then Pr(¢|s) would consist of the observation frequencies
of s with ¢. One could only have the substitutes but not the corresponding Pr(s|c) or simply
wants to assign equal weights to each substitute instead of weighting them with Pr(s|c). In
this situation Pr(s|c) could be uniform over the possible substitutes in a given context.

As is the case with the previous models, this model also assumes that the tags of
two consecutive words are independent of each other for any fixed contexts of the words.
Model 3 also assumes that tag distribution is independent of the target word given the con-
text of the target word. The models in the following section relaxes this assumption by

integrating the substitute distributions into the HMM-based models.
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4.4 Model 4: Constraining HMM-Based Models

None of the previous models captures the relationship between consecutive tags because
of the independence assumption of consecutive tags in fixed contexts. However, one can
take advantage of consecutive tags to constrain the output sequence. For example, in a
POS disambiguation task, determiners (DT) are usually followed by a noun (NN). In this
section, we introduce two different ways of incorporating substitute words into the HMM-
based probabilistic models in which consecutive tag sequences depend on each other while
consecutive words are independent of each other for any given tags.

The HMM-based probabilistic models have been used to solve NLP tagging tasks
(Merialdo, 1994; Goldwater and Griffiths, 2007a) with different levels of supervision. The
prototypical n-tag HMM model maximizes the likelihood of the corpus w; ... wy, ex-

pressed as
N

P(w1|t1) H P(wz|t2)P(tz|tZ_1, C 7ti—n+1) (48)

=2

Figure 4.2: Graphical structure of a standard second-order HMM tagger on an example

4-word sequence.

where w; are the word tokens, and ¢; are their (hidden) tags. The HMM-based approaches
generally first learn the parameters relating the hidden structure to the observed sequence

of variables Pr(w;|t;), and then the new hidden structure from the previous n — 1 hidden
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structures Pr(¢;|t;_1,...,t;_n+1). Finally, they identify the most probable values of the
hidden structure for a given observed sequence using the Viterbi search algorithm (Viterbi,
1967). Figure 4.2 illustrates a standard bi-gram HMM model in which the hidden units that
generate tags are represented by kg3, and the observed word sequence is represented by w;.

The HMM-based models differ in the way the model parameters are estimated. For
example, the HMM-EM models that are trained with expectation maximization estimate
the parameters by using the maximum likelihood estimation (MLE), maximum a posteriori
(MAP)-based models define a prior distribution over the parameters and find the parameter
values to maximize the posterior distribution given data, and Bayesian models integrate
over the posterior of the parameters to incorporate all possible parameter settings into the
estimation process.

In this section, we focus on HMM-EM since it is the simplest HMM-based approach,
and has a traditional place in the NLP literature of unsupervised tagging (Merialdo, 1994).
We assume that the word-tag distribution is available. However, models in this chapter are
not limited to HMM-EM, and can be extended to HMM-MAP and HMM-Bayesian.

In POS disambiguation, the observed variables are a sequence of words (wg, wy, ..., W,_1, Wy),
and the hidden variables are a sequence of POS tags (¢o,t1,...,%,—1,t,). The HMM pa-
rameters ¢ can be estimated by using Baum-Welch EM algorithm on an unlabeled training
corpus D (Baum, 1972). The tag sequence that maximizes Pr(t|w, . . . , w,, #) can be iden-
tified by the Viterbi search algorithm.

Johnson (2007b) showed that HMM-EM has a tendency of assigning equal number of
words to each hidden state, thus resulting in poor tagging performance on tasks with skewed
word-tag distributions. Mitzenmacher (2004) argued that a Bayesian method with sparse
priors over the tags may perform better than an HMM estimated with EM on a problem
with skewed word-tag distributions.

Ravi and Knight (2009a) defined the observed grammar size to be the number of distinct

tag bi-grams observed in the output sequences of a given input corpus. They showed that
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the observed grammar size of the HMM-EM model in a POS disambiguation task is larger
than the actual observed grammar size’. To fix this, they constrain the number of nonzero
transition probabilities (Pr(¢;|t;_1)) of a bi-gram HMM model using integer programming
(IP).

To take advantage of substitute distributions in an HMM setting, we consider generating
artificial sentences where one of the words of the original sentence is replaced with a likely
substitute. We assume the hidden tag sequence that generates the original sentence should
also generate the artificial sentences. Motivated by this idea, we propose two methods
that incorporate substitute words to improve the HMM-EM performance. The first method
improves the performance of HMM-EM by reducing the noise and rare tags in the word-
tag dictionary. The second one does not modify the word-tag dictionary or the EM training
phase, but constrains the Viterbi search algorithm by providing artificially created new
sentences that are derived from the target sentence. As a result, the first method constrains
the HMM-EM to learn smaller models in terms of the grammar size, while the second one
constrains the search space of Viterbi even when the HMM-EM grammar size is larger than

the actual grammar size.

Currency gyrations can whipsaw(VB/NN) the funds .

Currency gyrations can withdraw(VB) the funds .
Currency gyrations can restore(VB) the funds .
Currency gyrations can modify(VB) the funds .
Currency gyrations can justify(VB) the funds .

Currency gyrations can regulate(VB) the funds .

Table 4.3: Sample artificial sentences generated for a test sentence from the Penn Treebank.

3The actual observed grammar size is calculated using an annotated PTB corpus. Annotations are only
used for the model comparison, and are discarded during the learning process.
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Table 4.3 presents an example from a POS tagging task in which the highly likely sub-
stitutes of the target word whipsaw are listed for a given sentence from the Penn Treebank
(PTB). In this example, each substitute is an unambiguous verb (VB), and hence the correct
tag of whipsaw can be correctly disambiguated by the substitutes. The target word and its
substitutes are both syntactically and semantically related to each other. Thus, our approach
is not limited to the POS tagging task, but can be extended to other NLP tagging tasks such
as WSD.

Section 4.4.1 presents the steps of the word-tag dictionary reduction method, and Sec-

tion 4.4.2 presents the data-enhanced HMM-EM algorithm.

4.4.1 Method 1: Dictionary Reduction

This method, initial to the HMM-EM training, reduces the word-tag dictionary size by
deleting the unlikely tags of each target word from the word-tag dictionary. To determine
the unlikely tags of a word, it estimates the tag distribution of the word by averaging the tag-
context distributions of its instances. The tag distribution of each instance is calculated by
using Model 3. For example, the word a has 7 possible tags in its word-tag dictionary and
two of its possible tags (i.e, SYM and LS)* are observed with very low probabilities in the
tag distribution of the word of. Thus they are deleted from the word-tag dictionary. Instead
of removing the unlikely tags, this method can be also used for estimating the word-tag
distributions when the only available information is the word-tag dictionary.

