
Linguistic Category Induction and Tagging Using the

Paradigmatic Context Representations with Substitute Words

by

Mehmet Ali Yatbaz

Dissertation submitted to the

Department of Computer Engineering

for fulfillment of the requirements for the degree of

Doctor of Philosophy

at

Koç University

Thesis Supervisor: Deniz Yuret

February, 2014

Koç University

Graduate School of Sciences and Engineering

This is to certify that I have examined this copy of a doctoral dissertation by

Mehmet Ali Yatbaz

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Thesis Committee:

Assoc. Prof. Deniz Yuret

Asst. Prof. T. Metin Sezgin

Assoc. Prof. S. Serdar Kozat

Asst. Prof. Gülşen Cebiroğlu Eryiğit

Prof. Aylin Küntay

Date:

ABSTRACT

This thesis introduces a new paradigmatic representation of word contexts. Paradig-

matic representations of word context are constructed from the potential substitutes of a

word, in contrast to syntagmatic representations, which are constructed from the properties

of neighboring words. The potential substitutes are calculated by using a statistical lan-

guage model that is trained on raw text without any annotation or supervision. Thus, each

context is represented as a distribution of substitute words. This thesis introduces models

with different properties that can incorporate the new paradigmatic representation, and dis-

cusses the applications of these models to the tagging task in natural language processing

(NLP).

In a standard NLP tagging task, the goal is to build a model in which the input is a

sequence of observed words, and the output, depending on the level of supervision, is a

sequence of cluster-ids or predefined tags. We define 5 different models with different

properties and supervision requirements. The first model ignores the identity of the word,

and clusters the substitute distributions without requiring supervision at any level. The

second model represents the co-occurrences of words with their substitute words, and thus

incorporates the word identity and context information at the same time. To construct the

co-occurrence representation, this model discretizes the substitute distribution. The third

model uses probabilistic voting to estimate the distribution of tags in a given context. Unlike

the first and second models, this model requires the availability of a word-tag dictionary

which can provide all possible tags of each given word. The fourth model proposes two

extensions to the standard HMM-based tagging models in which both the word identity

iii

and the dependence between consecutive tags are taken into consideration. The last one

introduces a generative probabilistic model, the noisy channel model, for the taggin tasks

in which the word-tag frequencies are available. In this model, each context C is modeled

as a distinct channel through which the speaker intends to transmit a particular tag T using

a possibly ambiguous word W . To reconstruct the intended message (T), the hearer uses

the distribution of possible tags in the given context Pr(T |C) and the possible words that

can express each tag Pr(W |T).

The models are applied and analyzed on NLP tagging tasks with different character-

istics. The first two models are tested on unsupervised part-of-speech (POS) induction in

which the objective is to cluster syntactically similar words into the same group. The prob-

abilistic voting model is tested on the morphological disambiguation of Turkish, with the

objective of disambiguating the correct morphological parse of a word, given the available

parses. The HMM-based model is applied to the part-of-speech tagging of English, with

the objective of determining the correct POS tag of a word, given the available tags. Finally,

the last model is tested on the word-sense disambiguation of English, with the objective of

determining the correct sense of a word, given the word-sense frequencies.

ÖZETÇE

Bu tez kelime bağlamlarını temsil etmek için yeni bir düşey bağıntı tanımlamaktadır.

Bir kelimenin düşey bağıntısı kelimenin bağlamında değiştirim sonucu onun yerine gelebilen

olası kelimelerin oluşturduğu bağıntıdır. Öte yandan yatay bağıntı bir kelimenin öncesindeki

ya da sonrasındaki kelimeler arasında kurulan bağıntıdır. Bir kelimenin yerini alabile-

cek olası kelimeler işlenmemiş veri üzerinde eğitilmiş bir istatistiksel dil modeli ile hesa-

planmaktadır. Sonuç olarak kelime bağlamları, o bağlamda görülebilecek olası kelime

dağılımları ile temsil edilmektedir. Bu tez bahsi geçen yeni düşey bağıntıyı kullanabilen

farklı doğal dil işleme modelleri tanımlamakta ve bu modellerin doğal dil işlemede kul-

lanılan farklı dizisel etiketleme problemleri üzerindeki uygulamalarını göstermektedir.

Doğal dil işleme problemlerindeki dizisel etiketlemenin temel amacı verilen bir ke-

lime dizisine birebir denk gelen dizisel etiketileri bulamaktadır. Bu nedenle modeller girdi

olarak kelime dizisi almakta ve çıktı olarak her kelimeye bir etiket gelecek şekilde bir etiket

dizisi vermektedir. Öğreticisiz modellerde çıktı dizisi her kelimeye ait küme isimleri iken

öğreticili modellerde çıktı dizisi her kelimeye ait önceden tanımlanmış etiketlerdir. Bu

tezde 5 farklı model tanımlanmaktadır. İlk model öğreticisiz bir modeldir ve olası ke-

lime dağılımlarını kullanarak kelimeleri kümelemeyi amaçlamaktadır. İkinci model ver-

ilen bir kelime ile o kelimeye ait olası kelimelerin birlikte görülme sıklıklarını modelliyen

öğreticisiz bir modeldir. Üçünci model kelimenin yerini alabilecek kelimeleri kullanarak

olasılıksal oylama yapan bir modeldir. Bu model ilk iki modelin aksine, her kelimenin

olası etiketlerine ihtiyaç duyan öğreticili bir modeldir. Dördüncü model dizisel etiketleme

probleminde sıklıkla kullanılan saklı Markof modelleriyle birlikte kullanılabilen 2 yöntem

v

önermektedir. Bir önceki model gibi bu model de her kelimeye ait olası etiketlere ihtiyaç

duyar. Tezdeki son model gürültülü kanal modelidir ve bu model gürültülü kanal ve alınan

mesajı kullanarak esas gönderilmek istenen mesajı bulmayı amaçlar. Bu modelde her

bağlam bir kanal, her kelime alınan mesaj ve kelimeye ait etiket ise gönderilmek istenen

esas mesajdır.

Tezin son kısmında yukarıda bahsi geçen modeller farklı özelliklerdeki etikeleme prob-

lemlerine uygulanmıştır. İlk iki model öğreticisiz sözcük türü bulma problemine uygulanmıştır.

Olasılıksal oylama modeli ise Türkçe ekbiçim belirsizliği giderme problemi üzerinde denenmiştir.

Saklı Markof modeline dayanan yöntemler ise öğreticili sözcük türü bulma problemine

uygulanmıştır. Son olarak gürültülü kanal modeli kelime anlam belirsizliği giderme prob-

lemi üzerinde denenmiştir.

ACKNOWLEDGMENTS

I would like to thank to Leyla Yatbaz, Naci Yatbaz and my advisor, Deniz Yuret. I’am

fortunate enough to have these three people in my life. Not a single sentence, paragraph,

thesis or life-time can express my feelings about them.

I would like to thank to Mustafa Arif Karaman and Demet Çek for bringing joy and

their support into my life.

I would like to thank T. Metin Sezgin, S. Serdar Kozat, Gülşen Cebiroğlu Eryiğit and

Aylin Küntay for being in my thesis defense committee and for their constructive com-

ments.

Finally, I would like to thank all of my family members and friends for supporting me.

vii

TABLE OF CONTENTS

List of Figures 5

List of Tables 7

Chapter 1: Introduction 11

1.1 Relationships Between Linguistic Units 12

1.2 Scope . 14

1.3 Overview . 15

1.4 Contribution . 17

Chapter 2: Calculating Substitute Distributions 19

2.1 Statistical Language Modeling . 19

2.2 Language Model Quality . 20

2.3 The Substitute Distribution of a Word Context 21

2.4 Sampling from a Substitute distribution 22

Chapter 3: Representing Word Context 24

3.1 Syntagmatic Representation . 24

3.2 HMM . 26

3.3 Paradigmatic Representation . 27

Chapter 4: Models 29

4.1 Model 1: Clustering of the Substitute Distributions 32

1

4.2 Model 2: Co-occurrence Modeling . 33

4.2.1 Co-occurrence Data . 35

4.2.2 The CODE Model . 37

4.2.3 Clustering Embeddings . 39

4.3 Model 3: Probabilistic Voting Model . 40

4.4 Model 4: Constraining HMM-Based Models 42

4.4.1 Method 1: Dictionary Reduction 45

4.4.2 Method 2: Data Enhanced Viterbi Search Algorithm 46

4.5 Model 5: Noisy Channel Model . 48

4.6 Conclusion . 50

Chapter 5: Part of Speech Disambiguation 52

5.1 Related Work . 53

5.2 Experimental Settings . 55

5.2.1 Language Model . 55

5.2.2 Dataset . 55

5.3 Baseline . 56

5.4 Experiment: Dictionary Reduction . 58

5.4.1 Number of Substitutes . 61

5.4.2 Amount of Data . 61

5.4.3 17-Tag Set . 63

5.5 Experiment: Data-Enhanced Viterbi Search Algorithm 64

5.5.1 Substitute Selection Criteria . 65

5.5.2 Experiments on the Number of Substitutes 66

5.5.3 Out-of-Vocabulary (OOV) Words 66

5.6 Conclusion . 68

5.7 Future Work . 69

2

Chapter 6: Morphological Disambiguation 71

6.1 Related Work . 73

6.2 Algorithm . 74

6.3 Word-tag Dictionary Construction and Simplification 75

6.4 Experiments and Results . 76

6.4.1 Language Model . 77

6.4.2 Corpus size . 77

6.4.3 Number of Substitute Words . 78

6.5 Conclusion . 79

6.6 Future Work on Morphological Disambiguation 79

Chapter 7: Word-Sense Disambiguation 80

7.1 Related Work . 81

7.2 Algorithm . 82

7.3 Estimation Procedure . 84

7.4 Semantic Classes . 85

7.5 Three Experiments . 88

7.5.1 First experiment: the 25 WordNet categories 89

7.5.2 Second experiment: distinguishing mental and physical concepts . . 91

7.5.3 Third experiment: tuning the number of classes 93

7.6 Conclusion . 95

7.7 Future Work . 96

Chapter 8: Part of Speech Induction 97

8.1 Related Work . 99

8.1.1 Distributional models . 100

8.1.2 Word-feature models . 102

3

8.1.3 Paradigmatic representations . 103

8.2 Evaluation . 103

8.3 Tag Perplexity . 104

8.4 Experiments: Substitute Distribution Clustering 105

8.4.1 Experimental Settings . 106

8.4.2 Distance Metrics . 106

8.4.3 Dimensionality Reduction . 107

8.4.4 Clustering . 109

8.4.5 Word-base Clustering . 111

8.4.6 Substitute Vector Clustering on the PTB 112

8.4.7 Discussion . 112

8.5 Experiments: Co-occurrence Modeling . 114

8.5.1 Experimental Settings . 115

8.5.2 Word-based System . 116

8.5.3 Paradigmatic vs Syntagmatic Representations of Word Context . . . 119

8.5.4 Morphological and Orthographic Features 120

8.5.5 Instance-based System . 123

8.5.6 Word vs. Instance-Based Induction 124

8.5.7 Multilingual Experiments . 126

8.5.8 Discussion . 130

8.6 Conclusion . 134

Chapter 9: Conclusion 136

4

LIST OF FIGURES

1.1 Syntagmatic vs. paradigmatic axes for words in a simple sentence (Chan-

dler, 2007). 13

3.1 A bi-gram HMM-based context of an example sentence. 26

4.1 The table on the left is the sample input co-occurrence data, and the fig-

ure on the right is the final embeddings of the words and substitutes that

are observed in this sample co-occurrence data after embedding algorithm

converges. To distinguish between the target words and substitute words,

we use the prefix W: and S:, respectively. 34

4.2 Graphical structure of a standard second-order HMM tagger on an example

4-word sequence. 42

4.3 Graphical structure of a standard second-order HMM tagger (top) and data-

enhanced HMM tagger (bottom) on a 4 word sentence. Red circles repre-

sent the substitute in an artificial sentence while the blue ones represent the

original words. 51

7.1 Upper bound on fine-grained accuracy for a given number of semantic classes 87

7.2 The top of the WordNet noun hypernym hierarchy for version 1.7 (left) and

version 2.1 (right). The 25 WordNet noun categories are shaded. 90

7.3 The fine-grained accuracy on Senseval2 dataset for a given number of se-

mantic classes . 94

8.1 Illustration of the low and high homogeneity and completeness scores. . . . 104

5

8.2 Supervised baseline scores with different distance metrics. Log-metric in-

dicates that the metric is applied to the log of the probability vectors. 108

8.3 Supervised knn baselines for the four dimensionality reduction algorithms. . 109

8.4 Many-to-one score for three clustering algorithms on the 45-tag PTB24K

word corpus. 110

8.5 Hinton diagram of the most frequent tags (rows) and clusters (columns).

Area of each square is proportional to the joint probability of the given tag

and cluster. 113

8.6 Sensitivity of instance-based POS induction performance on the PTB to (a)

the number of sampled substitutes, (b) the number of embedding dimen-

sions, (c) the constant approximation to the normalization constant Z̃. . . . 118

8.7 Sensitivity of instance-based POS induction performance on the PTB to (a)

the number of sampled substitutes, (b) the number of embedding dimen-

sions, (c) the constant approximation to the normalization constant Z̃. . . . 124

8.8 Regression lines for the word- and instance-based models on the MTO ac-

curacy vs GP plot for the PTB. 125

8.9 Each row corresponds to a gold tag, and each column is an induced tag in

the Hinton diagram above. The area of each square is proportional to the

joint probability of the given tag and cluster. 130

8.10 Each row corresponds to a gold tag, and each column is an induced tag in

the Hinton diagram above. The area of each square is proportional to the

joint probability of the given tag and cluster. 133

6

LIST OF TABLES

2.1 The substitute word distributions (with probabilities in parentheses) for

some of the positions in the example sentence “Pierre Vinken, 61 years

old, will join the board as a nonexecutive director Nov. 29.” according to a

4-gram language model. 19

4.1 The word-tag dictionary entries and distributions of the words of and a in

the PTB corpus for POS tagging. 31

4.2 The table on the left shows three possible substitutes sampled with replace-

ment for each position in an example sentence based on a 4-gram language

model. The table on the right is the pairwise co-occurrence data fed to S-

CODE derived from these samples. The prefixes “W:” and “S:” are used to

distinguish target words and substitutes. 36

4.3 Sample artificial sentences generated for a test sentence from the Penn

Treebank. 44

5.1 Tagging accuracy on a PTB24K-word corpus. All the systems—except

(Goldwater and Griffiths, 2007a)—use the same 45-tag dictionary that is

constructed from the Penn Treebank. 54

5.2 Group names, members, number, and percentage of words according to

their gold POS tags. 56

5.3 Percentages of words tagged correctly by different models using the stan-

dard dictionary. 57

5.4 Deleted POS tags of the given words are shown in bold. 59

7

5.5 Percentages of correctly tagged words by different models with the modi-

fied dictionary. The dictionary size is reduced by using the top 5 substitutes

of each target word. 60

5.6 Percentages of correctly tagged words by the models trained on the PTB24K

corpus with different reduced dictionaries. The dictionary size is reduced

by using different number substitutes. 61

5.7 Percentages of the correctly tagged words by the first and second order

HMM-EM model trained on the 48K corpus with reduced dictionary. The

dictionary size is reduced by using the top 5 replacements of each target

word. 62

5.8 Performance of different systems using the coarse grained dictionary. . . . 63

5.9 Results of our approach on different corpora with different settings. All the

results are statistically significant and the 25 best substitute words for each

ambiguous word are used in all the experiments. 65

5.10 Results of our approach on different corpora with different number of sub-

stitute words per ambiguous word. Selection criterion 1 is used to obtain

these results, and accuracies are reported as percentages. 66

5.11 The performance of the data-enhanced Viterbi algorithm that uses the 25

most likely unambiguous substitutes for each ambiguous word. All of the

results are averaged over 5 test corpora. The first two rows give the perfor-

mance of the system with and without the possible tags of the OOV words,

and the last row gives the performance of the baseline system. The average

percentage of OOV words is 18.99%. 68

6.1 Parse simplification of the word “masalı”. 75

6.2 Test and Tagged Training Data Statistics 76

8

6.3 The performance of the model using the parse simplification together with

different corpus sizes. Statistically significant results are displayed in bold

(p < 0.05). 78

6.4 The performance of the model with different number of substitutes. Statis-

tically significant results are displayed in bold (p < 0.05). 78

7.1 Baselines for the three SensEval English all-words tasks; the WordNet ver-

sion used; number of noun instances; percentage accuracy of the first sense

baseline, the top three supervised systems, and the best unsupervised sys-

tem. The last row gives the total score of the best systems on the three

tasks. 89

7.2 The performance of the noisy channel model with the 25 semantic classes

found in WordNet lexicographer files. The columns give the dataset, the

percentage of times the model picks the correct semantic class, maximum

possible fine-grained score if the model had always picked the correct class,

and the actual score. 91

7.3 Confusion matrix for Senseval2 data with the 25 WordNet noun classes.

The rows are actual classes and the columns are predicted classes. Column

names have been abbreviated to save space. The last two columns give the

frequency of the class (F) and the accuracy of the class (A). 92

7.4 The performance of the noisy channel model with two to three semantic

classes. The columns give the dataset, the head synsets, the percentage of

times the model picks the correct semantic class, maximum possible fine-

grained score if the model had always picked the correct class, and the

actual score. 93

9

8.1 Similarity metrics. JS is the Jensen-Shannon divergence, and KL2 is a sym-

metric implementation of Kullback-Leibler divergence. Bold lower case

letters represent vectors. 107

8.2 Summary of results in terms of the MTO and VM scores. Standard er-

rors, when available, are given in parentheses. Starred entries have been

reported in the review paper (Christodoulopoulos et al., 2010). Distribu-

tional models use only the identity of the target word and its context. The

models with features incorporate orthographic and morphological features.

Instance-based models and the significantly best results are shown in bold. . 117

8.3 Summary of results in terms of the MTO and VM scores of the S-CODE

algorithm when paradigmatic or syntagmatic representations are fed as in-

put. Standard errors, when available, are given in parentheses. Results

of the statistically best performing system are displayed in bold. We do

not report the original results of Maron et al. (2010) since our replication

achieves higher accuracies. 120

8.4 The words of input sentence “Pierre Vinken, 61 years old, will join the

board as a nonexecutive director Nov. 29 .” is represented with their sub-

stitutes and features. Words in the left column represent the target word,

words in the second column represent the context, and tokens in the re-

maining columns are the features of the correponding target word. Features

without values are unobserved, and are therefore set to null. 122

8.6 The MTO and VM scores on 19 corpora in 15 languages together with

number of induced clusters. Statistically significant results shown in bold

(p < 0.05). MULTEXT-East corpora do not tag the punctuation marks,

thus we add an extra tag for punctuation and represent it with “+1”. 128

8.5 Language model corpos and test corpus statistics are presented. 135

10

Chapter 1

INTRODUCTION

The amount of online raw (unstructured) text is rapidly increasing as a result of exten-

sive usage and coverage of the Internet. We will propose an unsupervised learning frame-

work for NLP tagging tasks1, which, under some constraints, will allow us to incorporate

vast amounts of raw data into the learning phase by means of a paradigmatic representation

and a statistical language model.