Another interpretation of dictionary reduction is that votes of the substitute words are
used to reduce the possible number of tags per word in the word-tag dictionary. This ex-
pedites the training phase of the HMM-EM algorithm by reducing the number of non-zero
parameters. For all instances of the target word, the procedure counts the votes of possible

tags and removes the tags with low votes from the word-tag dictionary entry of the target

4SYM and LS represent symbols and list item markers.
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word.

4.4.2 Method 2: Data Enhanced Viterbi Search Algorithm

In this method, the Viterbi search algorithm constructs the most likely tag sequence of a
given observed word sequence after the training phase of HMM. Because of the existence
of ambiguous words, more than one tag sequence is possible for any given word sequence.
To constrain all possible tag sequences of a given word sequence, we construct artificial
sentences such that each of these sentences differ only in one word from the original sen-
tences. We do this with the expectation that the tag sequence will be the same for both the
original and the artificial sentence.

Figure 4.3 presents the difference between the standard HMM-EM and data enhanced
HMM-EM. To keep things simple, we present the derivation of the Viterbi search on a first
order HMM in which each hidden state is only conditioned by its preceding hidden state.

The derivation for the second order HMM is similar.

Viterbi Search Algorithm

Let a; denote the i'" artificial sequence generated from the original sequence wqy . . . Wop,
where w;; denotes the j word of a;, h; denotes the ;™ hidden state, ¢ denotes the k™" tag
in the set of all possible tags 7', and 0,(¢;) denotes the probability of the best tag sequence
up to the j* word that is tagged with ¢,. The number of artificial sequences is 7, and the
number of words in the original sequence is n. Using these symbols, the probability of the

best path up to j** word with tag ¢, in a standard HMM can be written as

5j<tk) = maxth“,t]._l Pr(hl, ey hj—b hj = tj, Wo1, -- w0j|t9) (49)
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Equation 4.9 can be solved recursively by using following equations:

) = Pl"(hl = tk|0) Pr(wm]hl = tk, 9) (410)
5j+1 (tk) = maxteTéj(t) Pr(th = tk|hj = t, 9) Pr(woj+1’hj+1 = tk, 9) (411)

D maxieron(t) (4.12)

Equation 4.10 gives the probability of tagging the first word wg; with tag ¢;, and Equation
4.11 defines the recursive relation between consecutive Js. Equation 4.12 gives the proba-
bility of the best path. The best path can be constructed during the recursive calculation of
0s. We do not need to demonstrate the path construction part of the Viterbi search, since
the data-enhanced HMM uses the same formulation.

In the case of data-enhanced HMM-EM, the optimum tag sequence t,p¢ of the original
sequence, together with its artificial sentence set a; ... a, € A,, is given by Equation 4.13.

This equation can be solved by modifying Equations 4.10 and 4.12, as follows:

topt = argmaxy, 4, Pr(to...t,ls, As, é) (4.13)

0i(tk) = Pr(hy = tl0) [] Pr(walhn =t 0) (4.14)

i=1

6j+1 (tk) = maa:teT(Sj(t) Pr(th = tk|h] = t, 9) H Pr(win]th = tk, 9)(415)

i=1

Equation 4.14 and 4.15 do the same calculation, except that they incorporate the re-
placement sentences into the model as observed variables. In the case of HMM-EM, the
Viterbi search algorithm is applied jointly to the original sequence and its artificial sen-
tences so as to get the most probable tag sequence for all.

In this section, we use the HMM-based model to find out the most likely tag sequence
of a given input sequence when a word-tag dictionary is available. An n* order HMM-EM
models assumes that each tag depends on the previous n — 1 tags and word-instances are
independent of each other given their corresponding tags. Thus the models in this section

explicitly incorporate into the learning process both the word identity and the dependencies
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between the tags. The next model introduces a noisy channel model that requires the word-

tag distribution in order to perform the tagging task.

4.5 Model 5: Noisy Channel Model

In this section, we introduce a noisy channel model that disambiguates the most likely tag
sequence of a given word sequence. Unlike the previous models, this model requires the
availability of the word-tag distribution. The main limitation of the model is that the tags
of consecutive words are independent of each other, given the corresponding contexts.

The noisy channel model has been the foundation of standard models in speech recog-
nition (Bahl et al., 1983) and machine translation (Brown et al., 1990). The noisy channel
model can be used whenever a received signal does not uniquely identify the message be-
ing sent. Bayes’ Law can be used to interpret the ambiguous signal, and identify the most
probable intended message. In tagging tasks, we model each context as a distinct channel,
where the intended message is a tag 7', and the received signal is an ambiguous word WW.
The model assumes the independence of consecutive messages. In this section, we will
describe how to model a given context C' as a noisy channel, and, in particular, how to
estimate the context-specific tag distribution by using the word-tag distribution.

Equation 4.16 expresses the probability of a tag 7" of word W in a given context C.
This is the well-known Bayes’ formula with an extra Pr(.|C') in each term to indicate the

dependence on the context.

Pr(W|T,C)Pr(T|C)
Pr(W|C)

To perform disambiguation, we need to find the tag 7' that maximizes the probability

Pr(T|W,C'). This is equivalent to the maximization of the product Pr(W|T, C') Pr(T'|C),

Pr(T\W,C) =

(4.16)

because the denominator Pr(WW|C') does not depend on 7". To perform the maximization,

the two distributions Pr(W|T', C') and Pr(7'|C') need to be estimated for each context C.
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How to estimate Pr(7'|C'), the distribution of word tags that can be expressed in the
given context? The only supervision is the word-tag distribution, since we do not have
access to any tagged data, and consequently we do not know what tags are likely to be
expressed in any given context. Therefore, it is not possible to estimate Pr(7'|C') directly.

What we do have is the word frequencies for each tag Pr(W|T'), and the word frequen-
cies for the given context Pr(WW|C'). We use the word-tag distribution to estimate Pr(1V|T'),
and a statistical language model to estimate Pr(W|C'), as detailed in Section 2. We make
the independence assumption Pr(W|7T', C') = Pr(W|T), i.e. the distribution of words used
to express a particular tag is the same for all contexts. Finally, the relationship between the
three distributions, Pr(7|C), Pr(W|T, C), and Pr(W|C) is given by the total probability
theorem:

Pr(W|C) =Y Pr(T|C)Pr(WI|T,C) (4.17)

We can now solve for Pr(T|C) using linear algebra. Let WT be a matrix, t and @ two

vectors such that:

[, = Pr(T=j|C=k)
@; = Pr(W =ilC =k) (4.18)

Using this new form, we can see that Equation 4.17 is equivalent to the linear equation
W = WT x t, and  can be solved using a linear solver. Typically WT is a tall matrix,
and the system has no exact solutions. One can use a linear constraint solver (e.g., interior
point algorithm) or a pseudo-inverse algorithms (e.g., the Moore-Penrose pseudo-inverse)

to compute an exact or approximate solution to:
t=WT" x & (4.19)

Another interpretation of this model is that it performs a voting process similar to the

probabilistic voting in Section 4.3 to estimate the tag distribution of a given context. To
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see this, consider the following example, let each word be unambiguous, and therefore
assume that WT equals the identity matrix Iy, of dimensionality || x |[W|. Under this
assumption, the inverse of WS would also be equal to Iy, and Pr(7'|C') would be equal to
Pr(W|C'). This implies that the most likely tag in C' is actually the tag of the unambiguous
word with the highest Pr(W|C'). Thus, the noisy channel model estimates Pr(7'|C') by

distributing Pr(1V|C') to the tags with respect to the inverse of WT.

4.6 Conclusion

The first model ignores the identity of the word and clusters the substitute distributions
without requiring any level of supervision. The second one models the co-occurrences of
words with their substitute words, therefore, incorporates the word identity and the context
information at the same time. To construct the co-occurrence representation this model
discretizes the substitute distributions. The third model performs probabilistic voting and
estimates the distribution of tags in a given context. Unlike the first and second model
this model requires the availability of word-tag dictionary in which all possible tags of a
given word is available. The fourth model proposes two extensions to the standard HMM-
based tagging models in which both the word identity and the dependence between the
consecutive tags are concerned. The last one introduces a generative probabilistic model,
the noisy channel model, for the word sense disambiguation task in which the word-tag
frequencies are available. In this model, each context C' is modeled as a distinct channel
through which the speaker intends to transmit a particular meaning S using a possibly
ambiguous word W. To reconstruct the intended meaning the hearer uses the distribution
of possible meanings in the given context Pr(S|C') and possible words that can express
each meaning Pr(W|S). Section 5 applies Model 4 to POS disambiguation, Section 6
applies Model 3 to morphological disambiguation, Section 7 applies Model 5 to word-sense

disambiguation, and, finally, Section 8 applies Model 1 and 2 on POS induction.
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Figure 4.3: Graphical structure of a standard second-order HMM tagger (top) and data-
enhanced HMM tagger (bottom) on a 4 word sentence. Red circles represent the substitute

in an artificial sentence while the blue ones represent the original words.
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Chapter 5

PART OF SPEECH DISAMBIGUATION

In this section, we apply the algorithms defined in Section 4.4 to the weakly-supervised
part-of-speech (POS) disambiguation of English.! This task consists of predicting the cor-
rect POS tag of a word in a specified context, given an unlabeled corpus and a dictionary
with possible word-POS-tag pairs. The performance of an unsupervised POS tagging sys-
tem depends highly on the quality of the word-tag dictionary (Banko and Moore, 2004) or
the constraints on the learning models (Johnson, 2007b).

The rest of this chapter is organized as follows: Section 5.1 reviews the related work
on POS tagging. Section 5.2 defines the experimental settings that are used in this chap-
ter. Section 5.3 defines supervised and unsupervised baselines. Section 5.4 presents the
results of experiments with the dictionary reduction method (see Section 4.4.1) to improve
the performance of the methods involving expectation maximization (EM). Section 5.5
presents the results of experiments with the data-enhanced Viterbi decoding method (see
Section 4.4.2). Section 5.5.3 shows an application of the data-enhanced Viterbi decoding
on out-of-vocabulary (OOV) words. Finally, Section 5.7 defines the road map for future
work. This section also introduces a new method that incorporates substitute words in the
disambiguation process during the estimation of the probabilistic model parameters, rather

than just using them for Viterbi decoding or dictionary reduction.

'Throughout this chapter POS tagging is used interchangeably with POS disambiguation.



5.1 Related Work

Probabilistic models such as the hidden Markov model trained by expectation maximiza-
tion (HMM-EM), maximum a posteriori (MAP) estimation, and Bayesian methods have
been used to solve the unsupervised POS tagging problem (Merialdo, 1994; Goldwater and
Griffiths, 2007a). All of these approaches first learn the parameters relating the hidden
structure to the observed sequence of variables and then identify the most probable values
of the hidden structure for a given observed sequence. They differ in the way they estimate
the model parameters. HMM-EM estimates model parameters by using the maximum like-
lihood estimation (MLE), MAP defines a prior distribution over parameters and finds the
parameter values that maximize the posterior distribution for a given data, and Bayesian
methods integrate over the posterior of the parameters to incorporate all possible parameter
settings into the estimation process. Some baseline results and performance reports from
the literature are presented in Table 5.1.

Johnson (2007b) criticizes the standard HMM-EM approaches for their poor perfor-
mance on unsupervised POS tagging and their tendency to assign equal number of words
to each hidden state. Mintzenmacher (2004) further claims that words have skewed POS
tag distributions, and a Bayesian method with sparse priors over the POS tags may perform
better than HMM-EM. Goldwater and Griffiths (2007a) use a fully Bayesian HMM model
that averages over all possible parameter values. Their model achieves 86.8% tagging accu-
racy with sparse POS priors, outperforming the standard second-order HMM-EM (3-gram
tag model) with 74.50% accuracy on a 24K (PTB24K) word subset of the Penn Treebank
corpus. Taking a different approach, Smith and Eisner (2005) use the conditional random
fields estimated using contrastive estimation, which achieves 88.6% accuracy on the same
PTB24K corpus, and thus outperforms the HMM-EM and Bayesian methods.

Despite the fact that HMM-EM has a poor reputation in the POS literature, Goldberg et

al. (2008) have shown that with good initialization in conjunction with certain language-
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Accuracy | System

64.2 | Random baseline

74.4 | Second-order HMM

81.8 | Most frequent tag baseline

82.0 | First-order HMM

86.8 | Fully Bayesian approach with sparse priors (Goldwater and Griffiths, 2007a)
88.6 | CRF/CE (Smith and Eisner, 2005)

91.4 | EM-HMM with language specific information, good initialization and

manual adjustments to standard dictionary (Goldberg et al., 2008)

91.8 | Minimized models for EM-HMM with 100 random restarts (Ravi and Knight, 2009b).

Table 5.1: Tagging accuracy on a PTB24K-word corpus. All the systems—except (Gold-
water and Griffiths, 2007a)—use the same 45-tag dictionary that is constructed from the

Penn Treebank.

specific features and language-dependent constraints, HMM-EM achieves 91.4% accuracy.
Aside from the language-specific information and the good initialization, they also employ
some manual tuning to reduce the noise in the word-tag dictionary.