Natural language problems such as word-sense disambiguation, part-of-speech (POS)

induction, POS tagging, morphological disambiguation, or named-entity recognition have

three common properties: (1) there exists an observed word sequence, (2) a hidden tag

sequence is paired with that observed text, and (3) the objective is to determine the hid-

den tag sequence values that match the given observation. Therefore, we group the NLP

problems with these three properties under a general framework which is called the tagging

task. Thus any problem with the above-mentioned structure can be reduced to this general

framework and solved by the procedures that will be described in the thesis.

Supervised methods in the NLP literature require both the input word sequence and

corresponding tag sequence for training. However, it takes far more effort to manually

annotate or organize this vast amount of data by expert human annotators than to directly

use the data. The main drawback of the supervised approach is the difficulty of acquiring

sufficiently large amounts of training data, also known as the knowledge acquisition bot-

tleneck. For example, Yarkowsky and Florian (2002) report that each successive doubling

1These tasks are also known as disambiguation or induction tasks depending on the availability of the
tagged corpus.

of the training data for word-sense disambiguation problem, i.e. selecting the correct sense

of a word from the possible senses, leads to only a 3–4% error reduction within their ex-

perimental range. Banko and Brill (2001) experiment with the problem of selection among

confusable words, and show that the learning curves do not converge even after a billion

words of training data. They suggest active-learning, unsupervised learning or lower levels

of supervision to take advantage of large datasets when labeling is expensive. Yuret (2004)

observes that in a supervised Naive Bayes WSD system trained on SemCor, approximately

half of the test instances do not contain any of the contextual features (e.g. neighboring

content words or local collocation patterns) observed in the training data. SemCor is the

largest publicly available corpus of sense-tagged text, and has only about a quarter million

sense-tagged words, while the largest English raw text data available has about 1012 words.

Moreover, not all of the languages have the variety of tagged resources that English

has. For example, the largest available corpus of Turkish morphological disambiguation

problem, i.e. selecting the correct affix parse of a word, is a corpus of 1 million semi-

automatically tagged words, and because of the semi-automatic tagging this training cor-

pus itself has inconsistencies (Hakkani-Tür et al., 2002). On the other hand, the largest

untagged Turkish web corpus consists of 440 million Turkish words derived from a variety

of domains (Sak et al., 2008), while the supervised corpus contains 1 million words from a

specific news domain.

1.1 Relationships Between Linguistic Units

Relationships between linguistic units can be classified into two types: syntagmatic (con-

cerning positioning), and paradigmatic (concerning substitution). Syntagmatic relations

determine which units can combine to create larger groups and paradigmatic relations deter-

mine which units can be substituted for one another. Figure 1.1 illustrates the paradigmatic

vs syntagmatic axes for words in a simple sentence and their possible substitutes.

12

Figure 1.1: Syntagmatic vs. paradigmatic axes for words in a simple sentence (Chandler,

2007).

In this thesis, we represent the paradigmatic axis directly by building substitute distri-

butions for each word position in the text using an n-gram statistical language model. The

domain of a substitute distribution represent words in the vocabulary, and the magnitudes

represent the probability of occurrence in the given position. Note that the substitute dis-

tribution for a word position (e.g. the second word in Fig. 1.1) is a function of the context

only (i.e. “the cried”), and does not depend on the word that does actually appear there

(i.e. “man”) given the context. Thus substitute vectors represent individual word contexts,

not word types. We refer to the use of features based on substitute distributions as paradig-

matic representations of word context and the use of features based on neighboring words

as syntagmatic representation of word context.

The two examples below illustrate the advantages of the paradigmatic representation

in uncovering similarities where no overt similarity that can be captured by a syntagmatic

representation exists. The word director from the first sentence and the word chief from the

second one have no common neighbors in their 4-gram neighborhood. The paradigmatic

representation captures the similarity of these words by suggesting the same top substitutes

for both (the numbers in parentheses give substitute probabilities):

13

(1) “Pierre Vinken, 61 years old, will join the board as a nonexecutive director

Nov. 29.”

director: chairman (.8242), director (.0127), directors (.0127) . . .

(2) “. . . Joseph Corr was succeeded by Frank Lorenzo , chief of parent Texas

Air .”

chief: chairman (.09945), president (.0031), directors (.0012) . . .

The high probability substitutes reflect both semantic and syntactic properties of the

context. Top substitutes for “director” and “chief” are not only nouns, but specifically

nouns compatible with the semantic context. Top substitutes for the word “the” in the first

example consist of words that can act as determiners: its (.9011), the (.0981), a (.0006),

1.2 Scope

The goal of this thesis is to incorporate paradigmatic context representations, constructed by

using the raw text, into the natural language processing (NLP) tagging tasks such as word-

sense disambiguation, part-of-speech tagging, morphological disambiguation, and part-of-

speech induction. We assume that words in a similar context have similar properties, and

are hence interchangeable without affecting the meaning or the structure of the original

sentences. We use a statistical language model (SLM) to construct substitute distribution

in a given context, and use these distributions to improve the accuracy of tagging tasks. In

order to observe the effectiveness of our framework on special cases of the tagging tasks,

we conducted experiments on certain well known NLP problems, as follows:

1. Word-sense disambiguation of English: The senses of the substitute words are used

to determine the correct sense of the target ambiguous word. Substitute words can be

used to determine the natural clustering of the word senses.

14

2. Part-of-speech tagging: The correct POS tag of the target word is determined using

the likely substitutes. Alternatively, substitute words are used to prune the word-

tag dictionary. This implicitly decreases the ambiguity level of the dictionary, and

therefore improves the estimation quality of the probabilistic models in certain cases,

such as expectation maximization.

3. Morphological disambiguation: The correct morphological parse of the target word

is determined using the likely substitutes. This problem is a more complex version

of the English POS tagging problem because the number of unique tags are much

higher then the tags in a typical English corpus (Yuret and Ture, 2006). This high

number of tags causes data sparseness.

4. Part-of-speech induction: In contrast to part-of-speech tagging and morphological

disambiguation, this problem induces word categories without using any tagged data.

It clusters words according to their contexts, and the number of clusters can be set to

any arbitrary number or determined by the data itself.

1.3 Overview

This thesis presents a framework that enables the usage of raw text together with a statistical

language model to improve the performance of tagging tasks. We will define the basics

of the tagging tasks, and present concrete results of this framework on some well-known

tagging tasks. These problems are presented in respective chapters, together with the review

of the relevant literature, as follows:

Chapter 2 explains the usage of the raw text together with a statistical language model.

It presents the algorithm to output the likely substitutes of a target word in a context with the

help of a statistical language model constructed from the raw text data. This replacement

algorithm plays the central role in the methods proposed in the following chapters.

15

Chapter 3 defines the different types of contexts and reviews the literature of context

representations.

Chapter 4 introduces 4 tagging models that can incorporate substitute distributions. This

chapter details the assumptions, weaknesses, strengths and required level of supervision of

each model. The rest of the thesis presents selected applications of the models that are

defined in this chapter.

Chapter 5 defines the part-of-speech (POS) disambiguation problem and introduces sev-

eral applications of the substitute words in POS disambiguation problem.

Chapter 6 defines the morphological disambiguation problem and introduces an appli-

cation of the substitute words in the morphological disambiguation problem.

Chapter 7 defines the word-sense disambiguation (WSD) problem and introduces the

noisy channel model that determines the correct sense of an English word in a given context

with the help of substitute words.

Chapter 8 formulates the unsupervised POS induction problem, reviews the literature,

and describes a POS induction system that models the co-occurrence of words and their

substitutes to construct word or word-instance clusters.

16

1.4 Contribution

This thesis introduces a new context representation by using the substitute word distribu-

tions that are calculated according to a statistical language model and presents the possible

ways of incorporating these distributions into the well known NLP tagging tasks. This the-

sis makes the following research contributions:

Representation

• It introduces a new paradigmatic context representation by using the substitute words.

This new representation enables the integration of unlabeled raw text into the NLP

tagging tasks.

• The substitute distributions are constructed by using an n-gram statistical language

model. Compared to syntagmatic representations they do not suffer as much from

the data sparsity as the context size, n, becomes larger.

• Calculation of substitute distributions does not require any tagged corpus therefore

can be applied to any language.

• Unlike syntagmatic representations it can capture the semantic or syntactic similarity

between word-instances even when they appear in totally different contexts.

• Substitute distribution reflects both semantic and syntactic properties of the context.

Therefore, it can be used both with semantic and syntagmatic tagging tasks.

Models and Applications

• I introduce a clustering model that can construct both word-based and instance-based

clusters of substitute distributions. The model is tested and analyzed on the unsuper-

vised part-of-speech induction task of English.

17

• I demonstrate that representing contexts with paradigmatic representations and mod-

eling co-occurrences of word and context types give superior results in unsupervised

part-of-speech induction task when compared to its syntagmatic counterpart.

• I extend the co-occurrence modeling framework to incorporate morphological and

orthographic features and test the co-occurrence model with features on unsupervised

part-of-speech induction task of 15 languages.

• I introduce an instance based POS induction system that can handle ambiguous words

and is competitive with the word-based systems in overall accuracy.

• I present a probabilistic voting model that estimates the tag distribution of a specific

context by using the corresponding substitute distribution. This model is tested and

analyzed on the Turkish morphological disambiguation task.

• I introduce two methods that create artificial sentences using the substitute distribu-

tions and incorporate them into the HMM based probabilistic tagging models. Both

of the methods are tested and analyzed on the part-of-speech disambiguation task of

English.

• I introduce a noisy channel model that is a probabilistic generative model and seam-

lessly integrates substitute distributions into the model building process. The model

is tested and analyzed on the word-sense disambiguation task of English.