Ravi and Knight (2009b) focus on POS tag collection to find the smallest POS model
that explains the data. They apply integer programming to construct a minimal bi-gram
POS tag set, and use this set to constrain the training phase of the EM algorithm. The model
trained by EM is used to reduce the dictionary, and these steps are iteratively repeated
until no further improvement is observed. Their model achieves 91.6% accuracy on the
PTB24K word corpus. (The accuracy increases to 91.8% with 100 random starts.) The
main advantage of this model is the restriction of the tag set so that rare POS tags and the

noise in the corpus do not influence the estimation process.
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5.2 Experimental Settings

In this section, we present a number of experiments measuring the performance of dic-
tionary reduction and data-enhanced Viterbi decoding, which have been defined in Sec-
tion 4.4. As the models in this section are trained” and tested on the same unlabeled data,

no out-of-vocabulary words are involved.

5.2.1 Language Model

To obtain accurate domain independent probability estimates, we used the Web 1T data set
(Brants and Franz, 2006b) that contains the counts of word sequences of length up to five
in a 10'2-word corpus derived from publicly accessible Web pages. The SRILM toolkit is
used to train a 5-gram language model (Stolcke, 2002a). The language model parameters
are optimized by using a randomly selected PTB24K word corpus from Penn Treebank.
In order to efficiently apply the language model to a given test corpus, the vocabulary is

limited to the words seen in the test corpus.

5.2.2 Dataset

In the rest of this chapter, we limit ourselves to the 4 corpora consisting of the first 12K
(PTB12K), 24K (PTB24K), 48K (PTB48K), and 96K (PTB96K) words of the 1M-word
Wall Street Journal Section of the Penn Treebank (PTB) corpus. To be consistent with the
POS literature, the tag dictionary is constructed by listing all of the observed tags for each
word in PTB. Nearly 55% of the words in Penn Treebank corpus are ambiguous, and the
average number of tags is 2.3.

Table 5.2 shows the POS speech groups and their distributions in the PTB24K word

corpus. We report the model accuracy on several POS groups. Our motivation is to deter-

2The GMTK tool is used to train the HMM-EM model on an unlabeled corpus (Bilmes and Zweig, 2002).
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Groups |Member POS tags Count| %

Noun NN, NNP, NNS, NNPS 7511 |31.30
Verb VBD, VB, VBZ, VBN, VBG, VBP|3285 [13.69
Adj JJ, IR, JIS 1718 |7.16
Adv RB, RBR 742 |3.09
Pronoun |CD, PRP, PRP$ 1397 |5.82

Content |Noun, Verb, Adj, Adv, Pronoun 14653 |61.05
Function | Other 9347 [38.95

Total All 45 POS tags 24K |100.00

Table 5.2: Group names, members, number, and percentage of words according to their

gold POS tags.

mine the accuracy of the HMM-EM model on the subgroups before and after implementing

the dictionary reduction procedure.

5.3 Baseline

Table 5.3 presents some standard baselines for comparison. We define a random and a
supervised baseline on the PTB24K corpus. The random baseline is calculated by randomly
picking one of the tags of each word. This baseline also represents the amount of ambiguity
in the corpus. The supervised baseline consists simply of the most frequent POS tag of
each word, using the IM-word Penn Treebank corpus as the training corpus. (The first 24K
words of the corpus are not included in the 1M-word training corpus.) If the target word
does not exist in the training set, then the supervised baseline randomly picks one of the
possible tags of the missing word.

The first- and second-order HMMs can be treated as the unsupervised baselines. These
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Noun Verb Adj Adv Pronoun|Content Function|Total(%)
Random Baseline |76.98 53.87 68.46 7298 87.64 | 71.59 52.64 | 64.21

3-gram HMM 77.43 68.16 78.06 73.32 94.85 | 76.88  70.45 | 74.38
Supervised Baseline |85.29 59.24 64.52 59.03 84.57 | 75.62 9137 | 81.75
2-gram HMM 92.22 83.84 85.22 83.96 95.56 | 89.42 70.49 | 82.05

Table 5.3: Percentages of words tagged correctly by different models using the standard

dictionary.

unsupervised baselines are calculated by training the uniformly initialized first- and second-
order HMMs on the target corpus without any smoothing. All the initial parameters of
HMM-EM are uniformly initialized so as to observe only the effect of the artificial sen-
tences on the performance of HMM-EM.

The success of the supervised baseline on the Noun, Pronoun, and Function word
groups indicates that tag distributions of the words in these groups are highly skewed to-
wards one of the available tags. Compared to the above groups, the supervised baseline
performs poorly on Verb, Adj, and Adv. This is a result of the less skewed POS tag behavior
of these tags.

The second-order HMM is commonly taken to be the baseline in the POS tagging lit-
erature. However, as is clear from Table 5.3, this model can be outperformed by an unsu-
pervised first-order HMM or a simple supervised baseline like majority voting. It is worth
noting that although the first-order HMM and the supervised baseline have similar overall
accuracies, the first-order HMM is better on the content words while the supervised base-
line is better on Function words. This is to be expected, since EM tends to assign words
uniformly to the available POS tags. Thus, EM cannot capture the skewed behavior of

Function words. Moreover, the amount of skewness affects the accuracy of EM in such
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a manner that the performance gain over the supervised baseline on Verb, Adj, and Adv is

around 20-25% while the performance gain on Noun and Pronoun is around 6—7%.

5.4 Experiment: Dictionary Reduction

EM tends to assign equal number of words to each POS tag because it cannot capture the
sparse structure of word distributions. If the word-tag dictionary is noisy, then a large
number of function words are tagged with very rare POS tags. Table 5.4 illustrates this
abuse of rare tags, also seen in (Ravi and Knight, 2009b). In this set of experiments we
assume that we only have the top k substitutes and have no information regarding their
probabilities in the corresponding context.

To remove rare tags from the word-tag dictionary, we apply the following steps:

Algorithm

1. Choose the top £ most likely unambiguous substitutes in the target word context.

2. Substitutes must be observed in the word-tag dictionary.

3. Count the tags of the top £ substitutes for all target word instances.

4. Remove the tags that are not observed as the tag of substitutes in any of the target

word instances.

The first rule decreases the level of ambiguity by selecting only the unambiguous sub-
stitutes from the word-tag dictionary. The second rule makes sure that the unambiguous
substitutes do occur in the word-tag dictionary. The counts of substitute POS tags and the
deleted rare POS tags for two erroneous function words are shown in Table 5.4. The exper-
iments in this section focus on: (1) the analysis of dictionary reduction and (2) the number

of top substitutes used for each ambiguous word.
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Word | Tag Gold EM Substitutes
dictionary tagging | tagging POS counts
of {RB, RP, IN} IN(632) | IN(0) IN(2377)
RP(0) RP(632) RP(0)
RB(0) RB(0) RB(850)
a {LS, SYM, NNP, | DT(458) | DT(0) DT(513)
FW, JJ,IN, DT} | IN(1) IN(0) IN(317)
JI(2) JJ(0) J1(1329)
SYM(1) | SYM(258) | SYM(0)
LS(0) LS(230) LS(0)

Table 5.4: Deleted POS tags of the given words are shown in bold.

The results obtained with the dictionary that is reduced by using the top 5 likely un-
ambiguous substitutes are presented in Table 5.5. Note that with the reduced dictionary
the uniformly initialized first-order HMM-EM achieves 91.85% accuracy. We execute 100
random restarts of the EM algorithm and select the model with the highest corpus likeli-
hood. Our model achieves 92.25% accuracy—so far the highest accuracy reported for the
PTB24K corpus.

As Table 5.5 shows, the effect of dictionary reduction is more noticeable on the content
words than on the function words. This happens mainly because function words are fre-
quently tagged with one of their tags. The same explanation can also be given for the high
accuracy of the majority voting-based supervised baseline on function words.

The reduced dictionary (RD) removes the problematic rare POS tags of the words, thus
improving significantly the accuracy on the content and function words as compared to the

HMM models trained on the original dictionary.
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POS 2-gram HMM | 2-gram HMM RD
Groups | Accuracy (%) Accuracy (%)
Noun 92.22 94.01
Verb 83.84 84.90
Adj 85.22 89.52
Adv 83.96 85.18
Pronoun | 95.56 95.92
Content | 89.42 91.18
Function | 70.49 92.92
All 82.05 91.85

Table 5.5: Percentages of correctly tagged words by different models with the modified
dictionary. The dictionary size is reduced by using the top 5 substitutes of each target

word.
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5.4.1 Number of Substitutes

In this set of experiments, we try different numbers of artificial substitute words for each
ambiguous word in a given sentence. We run our method on the PTB24K corpus with
1, 5, 10, 25, and 50 substitutes per ambiguous word. Table 5.6 displays the results. The
performance of our method is dependent on the number of substitutes, the highest score
being achieved when 5 substitutes are used. Incorporating the probability of the substitutes

into the model rather than using a hard cutoff might offer a better solution.

Number of | 2-gram HMM RD
Substitutes Accuracy (%)
none 82.05

1 89.65

5 91.85

10 90.09

25 89.97

50 89.83

Table 5.6: Percentages of correctly tagged words by the models trained on the PTB24K
corpus with different reduced dictionaries. The dictionary size is reduced by using different

number substitutes.

5.4.2  Amount of Data

In this set of experiments we doubled the size of the data and trained HMM-EM models
on a corpus that consists of the first 48K words of the Penn Treebank corpus. Our aim
is to observe the effect of more data on our dictionary reduction procedure. Using the 5
replacements of each ambiguous word we reduce the dictionary and train a new HMM-EM
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model using this dictionary. The additional data together with 100 random starts increases

the model accuracy to 92.47% on the 48K corpus.

POS 3-gram HMM RD | 2-gram HMM RD
Groups Accuracy (%) Accuracy (%)
Noun 89.45 93.47
Verb 85.56 88.99
Adj 86.02 87.53
Adv 94.44 95.92
Pronoun | 94.08 94.04
Content | 88.91 91.97
Function | 92.44 92.26
All 90.31 92.09

Table 5.7: Percentages of the correctly tagged words by the first and second order HMM-
EM model trained on the 48K corpus with reduced dictionary. The dictionary size is re-

duced by using the top 5 replacements of each target word.

As we mentioned before, when the model is trained using the original dictionary, the
performance gap between the first order HMM the second order HMM is around 8% as
presented in Table 5.3. On the other hand, when we use the reduced dictionary together
with more data the accuracy gap between the second order and the first order HMM-EM
becomes less than 2% as shown in Table 5.7. This confirms the hypothesis that the low
performance of the second order HMM is due to data sparsity in the 24K-word dataset, and

better results may be achieved with the second order HMM in larger datasets.

62



5.4.3 17-Tag Set

To observe the effect our method on a model with coarse grained dictionary, we collapsed
the 45—tagset treebank dictionary to a 17-tag set coarse dictionary (Smith and Eisner,
2005). The POS literature after the work of Smith and Eisner follows this tradition and also
tests the models on this 17—tagset. Table 5.8 summarizes the previously reported results on
coarse grained POS tagging. Our system achieves 92.9% accuracy where the oracle accu-
racy of 24K dataset with the reduced 17-tagset dictionary is 98.3% and the state-of-the-art
system IP+EM scores 96.8%.

Model Accuracy | Data Size
BHMM 87.3 24K
CE+spl 88.7 24K

RD 92.9 24K
LDA+AC 93.4 IM
InitEM-HMM | 93.8 IM
IP+EM 96.8 24K

Table 5.8: Performance of different systems using the coarse grained dictionary.

The IP+EM system constructs a model that describes the data by using minimum num-
ber of bi-gram POS tags then uses this model to reduce the dictionary size (Ravi and Knight,
2009b). InitEM-HMM uses the language specific information together with good initial-
ization and it achieves 93.8% accuracy on the 1M word treebank corpus. LDA+AC semi-
supervised Bayesian model with strong ambiguity class component given the morpholog-
ical features of words and scores 93.4% on PTB (Toutanova and Johnson, 2007). CE+spl
is HMM model estimated by contrastive estimation method and achieves 88.7% accuracy

(Smith and Eisner, 2005). Finally, BHMM is a fully Bayesian approach that uses sparse
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POS priors and scores 87.3% (Goldwater and Griffiths, 2007a).

5.5 Experiment: Data-Enhanced Viterbi Search Algorithm

This method uses the statistical language model for generating artificial sentences to im-
prove the disambiguation of ambiguous words. The improvement results from the amended
Viterbi decoding algorithm described in Section 4.4.2. The steps of the data-enhanced

HMM-EM can be summarized as follows:

Algorithm

1. Select the substitute words of the ambiguous words in wy . . . w,,, using the Criteria 1,

2, or 3.
2. Construct r artificial sentences by replacing w; with the selected substitutes..

3. Finally, apply the Viterbi search algorithm to jointly predict the tag sequence of the

original and the artificial sequences.