18

Chapter 2

CALCULATING SUBSTITUTE DISTRIBUTIONS

In this thesis, we represent the paradigmatic axis directly by building the substitute

distribution for each word position in the text. Note that the substitute distribution is a

function of the context only and is conditionally independent of the target word in a given

context. Substitute distributions represent individual word contexts, not words. Table 2.1

shows the most likely substitutes of words in a sample sentence calculated with a 4-gram

language model. This chapter provides the details of calculating the substitute distribution

of a given context.

will: will (0.9985), would (0.0007), to (0.0006), also (0.0001), . . .

join: join (0.6528), leave (0.2140), oversee (0.0559), head (0.0262), rejoin (0.0074), . . .

the: its (0.9011), the (0.0981), a (0.0006), . . .

board: board (0.4288), company (0.2584), firm (0.2024), bank (0.0731), strike (0.0030), . . .

Table 2.1: The substitute word distributions (with probabilities in parentheses) for some of

the positions in the example sentence “Pierre Vinken, 61 years old, will join the board as a

nonexecutive director Nov. 29.” according to a 4-gram language model.

2.1 Statistical Language Modeling

A statistical language model (SLM) is a probability distribution over a set of strings where

the probability of each string is estimated by using a large amount of raw text of the target

language. The estimation procedure for a given string can become cumbersome since (1)

not all strings are observed in the raw text and (2) the strings can be arbitrarily long. Thus,

the probability of a given string S = w1w2w3, . . . , wm that maximizes the likelihood can

be approximated by

P (S) =
m∏
i=1

P (wi|wi−1, . . . , w1) (2.1)

∝
m∏
i=1

P (wi|wi−1, . . . , wi−n+1) (2.2)

∝
m∏
i=1

C(wi, wi−1, . . . , wi−n+1)

C(wi−1, . . . , wi−n+1)
(2.3)

where n − 1 is the number of words that the target word is conditioned by, and C(S)

is the frequency of the string S in the corpus. Eq. 2.2 can be derived from Eq. 2.1 by the

Markov assumption (i.e., each word depends only on the previous n−1 words). Eq. 2.2 can

be estimated by various smoothing techniques, whose detailed analysis together with the

review of SLM, can be found in (Chen and Goodman, 1999; Rosenfeld, 2000; Goodman,

2001). Eq. 2.3 presents the maximum-likelihood estimation of Eq 2.2.

2.2 Language Model Quality

In this thesis the quality of a language model is measured by perplexity, which is defined to

be the geometric average of inverse probabilities of the words in the test corpus (T), and is

explicitly formulated as

perplexity(T) =

(
N∏
i=1

1

P (wi|wi−1, . . . , wi−n+1)

) 1
n

(2.4)

where wi represents the ith word and N is the total number of words in T . Each word in

Equation 2.4 depends on the previous n − 1 words, where n is the n-gram order of the

language model.

20

The log2 of perplexity is entropy which is simply the average number of bits per word

required to encode the test corpus. Thus the least ambiguous language model1 on a given

test corpus will have the lowest entropy and perplexity. Perplexity calculations do not

require any annotated corpus or supervision; therefore, one can tune the parameters of a

language model for a development corpus with the help of Eq.2.4.

2.3 The Substitute Distribution of a Word Context

It is best to use both the left and the right context when estimating the probabilities for

potential lexical substitutes. For example, in “He lived in San Francisco suburbs.”, the

token San would be difficult to guess from the left context but it is ascertained easily from

the right context. We define c as the (2n−1)-word window centered on the target word, w0,

position: w−n+1 . . . w0 . . . wn−1. The probability of a substitute word w in a given context

c can be estimated as:

P (w0 = w|cw) ∝ P (w−n+1 . . . w0 . . . wn−1) (2.5)

= P (w−n+1)P (w−n+2|w−n+1) . . . P (wn−1|wn−2
−n+1) (2.6)

≈ P (w0|w−1−n+1)P (w1|w0
−n+2) . . . P (wn−1|wn−2

0) (2.7)

where wj
i represents the sequence of words wiwi+1 . . . wj . In Equation 2.5, P (w|cw) is pro-

portional to P (w−n+1 . . . w0 . . . wn−1) because the words of the context are fixed. Since in

Equation 2.6 the terms without w0 are identical for each substitute, they have been dropped

in Equation 2.7. Finally, because of the Markov property of n-gram language models, only

the closest n− 1 words are used in the experiments.

Certain terms near sentence boundaries were truncated in Equation 2.7. Specifically,

shorter n-gram contexts were used at the beginning of the sentence, and the tokens beyond

the end-of-sentence were dropped.

1Goodman (2001) refers to the least ambiguous model as the True model.

21

Estimating substitute words for each context is expensive due to the large number of vo-

cabulary words that need to be considered as substitutes. For example, the Web 1T dataset

(Brants and Franz, 2006a) contains 13.5 million unique words, and thus has 13.5 million

candidate substitutes for every context. In order to keep computations feasible, we limit the

set of candidate substitute words by replacing low-frequency vocabulary words with the

unknown-word tag, <unk> . Moreover, most of the time, 90% of the total probability is

distributed among the top 100 substitutes of a target word. To calculate the most likely k

substitutes of a context c, a naive substitute algorithm would need to calculate Pr(w|c) for

all w in the vocabulary. To take advantage of the skewed distribution structure of substitute

words, we use the FASTSUBS algorithm (Yuret, 2012) which calculates Pr(w|c) for only

the most likely candidates in c instead of for all of the words in the vocabulary. Thus it

can generate the top k most likely substitutes of a given word much faster than the naive

substitute algorithms. On a typical 2012 workstation, FASTSUBS accomplishes the top 100

substitute generation task for a 1M-word corpus in about 5 hours, while a naive algorithm

that looks at the whole vocabulary would take more than 6 days. To calculate the final sub-

stitute vectors used in the rest of this study, the probability vectors for each position were

normalized to add up to 1.0 .

2.4 Sampling from a Substitute distribution

Substitute vectors are continuous representation of contexts. However, it is also possible

to construct discrete representation of contexts by using the substitute distributions. To

discretize the continuous representation, one can sample random substitutes (with replace-

ment) from a substitute word distribution, and then represent the corresponding context

using these small number of substitutes as discrete contextual features. The sample space

22

of the substitute word distribution is the vocabulary of the language model2. In effect, we

are using substitute word distributions and the sampled random substitutes as contextual

features that represent the properties of a word’s position.

2Sampled substitutes might include the unknown word tag <unk> that represents the words outside the
fixed size vocabulary of the language model. For example, proper nouns typically have <unk> as a
substitute.

23

Chapter 3

REPRESENTING WORD CONTEXT

This chapter demonstrates the various contextual representations of a word in tagging

literature, and introduces the substitute words as an alternative to the current contextual

representations. In this thesis, words in the vocabulary of a corpus are referred to as a

word, and each occurrence of a word is referred to as a word instance or instance. The

contextual representations can be categorized, depending on the way these representations

incorporate the local context information of the target word or instance, into three groups:

(1) syntagmatic representations, (2) Hidden Markov Models (HMM), and (3) paradigmatic

representations.

3.1 Syntagmatic Representation

In the syntagmatic representation, the context, which is called the “frame,” is defined with

the neighboring words, typically co-occurrences with a single word on the left or a single

word on the right word (e.g., the dog is; the cat is) (Schütze and Pedersen, 1993; Redington

et al., 1998; Mintz, 2003; St Clair et al., 2010; Lamar et al., 2010b; Maron et al., 2010).

Turney and Pantel (2010) give a broad overview of syntagmatic approaches and their appli-

cations within the Vector Space Modeling framework. Depending on the way they incorpo-

rate co-occurrences, these models can perform hard (word-based) or soft (instance-based)

clustering.

. . . it will also︸ ︷︷ ︸
left syntagmatic context

target word︷︸︸︷
offer buyers the option. . .︸ ︷︷ ︸

right syntagmatic context

Schütze and Pedersen (1993) represent the context of a word instance by concatenating

its left and right co-occurrence vectors. These vectors are calculated for each word by using

the left and the right neighbors of the word instances, thus characterizing the distribution

of the left and right neighbors of the word. One constraint of this representation is that it

represents words rather than word instances, and hence it performs word-based clustering.

Véronis (2004) constructs an undirected word co-occurrence graph of a given target

word and its neighboring words. The nodes of the graph represent words, and an undirected

edge between two nodes represents the co-occurrence of the corresponding two words in the

context of the target word. Each edge is assigned a weight according to the co-occurrence

frequency of the nodes (words). Although this model can handle larger context window

sizes, it discards the order of the context words.

Mintz (2003) shows on a subset of the child-directed speech corpus (CHILDES) (MacWhin-

ney, 2000) that the non-adjacent most frequent bi-gram frames are useful for language

learners on the syntactic categorization of instances. For example, the instances that are

observed at “ ” in the frame “the is” are usually assigned to the same category. Using

the “top-45 frequent frames” (the 45 most frequent frames), Mintz achieved an average of

98% unsupervised accuracy1. The main limitation of the top-45 frequent frames is that,

because of the sparsity, they can analyze only 6% of the word instances on average. An-

other drawback is that word instances even with one common neighbor could not exchange

information.

1Unsupervised accuracy is defined as the number of hits (when two intervening word instances observed
in the frame are from the same category) divided by number of false alarms (when two intervening word
instances observed in the frame are from different categories).

25

St Clair et al. (2010) extend the work of Mintz (2003) and introduce the flexible bi-gram

frames which represent the context by using the left and the right bi-grams separately. As a

result, instances with a common left or right bi-gram can exchange information and might

be grouped together. For instance, two instances that are observed at “‘ ” in “the is” and

“a is” can be assigned the same category because of the shared right bi-gram “is”. Using

a feed forward connectionist model, they showed that the flexible frames are statistically

better than the frequent frames in terms of the supervised accuracy2. They also showed that

representing instance contexts only with the left or the right bi-gram is statistically better

than the frequent frames but worse than the flexible frames in terms of supervised accuracy.