The experiments in this section focus on: (1) substitute selection criteria and (2) the
number of the substitutes used for each ambiguous word.

The selected substitute words may not always have a common tag. If so, then the prob-
ability of the optimum tag sequence will be zero whenever a zero clique occurs, and the
Viterbi search algorithm will not be able to find an optimum tag sequence. To prevent zero
cliques in data-enhanced HMM-EM, we perform smoothing to assign non-zero probabil-
ities to every entry of the Pr(w|t) matrix. To solve this problem, we assign a very small
fraction € of the probability to the zero entries of the Pr(w/|¢) matrix. The remaining part of
the probability, namely (1 — €), is distributed among the non-zero entries of Pr(w|t) matrix

in proportion to their probabilities. Assigning negligible probabilities to the zero entries of
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the word given in the tag matrix is a smoothing operation that prevents the occurrence of

zero cliques in the Viterbi algorithm.

5.5.1 Substitute Selection Criteria

The main idea of our model is that similar sentences should have the same tag sequence.
Our method derives similar sentences from the target sentence by replacing each word
with its likely substitutes. In order to observe the effect of selected substitutes, we define
three different selection criteria: (1) select the words with at least one common tag, (2)
select the words whose tag set is a subset of the target word tag set, and (3) select only the
unambiguous words that have a common tag with the target word. The number of substitute

words is fixed to 25 for the experiments in this section.

12K |24K [48K |96K

Criterion 1 74.61|77.42(79.72|80.68
Criterion 2 75.17|77.42181.02|80.99
Criterion 3 76.38(80.00(81.55(81.61

Unsup. Baseline |72.18|74.38|77.43|78.75
Random Baseline |66.57|67.0367.07|66.99

Table 5.9: Results of our approach on different corpora with different settings. All the
results are statistically significant and the 25 best substitute words for each ambiguous

word are used in all the experiments.

As Table 5.9 shows, Criterion 3 (i.e. selecting the unambiguous words in the given
context) outperforms the other criteria on all of the corpora. The main problem with Cri-
terion 1 is that it accepts any word as long as that word has a common tag with the target

word, and some of these words have more tags than the target ambiguous word. Criterion 2
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performs better than Criterion 1 in almost all of the experiments. Thus, words with one tag
(unambiguous), or fewer tags than the replaced word, are better substitutes than the words

that have more tags than the replaced word.

5.5.2  Experiments on the Number of Substitutes

Number of Substitutes

Data | O 1 10 25 50
12K | 72.19 | 73.85 | 74.67 | 74.61 | 74.40
24K | 74.38 | 77.51 | 77.48 | 77.43 | 77.80
48K | 77.43 | 79.78 | 80.06 | 79.72 | 79.40

Table 5.10: Results of our approach on different corpora with different number of substi-
tute words per ambiguous word. Selection criterion 1 is used to obtain these results, and

accuracies are reported as percentages.

In this set of experiments, we vary the number of substitute words for each ambiguous
word in a given sentence. This directly affects the number of artificial sentences generated.
We run our method on the corpora PTB12K, PTB24K, and PTB48K with 1, 10, 25, and
50 substitute words per ambiguous word. Table 5.10 shows the results of our experiments.
The performance of our method does not change significantly as the number of substitutes

increases.

5.5.3  Out-of-Vocabulary (OOV) Words

To observe the performance of our model on OOV words, we tested the data-enhanced
Viterbi on a corpus that is different from the one used during the training of the model. The

test corpus thus includes some words that are not observed in training data.
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We do not perform any smoothing on the model parameter 6, that is, we do not assign
non-zero OOV word probabilities. Hence 6 does not contain any information related to
OOV words. The main disadvantage of smoothing is that it assigns the same tag distribution
to all OOV words. In our method, by replacing each OOV word in a sentence .S with the
most likely word that can be used in the same context, we get another sentence S’ that
consists only of in-vocabulary (IV) words. We repeat this step to construct more and more
artificial sentences like S’, and then proceed with the Viterbi algorithm.

We performed two experiments: (1) the possible tags of the OOV words are known,
and (2) the possible tags of the OOV words are unknown. In the first case, the selected
substitutes words and the OOV word have at least one common tag in the worst case. In the
latter case, this is not guaranteed since the possible tags are unknown. In these experiments,
we used the first PTB24K words of Penn Treebank as the training corpus and 5 random 12K
words corpora from the Penn Treebank as the test corpora. Since the model trained on the
PTB24K corpus has no information related to the OOV words, the Viterbi search algorithm
assigns zero to all OOV word with certain tag probabilities, and thus leads to the generation
of zero clique. The smoothing that we use assigns negligible probabilities to all zero entries
of P(word|tag). Therefore only the contextual information of hidden states is utilized in
assigning the correct tag of the OOV word. The baseline model is trained on the PTB24K
corpus. The performance of this model on the test corpus with OOV is summarized in Table
5.11 in the row labeled “Unsup. Baseline.”

When the possible tags of the OOV word are given, our method improves HMM-EM.
Its performance on both IV and OOV words is significantly better than the baseline score,
which implies that artificial sentences without OOV words successfully represent the hid-
den tag sequence of S and improve the algorithm performance. Even when possible tags
cannot be found for OOV word, our method still improves HMM-EM. While the improve-
ment resulting from this method is significantly higher compared to the baseline system, it

is significantly lower than in the previous case. The main reason for such a performance
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Accuracy(%) All words IV 0]0)%

With tags 74.91 7377 79.21
Without tags 66.36 72.53 40.06
Unsup. Baseline 57.5 66.57 18.84

Table 5.11: The performance of the data-enhanced Viterbi algorithm that uses the 25 most
likely unambiguous substitutes for each ambiguous word. All of the results are averaged
over 5 test corpora. The first two rows give the performance of the system with and without
the possible tags of the OOV words, and the last row gives the performance of the baseline

system. The average percentage of OOV words is 18.99%.

difference is that the most frequent words of SLM dominate the substitute word sets, and

cannot be eliminated because we do not have the possible tags for the OOV words.

5.6 Conclusion

In this chapter we present an application a dictionary reduction data enhancement method
that can be applied to HMM-based models. With the help of a SLM, our system created
artificial sentences that are assumed to have the same POS tag sequence with the target
sentence.

In dictionary reduction method, I use artificial sentences to reduce the size of the
word—tag dictionary. To test our method we used HMM-EM as the unsupervised model.
Our method significantly improves the prediction accuracy of the unsupervised first order
HMM-EM system in all of the POS groups and achieves 92.25% and 92.47% word tagging
accuracy on the 24K and 48K word corpora respectively. We also tested our model on a
coarse grained dictionary with 17 tags and achieved an accuracy of 92.8%.