Neither Mintz (2003) nor St Clair (2010) report any results with contexts larger than a bi-

gram, since, as the context is enriched, the re-occurrence frequency of a frame decreases,

causing data sparsity (Manning and Schütze, 1999).

3.2 HMM

W���

«�� ����������LW�� ��������ZLOO�� �������DOVR�� �������RIIHU����������EX\HUV���������WKH�� ��RSWLRQ����������������

W�� W�� W�� W� W� W� W� W���

Figure 3.1: A bi-gram HMM-based context of an example sentence.

Prototypical HMMs in tagging literature use a bi-gram structure in which instances are

2In order to perform meaningful comparisons, they used all of the frequent frames instead of the top-45
ones.

26

generated by latent categories and which learns the latent category sequence to generate

the given word sequence (see Figure 3.1) (Brown et al., 1992; Blunsom and Cohn, 2011;

Goldwater and Griffiths, 2007b; Johnson, 2007a; Ganchev et al., 2010; Berg-Kirkpatrick

and Klein, 2010; Lee et al., 2010). The tagging literature has focused on the first- and

second-order HMMs since the higher-order HMMs have additional complicating factors3

and requires more complex training procedures (Johnson, 2007a). Depending on the design

and the training procedure, the HMMs can group words or word instances.

3.3 Paradigmatic Representation

In the paradigmatic representation, context is represented by the distribution of substitute

words. Schütze (1995) incorporates paradigmatic information by concatenating the left co-

occurrence and the right co-occurrence vectors of the right and the left token, respectively,

and groups the tokens with similar vectors. The vectors from the neighbors include poten-

tial substitutes. Similarly, Schütze and Pedersen (1993) define the words that frequently

co-occur together as the syntagmatic associates and words that have similar left and right

neighbors as the paradigmatic parallels.

Sahlgren (2006) gives a detailed analysis of paradigmatic and syntagmatic relations in

the context of word-space models used to represent the word meanings. Sahlgren’s paradig-

matic model represents words using co-occurrence counts of their frequent neighbors, in

contrast to his syntagmatic model that represents words using counts of contexts (docu-

ments, sentences) they occur in. Our substitute vectors do not represent words at all, but

they represent contexts of word instances determined from the probabilities of likely sub-

stitutes. Sahlgren finds that more nearest neighbors share the same part of speech in the

word-spaces built by frequent neighbor vectors than in the word-spaces built by context

3The number of parameters in a prototypical HMM increases quadratically with the HMM order.

27

vectors.

. . . it will also

target word︷︸︸︷
offer buyers the option. . .

give(.7032)

help(.1203)

attract(.1081)

...

In this thesis, the context of a given word is represented by a distribution of substitute

words. The entries of the substitute distribution reflect how likely it is to observe each

substitute in the context of the target word. The above example illustrates the likely sub-

stitutes of the target word offer. We calculate the most likely substitute words in a given

context using a statistical language model. Our paradigmatic representation is related to the

second-order co-occurrences used in (Schütze, 1995). Our method improves on his foun-

dation in two aspects: (1) it uses a 4-gram language model rather than bi-gram statistics,

(3) it includes the whole corpus vocabulary rather than the most frequent 250 words. More

importantly, rather than simply concatenating the left and right context vectors of the target

word, we use a statistical language model.

28

Chapter 4

MODELS

In this thesis, we focus on incorporating the paradigmatic representation into the models

with different levels of supervision, and on applying these models to certain tagging tasks

in natural language processing (NLP). In a standard NLP tagging task, the goal is to buildTagging

a model in which the input is a sequence of observed words, and the output, depending on

the level of supervision, is a sequence of cluster-ids or predefined tags.

The definition of tags depends on the nature of the tagging task at hand. For exam-

ple: if the task is word-sense-disambiguation (WSD), then the output (of the tagging task

solver) would be the corresponding sense sequence of the input; if the task is part-of-speech

(POS) disambiguation, then the output would be the corresponding POS tag sequence of

the input; or if it the task is morphological disambiguation, then the output would be the

corresponding morphological parse sequence of the input.

The models in this section can be placed, depending upon how much supervision is

available, in several categories.

Supervised tagging models require an annotated training corpus in which word se-

quences and the corresponding tag sequences are both available. Thus the output tag se-Supervised

tagging quence of a given test input will only contain the tags that are observed in the annotated

training corpus. Supervised models usually perform better in comparison to unsupervised

models. However, since the annotation process of raw text is generally expensive and error-

prone, resource-poor languages lack annotated corpora. For example, two different occur-

rences of the word the in the same context (i.e., “Meet Press”) are erroneously labeled

as determiner (DT) and proper-noun (NNP) in the 1M-word Wall Street Journal Section of

the Penn Treebank (PTB) corpus. Most importantly, children do not require any annotated

corpora to perform similar tasks during their language acquisition.

Unsupervised tagging models observe only the word sequences, without requiring any

annotated corpora. These models have no information regarding the possible tag set or theUnsupervised

tagging number of available tags, and hence output only the cluster-id sequences of the input word

sequence. The main advantage of these models is that they can be applied to any language.

The number of clusters is not fixed, and clusterings with different granularities can be

constructed. Finally, they perform constructive learning which, arguably, better resembles

the language acquisition by children (Tomasello, 2009).

There are also models that do not require the tag sequences of observed input sequences,

yet require some level of supervision for performing the desired NLP task1. The level

of required supervision can be further assigned one of two categories according to the

availability of (1) the word-tag dictionary and (2) the word-tag distribution. The word-tag

dictionary has the mapping information between words and their possible tags, while the

word-tag distribution provides the frequency information of a word with a particular tag, or

vice versa. Similarly to the supervised models, the output tag sequences of these models can

only contain the tags that are observed in the word-tag dictionary or distribution. Table 4.1

presents the word-tag dictionary entries and word-tag distributions of the words of and a

according to the PTB corpus.

We denote a sequence of n words (or a sentence) by w0 . . . wn (or wn
0 in an abbreviated

form), its corresponding context sequence by c0 . . . cn (cn0), and output tag or cluster-id

sequence by t0 . . . tn (tn0). The substitute distribution of the ith word wi in a sequence is

denoted by si, and the possible tag set of wi is denoted by Twi
. In some sections, we use theNotation

non-indexed symbols w, c, t, and s to represent, respectively, the target word, its context,

1The NLP literature has been using different naming conventions for these models, such as “weakly
supervised” or “minimally supervised”. However, since none of the naming convention clearly specifies
the nature of supervision, we explicitly state the level of supervision when referring to these models.

30

Word
Word-Tag

Dictionary

Word-Tag

Distribution

of IN IN(28334)

RP RP(2)

RB RB(2)

a DT DT(23647)

SYM SYM(11)

JJ JJ(2)

LS LS(2)

NNP NNP(2)

IN IN(1)

Table 4.1: The word-tag dictionary entries and distributions of the words of and a in the

PTB corpus for POS tagging.

tag (cluster-id), and substitute distribution. Random variables that sample wi, ci, and ti are

denoted by W , C, and T . The set of possible substitutes of a word in a given context is

represented by Sc. The definition of the tag set depends on the context of the task to which

the model is being applied. For example, in the context of WSD, t and Tw stand for the

sense and possible senses of w, respectively.

Section 4.1 and 4.2 describe the possible applications of unsupervised models that clus-

ter words or instances according to their substitute distributions (Section 4.1), or model

co-occurrences with their random substitutes that are sampled from the substitute distribu-

tions (Section 4.2). Section 4.3 presents a probabilistic voting algorithm that assigns tagsOrganization

to contexts instead of instances, while Section 4.4 introduces two methods that incorporate

the substitute distribution into the standard HMM-based probabilistic models. Models in

Section 4.3 and 4.4 require the availability of a word-tag dictionary. Section 4.5 presents a

31

noisy channel model that uses the word-tag distributions to figure out the most likely tag of

a given word.

4.1 Model 1: Clustering of the Substitute Distributions

Clustering-based tagging models are members of unsupervised models, and hence they

require only the input sequences in order to output the corresponding cluster-id sequences.

Model 1 assumes that wn
0 and tn0 are independent, given cn0 . Each context ci is repre-

sented by the substitute word distribution si at that position, and tags are assigned to the

corresponding substitute distributions. Thus, word-instances with similar substitute distri-

butions are assigned to the same clusters. The similarity between two substitute distribu-

tions can be defined by using any kind of function, as long as it satisfies the conditions of

non-negativity, identity, symmetry, and triangular inequality.

The main limitation of this model is that the identity or the features of target words

are ignored during tagging, because of the independence of w and t for a given c. An-

other important limitation is that tags ti and ti+1 of the consecutive words wi and wi+1 are

independent of each other for the given contexts ci and ci+1.

The substitute distributions are high-dimensional vectors, and they are problematic with

many learning algorithms because of high computational costs and the curse of dimension-

ality. However, these drawbacks can be overcome by applying a dimensionality reduction

algorithm prior to clustering. Finally, the choice of clustering algorithm is highly specific

to the tagging task, and needs to be made carefully.

The unsupervised model in the next section removes the independence assumption of

w and t for given c by modeling the co-occurrence of the target word with its substitutes

and features.