In data enhanced Viterbi, I fed them to the model based approach to jointly predict the
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optimum tag sequence of the target and its artificial counterparts. To present our method we
used HMM-EM as the model based approach. Our method significantly improves the pre-
diction accuracies of the unsupervised HMM-EM system in all of the corpora and achieves
%?2.6 error accuracy gain in the worst case and %5.6 in the best case.

Finally, I also demonstrated the performance gain with data enhancement on OOV
words whether the possible tags of OOV words are available or not. In both cases our
method increases the accuracy of the baseline system substantially. Moreover the predic-
tion accuracy of OOV words are comparable to the accuracy of IV words when the possible
tags are available for the OOV word. Thus we concluded that our method successfully
generates artificial sentences without OOV words for a given sentence with OOV words.

In this chapter, I show that unambiguous replacements of an ambiguous word can re-
duce the amount of the ambiguity thus replacement words might also be incorporated into

the unsupervised disambiguation problems.

5.7 Future Work

In Section 4.4.1 and 4.4.2, the statistical language models (SLMs) have been used in an
ad-hoc manner to generate and use likely substitutes, or have been incorporated into a
probabilistic model to provide the Pr(word|context) term. These models assign the same
uniform weight to all likely substitutes, even though the language model ranks these sub-
stitutes with different probabilities.

Some ideas for future work as follows: We intend to use the statistical language model
for generating artificial data to expedite the disambiguation process during the expectation
maximization. Specifically, we assume that the same hidden tag sequence that has gener-
ated a particular test sentence can also generate artificial sentences where one of the words
has been replaced with a likely substitute. Thus, words that are observed frequently in the

context of an ambiguous target are incorporated into the disambiguation process. More-
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over, every substitute is weighted according to the probability estimate assigned to it by
the language model. As a result, the EM algorithm estimates the probabilities according to
not only the original observation sequences but also the artificial observation created and
weighted by the statistical language model.

By the very the nature of EM, the estimation process can converge to a local maximum,
which might decrease the accuracy of disambiguation. On the other hand, non-parametric
Bayesian approaches do not suffer from this convergence problem. Consequently, we in-
tend to replace EM with non-parametric Bayesian methods.

Finally, the quality of the likely replacements and the probabilities assigned to them
have a crucial role in the disambiguation process. We will conduct experiments to investi-

gate the effect of in-domain and out-of-domain corpora on the selection of replacements.
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Chapter 6

MORPHOLOGICAL DISAMBIGUATION

The terminology of morphological disambiguation can be applied to agglutinative lan-
guages as follows: In the latter, the equivalent of POS tagging is morphological disam-
biguation and the equivalent of the term fag is parse. The morphological disambiguation
problem can therefore be defined as selecting the correct parse of a word in a given con-
text from the possible candidate parses of the word. Our approach does not directly assign
any parses to the target word. Instead, it uses the target word to limit the set of possible
parses, and then assigns probabilities to these depending on the context. This approach has
been previously applied to the word-sense disambiguation problem where the aim was to
determine the sense of an ambiguous word in a given context (Pustejovsky et al., 2004).

The tags in English and the parses in an agglutinative language differ in a major respect.
Unlike the tags in English, the number of theoretically possible parses in agglutinative
languages can be infinite although the number of features is finite. Therefore, even in a
training corpus of 1 million words, it is possible to observe thousands of different possible
parses—a situation that leads to data sparseness. Finally, our model can be applied to any
agglutinative language since it does not require any hand-crafted rules and does not depend
on the knowledge of a native speaker.

To predict the correct parse of an ambiguous word, we proceed as follows: First, the
possible parses are generated using a morphological analyzer. Then, using the language
model together with the vocabulary of the corpus, a probabilistic model is applied to
each ambiguous word. The resulting disambiguation accuracy for the ambiguous words

is 64.5%, whereas 31.9% and 71.0% are the unsupervised and supervised baselines, re-



spectively.

Morphological disambiguation, an important step in a number of NLP tasks, is quite
crucial for agglutinative languages, such as Turkish, Finnish, Hungarian, and Czech. For
example, a morphological analyzer used in conjunction with a disambiguator can signifi-
cantly reduce the perplexity of a Turkish language model (Yuret and Bicici, 2009).

Three possible morphological parses for the Turkish word “masalr” are shown below.

The candidate parses are generated using a morphological analyzer. The first token of the

masal +Noun+A3sg+Pnon+Acc (= the story)

masal +Noun+A3sg+P3sg+Nom (= his story)

masa +Noun+A3sg+Pnon+Nom “DG+Adj+With (= with tables)

analyzer output is the root of the word while the rest is the parse of the word that consists
of features concatenated to each other either by a “+” or “~DG”. The first two lines output
by the analyzer for “masali” have the same root, masal (= story) but different parses, while
the last line has a different root masa (= table) and parse. Feature groups that are separated
by a derivation boundary (" DG) are called “inflection groups” (OflazerH et al., 2002). The
first feature following the root or a " DG represents the part-of-speech (POS) tag of the new
derived word. A morphological disambiguation system should pick the correct parse of the
word “masali”, given the context in which this word appears.

In this chapter, we present an application of the probabilistic voting model (described
in detail in Section 4.3) for the morphological disambiguation task of Turkish. The main
idea behind the model is that instead of assigning parses to words, it assigns parses to the
contexts of the words. The probability of the morphological analysis in a given context is
estimated by a language model that is trained on an unlabeled corpus. Therefore, the model
does not require any predefined rule set, and can be applied to any language as long as a
parse (tag) dictionary for each word and a corpus are available.
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The rest of this chapter is organized as follows: First, Section 6.1 reviews the related
work on morphological disambiguation. Section 6.2 specifies in detail the steps of the
probabilistic voting algorithm. Section 6.3 gives the details of the tag-parse dictionary
construction and a simplification procedure that jointly increase the chance of there being
shared parses between the entries of the dictionary. Section 6.4 summarizes our results on
morphological disambiguation for Turkish. Finally, Section 6.6 discusses the probabilistic

voting model and outlines the road map of future work.

6.1 Related Work

Several studies undertaken in the past decade have contributed to progress in the unsuper-
vised morphological disambiguation of morphologically rich languages .

In Hebrew, a context-free model was used to estimate the morpho-lexical probabilities
of a given word from an untagged corpus (Levinger et al., 1995). Like Turkish, Hebrew is a
morphologically rich language, and morphemes in Hebrew can combine into a single word
in both agglutinative and fusional ways. Thus a Hebrew word can have various segmenta-
tions and multiple morphological analyses. The method referred to above is very similar to
ours because both use substitute words to disambiguate the target word. Our method uses
one set of substitute words from the vocabulary while the other method explicitly uses a
predefined set of rules to select the set of similar words for each target word before disam-
biguation takes place. Another important difference is that this method does not use any
contextual information during the disambiguation task.