32

4.2 Model 2: Co-occurrence Modeling

Model 2 constructs Euclidean embeddings for words and their contextual features repre-

senting their co-occurrence statistics, and clusters these embeddings to induce word cate-

gories. In this section, we combine the substitute distributions of the word context with fea-

tures of target word within the co-occurrence data embedding (CODE) framework (Glober-

son et al., 2007; Maron et al., 2010). In the previous section, the clustering model assumes

the independence of w and t for a given c, and hence it does not incorporate the target

word identity or features into the tagging task. On the other hand, Model 2 relaxes the

independence assumption by modeling the joint probability of w and c according to the

co-occurrence of w with c.

Model 2 models the pairwise joint distributions between target words and their contex-

tual, morphological, and orthographic features by embedding the frequently co-occurring

pairs closer in Euclidean space. In other words, words, substitutes and features that are fre-

quently observed as pairs in the co-occurrence data will have close embeddings while pairs

not observed together will have embeddings that are far apart from each other. The final

step of the co-occurrence modeling consists of clustering the embeddings in order to assign

cluster-ids to words or word-instances. In this behavior, co-occurrence modeling seems

very similar to Model 1. However, the main difference is that in co-occurrence modeling

both w and c are involved in the construction of embeddings, while in Model 1 the sub-

stitute distributions are independent of w for a given c. Similar to Model 1, co-occurrence

models require only raw text in order to output the cluster-id sequence of a given input

sequence. One limitation of Model 2 is that it assumes the tags of the consecutive words to

be independent of each other for given contexts.

As an example, the co-occurrence data in Figure 4.1 consists of word-substitute pairs

such as (W:director, S:chairman) and (W:chief, S:chairman). Model 2 therefore forces

the embeddings of W:director and W:chief to be close to the embedding of S:chairman.

33

Word Substitute
...

...

W:director S:chairman

W:chief S:chairman
...

...

W:Pierre S:John

W:Frank S:John
...

...

Figure 4.1: The table on the left is the sample input co-occurrence data, and the figure

on the right is the final embeddings of the words and substitutes that are observed in this

sample co-occurrence data after embedding algorithm converges. To distinguish between

the target words and substitute words, we use the prefix W: and S:, respectively.

Similarly to the former case, the embeddings of W:Pierre and W:Frank will be close to

the embedding of S:John, because they are frequently co-occurring pairs. As a result, the

final embeddings of W:director and W:chief will be close to each other, as they share the

common substitute S:chairman, but will be apart from W:Pierre and W:Frank, as these lack

a common substitute. (Similarly, the embeddings of W:Pierre and W:Frank will be close to

each other because of the substitute S:John). After Model 2 constructs embeddings on the

sphere, we apply a clustering algorithm on these embeddings to induce word categories.

Section 4.2.1 describe in detail the representation of words and their substitutes as

co-occurrence data. Section 4.2.2 describes the CODE embedding algorithm and details

the model likelihood and its training procedure in our setup. The spherical optimization

(S-CODE) described in (Maron et al., 2010) is used for efficiency and is detailed in Sec-

34

tion 4.2.2. Finally, Section 4.2.3 describes the different ways in which words and substitutes

can be clustered to produce word-based and instance-based clusters.

4.2.1 Co-occurrence Data

To capture the relation between each word and its context, we construct a co-occurrence

representation by pairing the words with randomly sampled substitutes. The calculation of

substitute distributions and random substitute sampling are detailed in Chapter 2.

Table 4.2 shows an example sentence with random substitutes of each of its words and

their pairwise co-occurrence representation input to the co-occurrence embedding algo-

rithm. It is possible (and advantageous) to sample more than one substitute and generate

multiple pairs for the same word-context pair as seen in Table 4.2. A target word might

appear both as a word and a random substitute. Therefore, to clarify this ambiguity, we

prepend “W:” and “S:” to words and substitutes, respectively, in the co-occurrence data.

35

Word Random Substitutes

Pierre Mr. / Pierre / John

Vinken <unk> / Beregovoy / Cardin

, , / , / ,

61 48 / 52 / 41

years years / years / years

old old / old / old

, , / , / ,

will will / will / will

join head / join / leave

the its / its / the

board board / company / firm

as as / as / as

a a / a / a

nonexecutive nonexecutive / non-executive / nonexecutive

director chairman / chairman / director

Nov. April / May / of

29 16 / 29 / 9

. . / . / .

Word Substitute

W:Pierre S:Mr.

W:Pierre S:Pierre

W:Pierre S:John

W:Vinken S:<unk>

W:Vinken S:Beregovoy

W:Vinken S:Cardin
...

...

W:join S:head

W:join S:join

W:join S:leave

W:the S:its

W:the S:its

W:the S:the
...

...

W:director S:chairman

W:director S:chairman

W:director S:director
...

...

Table 4.2: The table on the left shows three possible substitutes sampled with replacement

for each position in an example sentence based on a 4-gram language model. The table on

the right is the pairwise co-occurrence data fed to S-CODE derived from these samples.

The prefixes “W:” and “S:” are used to distinguish target words and substitutes.

The next section describes CODE and S-CODE which take the pairwise co-occurrence

data as input, and calculate the Euclidean embeddings of the words and their substitutes on

an n-dimensional unit sphere.

36

4.2.2 The CODE Model

In this section, we review the unsupervised method that we use to model co-occurrence

statistics: the Co-occurrence Data Embedding (CODE) (Globerson et al., 2007) method

and its spherical extension (S-CODE) introduced by (Maron et al., 2010).

Let W and C be two categorical variables with finite cardinalities |W | and |C|. We

observe a set of pairs {wi, ci}ni=1 drawn IID from the joint distribution of W and C. The

basic idea behind CODE and related methods is to represent (embed) each value of W

and each value of C as points in a common Euclidean space Rd such that the values that

frequently co-occur lie close to each other. There are several ways to formalize the relation-

ship between the distances and co-occurrence statistics. In this thesis, we use the following:

p(w, c) =
1

Z
p̄(w)p̄(c)e−d

2
w,c (4.1)

where d2w,c is the squared distance between the embeddings of w and c, p̄(w) and p̄(c) are

empirical probabilities, and Z =
∑

w,c p̄(w)p̄(c)e−d
2
w,c is a normalization term. If we use

the notation φw for the point corresponding to w, and ψc for the point corresponding to c,

then d2w,c = ‖φw−ψc‖2. The log-likelihood of a given embedding `(φ, ψ) can be expressed

as:

`(φ, ψ) =
∑
w,c

p̄(w, c) log p(w, c) (4.2)

=
∑
w,c

p̄(w, c)(− logZ + log p̄(w)p̄(c)− d2w,c)

= − logZ + const −
∑
w,c

p̄(w, c)d2w,c

The likelihood is not convex in φ and ψ. We use gradient ascent to find an approximate

solution for a set of φw, ψc that maximize the likelihood. The gradient of the d2w,c term pulls

neighbors closer in proportion to the empirical joint probability:

∂

∂φw

∑
w,c

−p̄(w, c)d2w,c =
∑
y

2p̄(w, c)(ψc − φw) (4.3)

37

The gradient of the Z term pushes neighbors apart in proportion to the estimated joint

probability:
∂

∂φx

(− logZ) =
∑
y

2p(w, c)(φw − ψc) (4.4)

Thus the net effect is to pull pairs together if their estimated probability is less than the

empirical probability, and to push them apart otherwise. The gradients with respect to ψc

behave similarly. S-CODE (Maron et al., 2010) additionally restricts all φw and ψc to lie on

the unit sphere. With this restriction, Z stays around a fixed value during gradient ascent.

This allows S-CODE to substitute an approximate constant Z̃ in gradient calculations for

the real Z for computational efficiency. In our experiments, we used S-CODE with its

sampling-based stochastic gradient ascent algorithm and smoothly decreasing learning rate.

S-CODE with More than Two Variables

In order to accommodate multiple feature types, the S-CODE model in the previous section

needs to be extended to handle more than two variables. Section 6.2 of Globerson et. al

(2007) suggest the following likelihood function:

`(φ, ψ(1), . . . , ψ(K)) = p̄(w, c) log p(w, c) +
K∑
i

∑
w,f (i)

p̄(w, f (i)) log p(w, f (i)) (4.5)

where p̄(w, c) is the empirical joint distribution of context C with W , and F (1), . . . , F (K)

areK extra different variables whose empirical joint distributions withW , namely, p̄(w, f (1)) . . . p̄(w, f (K)),

are known. Eq. 4.5 then represents a set of CODE models p(w, f (k)) in which each F (k)

has an embedding ψ(k)
f but all models share the same embedding φw.

We adopt the above likelihood function. Now, let W represent a word, C represent

a context (i.e., random substitute), and F (1), . . . , F (K) stand for morphological and ortho-

graphic features of the word. So each co-occurrence is a (K+1)-tuple (W,C, F (1), . . . F (K)).

With this setup, the training procedure needs to be modified a little: instead of sampling the

38

(word (w) , context (c)) pair, we sample the (word (w) , context (c) , features (f1, . . . , fK))

tuple, and feed it to the gradient ascent algorithm. The gradient search algorithm updates

the embeddings according to p(w, c) and p(w, f (i)), where i = 1 . . . k. No updates are

performed between c and f (i)s, since they do not have any co-occurrence statistics, and w

is the only shared variable.

4.2.3 Clustering Embeddings

At this stage, each word instance and its r substitutes, where r is the number of substitutes

per instance sampled to represent their contexts, are mapped to real vector embeddings on

an n-dimensional sphere2. We apply the instance-weighted k-means clustering algorithm

to three different representations derived from these embeddings, each with its own advan-

tages and disadvantages:

Word embeddings (W): We cluster the word embeddings. Each word has a single

embedding, and gets assigned to a single cluster (which we will refer to as the one-tag-

per-word assumption). Thus clustering words resulting from this representation employ

the one-tag-per-word assumption from the beginning, and cannot handle ambiguous words

with multiple parts of speech.

Average of substitute embeddings (S̄): We construct a vector representation for each

word-instance with the average of its r substitute embeddings, where r is the number of

sampled substitutes per instance. First, we normalize these average vectors to Euclidean

unit length then cluster the instances obtained from these averaged and normalized vectors,

thus assigning each instance to a cluster. For example, the target word W:Pierre in Table 4.2

will be represented with the average of the embeddings of S:Mr., S:Pierre and S:John, while

2In fact, many words that appear in the text also appear as substitutes, and thus have two embeddings.

39

all other instances of Pierre in different contexts are represented with the average of their

own substitute embeddings.

The concatenation of the word embedding and the average of its substitute embed-

dings (W ⊕ S̄): We construct a vector representation for each word instance by concate-

nating its word embedding and the average of its r substitute embeddings. This results in a

2n-dimensional vector representing an instance. Prior to clustering, we normalize these 2n-

dimensional vectors to Euclidean unit length. Clustering these 2n-dimensional normalized

vectors assigns each instance to a cluster. For instance, the target word Pierre in Table 4.2

will be represented by the concatenation of the embedding of W:Pierre and the average of

the embeddings of S:Mr., S:Pierre and S:John.

To sum up, the first setting applies the one-tag-per-word assumption from the beginning,

and clusters words instead of word-instances. The second setting clusters word-contexts

(as represented by the average of its substitutes), and is able to categorize the individual

word-instances. However, it ignores the identity of the target word. The third setting also

clusters word-instances, but incorporates the word identity by concatenating the word and

the average of the corresponding substitute embeddings.

The clustering and the co-occurrence models require only the input word sequences to

output the corresponding cluster-id sequences. The remaining models in this section require

different levels of supervision to output the tag sequence of a given input sequence. The

next section introduces a probabilistic voting model that requires the word-tag dictionary

to be available in order for it to output the possible tag sequence of a given input.

4.3 Model 3: Probabilistic Voting Model

In this section, we model the tag distribution in a given context, and assign the most likely

tag to the context instead of the target word-instance. The distribution of t in c can be

40

defined in terms of the substitutes and their possible tags in a word-tag dictionary or distri-

bution. The model is defined as

argmax
t∈T

Pr(t|c) =
∑
s∈S

Pr(t|s, c) Pr(s|c) (4.6)

=
∑
s∈S

Pr(t|s) Pr(s|c) (4.7)

where s is a substitute word in the substitute distribution S of the context c. Pr(s|c) is

the probability of observing s in c which is the entry corresponding to s in S. Eq.(4.6) is

simplified to Eq.(4.7) by making the assumption that the tag of a substitute word and the

context are independent of each other for a given substitute word s.

The model distributes Pr(s|c) among the possible tags of s in a word-tag dictionary,

taking into consideration Pr(t|s) which is the probability of observing s with tag t. The

estimation of Pr(t|s) depends on the level of supervision. For example, if the word-tag

dictionary is available, then Pr(t|s) could be uniform over the possible tags of s, or if the

word-tag distribution is available, then Pr(t|s) would consist of the observation frequencies

of swith t. One could only have the substitutes but not the corresponding Pr(s|c) or simply

wants to assign equal weights to each substitute instead of weighting them with Pr(s|c). In

this situation Pr(s|c) could be uniform over the possible substitutes in a given context.

As is the case with the previous models, this model also assumes that the tags of

two consecutive words are independent of each other for any fixed contexts of the words.

Model 3 also assumes that tag distribution is independent of the target word given the con-

text of the target word. The models in the following section relaxes this assumption by

integrating the substitute distributions into the HMM-based models.

41

4.4 Model 4: Constraining HMM-Based Models

None of the previous models captures the relationship between consecutive tags because

of the independence assumption of consecutive tags in fixed contexts. However, one can

take advantage of consecutive tags to constrain the output sequence. For example, in a

POS disambiguation task, determiners (DT) are usually followed by a noun (NN). In this

section, we introduce two different ways of incorporating substitute words into the HMM-

based probabilistic models in which consecutive tag sequences depend on each other while

consecutive words are independent of each other for any given tags.

The HMM-based probabilistic models have been used to solve NLP tagging tasks

(Merialdo, 1994; Goldwater and Griffiths, 2007a) with different levels of supervision. The

prototypical n-tag HMM model maximizes the likelihood of the corpus w1 . . . wN , ex-

pressed as

P (w1|t1)
N∏
i=2

P (wi|ti)P (ti|ti−1, . . . , ti−n+1) (4.8)

W� W� W� W�

Z� Z� Z� Z�

K� K� K� K�

Z�� Z�� Z�� Z��

Z�� Z�� Z�� Z��

Z�� Z�� Z�� Z��

Z�� Z�� Z�� Z��

Figure 4.2: Graphical structure of a standard second-order HMM tagger on an example

4-word sequence.

where wi are the word tokens, and ti are their (hidden) tags. The HMM-based approaches

generally first learn the parameters relating the hidden structure to the observed sequence

of variables Pr(wi|ti), and then the new hidden structure from the previous n − 1 hidden

42

structures Pr(ti|ti−1, . . . , ti−n+1). Finally, they identify the most probable values of the

hidden structure for a given observed sequence using the Viterbi search algorithm (Viterbi,

1967). Figure 4.2 illustrates a standard bi-gram HMM model in which the hidden units that

generate tags are represented by h40, and the observed word sequence is represented by w4
0.

The HMM-based models differ in the way the model parameters are estimated. For

example, the HMM-EM models that are trained with expectation maximization estimate

the parameters by using the maximum likelihood estimation (MLE), maximum a posteriori

(MAP)-based models define a prior distribution over the parameters and find the parameter

values to maximize the posterior distribution given data, and Bayesian models integrate

over the posterior of the parameters to incorporate all possible parameter settings into the

estimation process.

In this section, we focus on HMM-EM since it is the simplest HMM-based approach,

and has a traditional place in the NLP literature of unsupervised tagging (Merialdo, 1994).

We assume that the word-tag distribution is available. However, models in this chapter are

not limited to HMM-EM, and can be extended to HMM-MAP and HMM-Bayesian.

In POS disambiguation, the observed variables are a sequence of words (w0, w1, . . . , wn−1, wn),

and the hidden variables are a sequence of POS tags (t0, t1, . . . , tn−1, tn). The HMM pa-

rameters θ can be estimated by using Baum-Welch EM algorithm on an unlabeled training

corpusD (Baum, 1972). The tag sequence that maximizes Pr(t|w0, . . . , wn, θ̂) can be iden-

tified by the Viterbi search algorithm.

Johnson (2007b) showed that HMM-EM has a tendency of assigning equal number of

words to each hidden state, thus resulting in poor tagging performance on tasks with skewed

word-tag distributions. Mitzenmacher (2004) argued that a Bayesian method with sparse

priors over the tags may perform better than an HMM estimated with EM on a problem

with skewed word-tag distributions.

Ravi and Knight (2009a) defined the observed grammar size to be the number of distinct

tag bi-grams observed in the output sequences of a given input corpus. They showed that

43

the observed grammar size of the HMM-EM model in a POS disambiguation task is larger

than the actual observed grammar size3. To fix this, they constrain the number of nonzero

transition probabilities (Pr(ti|ti−1)) of a bi-gram HMM model using integer programming

(IP).

To take advantage of substitute distributions in an HMM setting, we consider generating

artificial sentences where one of the words of the original sentence is replaced with a likely

substitute. We assume the hidden tag sequence that generates the original sentence should

also generate the artificial sentences. Motivated by this idea, we propose two methods

that incorporate substitute words to improve the HMM-EM performance. The first method

improves the performance of HMM-EM by reducing the noise and rare tags in the word-

tag dictionary. The second one does not modify the word-tag dictionary or the EM training

phase, but constrains the Viterbi search algorithm by providing artificially created new

sentences that are derived from the target sentence. As a result, the first method constrains

the HMM-EM to learn smaller models in terms of the grammar size, while the second one

constrains the search space of Viterbi even when the HMM-EM grammar size is larger than

the actual grammar size.

Currency gyrations can whipsaw(VB/NN) the funds .

Currency gyrations can withdraw(VB) the funds .

Currency gyrations can restore(VB) the funds .

Currency gyrations can modify(VB) the funds .

Currency gyrations can justify(VB) the funds .

Currency gyrations can regulate(VB) the funds .

Table 4.3: Sample artificial sentences generated for a test sentence from the Penn Treebank.

3The actual observed grammar size is calculated using an annotated PTB corpus. Annotations are only
used for the model comparison, and are discarded during the learning process.

44

Table 4.3 presents an example from a POS tagging task in which the highly likely sub-

stitutes of the target word whipsaw are listed for a given sentence from the Penn Treebank

(PTB). In this example, each substitute is an unambiguous verb (VB), and hence the correct

tag of whipsaw can be correctly disambiguated by the substitutes. The target word and its

substitutes are both syntactically and semantically related to each other. Thus, our approach

is not limited to the POS tagging task, but can be extended to other NLP tagging tasks such

as WSD.

Section 4.4.1 presents the steps of the word-tag dictionary reduction method, and Sec-

tion 4.4.2 presents the data-enhanced HMM-EM algorithm.

4.4.1 Method 1: Dictionary Reduction

This method, initial to the HMM-EM training, reduces the word-tag dictionary size by

deleting the unlikely tags of each target word from the word-tag dictionary. To determine

the unlikely tags of a word, it estimates the tag distribution of the word by averaging the tag-

context distributions of its instances. The tag distribution of each instance is calculated by

using Model 3. For example, the word a has 7 possible tags in its word-tag dictionary and

two of its possible tags (i.e, SYM and LS)4 are observed with very low probabilities in the

tag distribution of the word of. Thus they are deleted from the word-tag dictionary. Instead

of removing the unlikely tags, this method can be also used for estimating the word-tag

distributions when the only available information is the word-tag dictionary.