A more recent study has shown that morpheme-based segmentation and tagging in He-
brew can be learned simultaneously by using a stochastic unsupervised learning with HMM
(Adler and Elhadad, 2006). Their model first estimates the probabilities of each segmen-
tation and their possible tags by using a variation of the Baum-Welch algorithm. Then an

adaptation of the Viterbi algorithm is applied to get the most probable segmentation and
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tagging sequence.

6.2 Algorithm

Section 4.3 has described the mathematical framework of the model applied to the tag
disambiguation task when a word-tag dictionary is available. The probabilistic model of
Section 4.3 decomposes the problem into the estimation of Pr(¢|c) and Pr(¢|s, ¢), where ¢,
¢, and s represent the tag, the context, and the substitute words in c, respectively. Hence, we
estimate Pr(s|c) using a statistical language model. We make the following two assump-

tions when estimating Pr(¢|s, ¢).

1. Pruning Assumption: Every w has a possible tag set 7}, which is available from the
word-tag dictionary. Instead of assigning non-zero probabilities to all possible tags,
our model simply assumes that, in the context of w, the only possible tags are the ones

that are contained in 7},. Therefore, tags that are not in 7’, have zero probability.

2. Uniformity Assumption: We assume that, given a substitute word s and context c,

the distribution of the tags is uniform on 7;, N 7.

Pr(t|s,c) = mrm fteTunT, (6.1)
0 otherwise.

Another interpretation of this model is that each substitute word votes for the possible
tags of the target word. The weight of the vote of s is determined by Pr(s|c). If the
substitute and the target word have more than one common tag, then Pr(s|c) is equally
distributed among the common tags.

The algorithmic steps of the disambiguator are specified below. Throughout this sec-

tion, w; denotes the i word from the set of target words W, ¢; denotes the context of i
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target word, s;; denotes the 5t substitute of w;, S; denotes all substitutes of w;, and T}
denotes the set of possible tags of w;.

For all w; € W, we perform the following steps:
Algorithm

1. Calculate P(s;j|c;) for each substitute, using the estimation method described in

Chapter 2.

2. Determine the intersection of 7}, with each s;; € S; forall s € S,,. P(t|v;;) is equal

1
[T, (T

o]

to because of the uniformity assumption.

3. Select t € T; that maximizes P(t|c;).

6.3 Word-tag Dictionary Construction and Simplification

The estimation quality of P(t|c,) is highly dependent on the parse set 7, of the target
word. Using a Turkish morphological analyzer (OflazerH et al., 2002), we get the possible
parses of the target word and its substitutes, and construct the word-parse dictionary. The
analyzer produces the parses of each word as shown in the second column of Table 6.1.
Because of the agglutinative nature of Turkish, the parses are complex and it is hard to find

substitute words with common parses.

Original Parse Simplified Parse
masal +Noun+A3sg+Pnon+Acc Pnon+Acc
masal +Noun+A3sg+P3sg+Nom P3sg+Nom
masa +Noun+A3sg+Pnon+Nom ~DG+Adj+With With

Table 6.1: Parse simplification of the word “masali”.
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If the number of substitute words that have common parses with the target word is
small, then P(t|c,) will be estimated using very few substitute words. Thus, instead of
using the parses directly, we construct a discriminative minimal feature set 7 from T,
by using only the final inflection groups (IG) for each parse. To construct 7};, our model
selects the minimum number of rightmost features from each of the last IGs such that these
rightmost features uniquely discriminate the corresponding parse from the other parses in

T, Table 6.1 illustrates the simplifications of the parses of the word “masalr”.

6.4 Experiments and Results

Test Set Tagged Training Set
Sentences 446 50673
Tokens 5365 948404
Ambiguous tokens 2437(45.4%) 399223(42.1%)
Average Parses 1.85 1.76

Table 6.2: Test and Tagged Training Data Statistics

In this section, we present a number of experiments to observe the effects of the model
parameters on the algorithm performance. We define an unsupervised and a supervised
baseline on the test set to compare with the results of our method. The unsupervised base-
line is calculated by randomly picking one of the parses of each word in the test set. To
calculate a supervised baseline, we use a tagged training set consisting of 1 million words
of semi-automatically disambiguated Turkish news text. Some brief statistics relevant to
the tagged training set and the test set are presented in Table 6.2. Using the training set, the
supervised baseline simply does majority voting for each word. If the target word does not

exist in the training set, then the supervised baseline randomly picks one of the possible
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parses of the missing word. The unsupervised baseline disambiguates 31.9% of the am-
biguous words correctly, while the supervised baseline correctly disambiguates 71.0% of
them. All the accuracy scores reported in this section are only for ambiguous words. The
experiments in this section can be categorized as language model-related and substitute

word-related’'.

6.4.1 Language Model

The substitutes are calculated using a language model that is trained on the Turkish corpus
(Sak et al., 2008), as described in Section 2. The data set contains about 440 million words,
and 10% of this data is extracted and used as the test set to calculate the perplexity of the
language models. The SRILM toolkit is used to train the 4-gram model with Kneser-Ney
interpolated smoothing, n-gram orders, and training corpus sizes. The effect of the training

corpus size and the n-gram order on the model are discussed in the next section.

6.4.2 Corpus size

We used three corpora of different sizes to train the 4-gram language model and observe
the performance of our disambiguator. For our experiments, we randomly select 1% and
10% of the original training corpus described in Section 2. The performance of the disam-
biguator with different corpus sizes are summarized in Table 6.3.

As Table 6.3 shows, the performance worsens as the corpus size decreases. However,
using as little as10% of the corpus, our disambiguator can still achieve results comparable to
the model using the whole corpus (in terms of 95% confidence interval). This is not the case
when we use only 1% of the corpus, since in this case the loss of performance compared

to the model using the whole corpus becomes statistically significant. These experiments

IFor the sake of simplicity, all the reported results in this section are obtained (unless otherwise stated) by
using the most frequent 200K words of the vocabulary.
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Corpus Size | Accuracy

4M 60.4
40M 63.1
400M 64.5

Table 6.3: The performance of the model using the parse simplification together with dif-

ferent corpus sizes. Statistically significant results are displayed in bold (p < 0.05).

indicate that the performance may be improved by using larger Turkish corpora.

We used the Good-Turing and the Kneser-Ney smoothing technique