Another interpretation of dictionary reduction is that votes of the substitute words are

used to reduce the possible number of tags per word in the word-tag dictionary. This ex-

pedites the training phase of the HMM-EM algorithm by reducing the number of non-zero

parameters. For all instances of the target word, the procedure counts the votes of possible

tags and removes the tags with low votes from the word-tag dictionary entry of the target

4SYM and LS represent symbols and list item markers.

45

word.

4.4.2 Method 2: Data Enhanced Viterbi Search Algorithm

In this method, the Viterbi search algorithm constructs the most likely tag sequence of a

given observed word sequence after the training phase of HMM. Because of the existence

of ambiguous words, more than one tag sequence is possible for any given word sequence.

To constrain all possible tag sequences of a given word sequence, we construct artificial

sentences such that each of these sentences differ only in one word from the original sen-

tences. We do this with the expectation that the tag sequence will be the same for both the

original and the artificial sentence.

Figure 4.3 presents the difference between the standard HMM-EM and data enhanced

HMM-EM. To keep things simple, we present the derivation of the Viterbi search on a first

order HMM in which each hidden state is only conditioned by its preceding hidden state.

The derivation for the second order HMM is similar.

Viterbi Search Algorithm

Let ai denote the ith artificial sequence generated from the original sequence w00 . . . w0n,

where wij denotes the jth word of ai, hj denotes the jth hidden state, tk denotes the kth tag

in the set of all possible tags T , and δj(tk) denotes the probability of the best tag sequence

up to the jth word that is tagged with tk. The number of artificial sequences is r, and the

number of words in the original sequence is n. Using these symbols, the probability of the

best path up to jth word with tag tk in a standard HMM can be written as

δj(tk) = maxt1,..,tj−1
Pr(h1, .., hj−1, hj = tj, w01, .., w0j|θ) (4.9)

46

Equation 4.9 can be solved recursively by using following equations:

δ1(tk) = Pr(h1 = tk|θ) Pr(w01|h1 = tk, θ) (4.10)

δj+1(tk) = maxt∈T δj(t) Pr(hj+1 = tk|hj = t, θ) Pr(w0j+1|hj+1 = tk, θ) (4.11)

δ̂ = maxt∈T δn(t) (4.12)

Equation 4.10 gives the probability of tagging the first word w01 with tag tj , and Equation

4.11 defines the recursive relation between consecutive δs. Equation 4.12 gives the proba-

bility of the best path. The best path can be constructed during the recursive calculation of

δs. We do not need to demonstrate the path construction part of the Viterbi search, since

the data-enhanced HMM uses the same formulation.

In the case of data-enhanced HMM-EM, the optimum tag sequence topt of the original

sequence, together with its artificial sentence set a1 . . . ar ∈ As, is given by Equation 4.13.

This equation can be solved by modifying Equations 4.10 and 4.12, as follows:

topt = argmaxt0...tn Pr(t0 . . . tn|s, As, θ̂) (4.13)

δ1(tk) = Pr(h1 = tk|θ)
r∏

i=1

Pr(wi1|h1 = tk, θ) (4.14)

δj+1(tk) = maxt∈T δj(t) Pr(hj+1 = tk|hj = t, θ)
r∏

i=1

Pr(wij+1|hj+1 = tk, θ)(4.15)

Equation 4.14 and 4.15 do the same calculation, except that they incorporate the re-

placement sentences into the model as observed variables. In the case of HMM-EM, the

Viterbi search algorithm is applied jointly to the original sequence and its artificial sen-

tences so as to get the most probable tag sequence for all.

In this section, we use the HMM-based model to find out the most likely tag sequence

of a given input sequence when a word-tag dictionary is available. An nth order HMM-EM

models assumes that each tag depends on the previous n − 1 tags and word-instances are

independent of each other given their corresponding tags. Thus the models in this section

explicitly incorporate into the learning process both the word identity and the dependencies

47

between the tags. The next model introduces a noisy channel model that requires the word-

tag distribution in order to perform the tagging task.

4.5 Model 5: Noisy Channel Model

In this section, we introduce a noisy channel model that disambiguates the most likely tag

sequence of a given word sequence. Unlike the previous models, this model requires the

availability of the word-tag distribution. The main limitation of the model is that the tags

of consecutive words are independent of each other, given the corresponding contexts.

The noisy channel model has been the foundation of standard models in speech recog-

nition (Bahl et al., 1983) and machine translation (Brown et al., 1990). The noisy channel

model can be used whenever a received signal does not uniquely identify the message be-

ing sent. Bayes’ Law can be used to interpret the ambiguous signal, and identify the most

probable intended message. In tagging tasks, we model each context as a distinct channel,

where the intended message is a tag T , and the received signal is an ambiguous word W .

The model assumes the independence of consecutive messages. In this section, we will

describe how to model a given context C as a noisy channel, and, in particular, how to

estimate the context-specific tag distribution by using the word-tag distribution.

Equation 4.16 expresses the probability of a tag T of word W in a given context C.

This is the well-known Bayes’ formula with an extra Pr(.|C) in each term to indicate the

dependence on the context.

Pr(T |W,C) =
Pr(W |T,C) Pr(T |C)

Pr(W |C)
(4.16)

To perform disambiguation, we need to find the tag T that maximizes the probability

Pr(T |W,C). This is equivalent to the maximization of the product Pr(W |T,C) Pr(T |C),

because the denominator Pr(W |C) does not depend on T . To perform the maximization,

the two distributions Pr(W |T,C) and Pr(T |C) need to be estimated for each context C.

48

How to estimate Pr(T |C), the distribution of word tags that can be expressed in the

given context? The only supervision is the word-tag distribution, since we do not have

access to any tagged data, and consequently we do not know what tags are likely to be

expressed in any given context. Therefore, it is not possible to estimate Pr(T |C) directly.

What we do have is the word frequencies for each tag Pr(W |T), and the word frequen-

cies for the given context Pr(W |C). We use the word-tag distribution to estimate Pr(W |T),

and a statistical language model to estimate Pr(W |C), as detailed in Section 2. We make

the independence assumption Pr(W |T,C) = Pr(W |T), i.e. the distribution of words used

to express a particular tag is the same for all contexts. Finally, the relationship between the

three distributions, Pr(T |C), Pr(W |T,C), and Pr(W |C) is given by the total probability

theorem:

Pr(W |C) =
∑
T

Pr(T |C) Pr(W |T,C) (4.17)

We can now solve for Pr(T |C) using linear algebra. Let WT be a matrix, ~t and ~w two

vectors such that:

WTij = Pr(W = i|T = j)

~tj = Pr(T = j|C = k)

~wi = Pr(W = i|C = k) (4.18)

Using this new form, we can see that Equation 4.17 is equivalent to the linear equation

~w = WT × ~t, and ~t can be solved using a linear solver. Typically WT is a tall matrix,

and the system has no exact solutions. One can use a linear constraint solver (e.g., interior

point algorithm) or a pseudo-inverse algorithms (e.g., the Moore-Penrose pseudo-inverse)

to compute an exact or approximate solution to:

~t = WT+ × ~w (4.19)

Another interpretation of this model is that it performs a voting process similar to the

probabilistic voting in Section 4.3 to estimate the tag distribution of a given context. To

49

see this, consider the following example, let each word be unambiguous, and therefore

assume that WT equals the identity matrix I|W |, of dimensionality |W | × |W |. Under this

assumption, the inverse of WS would also be equal to I|W |, and Pr(T |C) would be equal to

Pr(W |C). This implies that the most likely tag in C is actually the tag of the unambiguous

word with the highest Pr(W |C). Thus, the noisy channel model estimates Pr(T |C) by

distributing Pr(W |C) to the tags with respect to the inverse of WT.

4.6 Conclusion

The first model ignores the identity of the word and clusters the substitute distributions

without requiring any level of supervision. The second one models the co-occurrences of

words with their substitute words, therefore, incorporates the word identity and the context

information at the same time. To construct the co-occurrence representation this model

discretizes the substitute distributions. The third model performs probabilistic voting and

estimates the distribution of tags in a given context. Unlike the first and second model

this model requires the availability of word-tag dictionary in which all possible tags of a

given word is available. The fourth model proposes two extensions to the standard HMM-

based tagging models in which both the word identity and the dependence between the

consecutive tags are concerned. The last one introduces a generative probabilistic model,

the noisy channel model, for the word sense disambiguation task in which the word-tag

frequencies are available. In this model, each context C is modeled as a distinct channel

through which the speaker intends to transmit a particular meaning S using a possibly

ambiguous word W. To reconstruct the intended meaning the hearer uses the distribution

of possible meanings in the given context Pr(S|C) and possible words that can express

each meaning Pr(W |S). Section 5 applies Model 4 to POS disambiguation, Section 6

applies Model 3 to morphological disambiguation, Section 7 applies Model 5 to word-sense

disambiguation, and, finally, Section 8 applies Model 1 and 2 on POS induction.

50

h0 h1 h2 h3

w00 w01 w02 w03

h0 h1 h2 h3

w00 w01 w02 w03

w10 w01 w02 w03

w00 w21 w02 w03

w00 w01 w02 w33

Figure 4.3: Graphical structure of a standard second-order HMM tagger (top) and data-

enhanced HMM tagger (bottom) on a 4 word sentence. Red circles represent the substitute

in an artificial sentence while the blue ones represent the original words.

51

Chapter 5

PART OF SPEECH DISAMBIGUATION

In this section, we apply the algorithms defined in Section 4.4 to the weakly-supervised

part-of-speech (POS) disambiguation of English.1 This task consists of predicting the cor-

rect POS tag of a word in a specified context, given an unlabeled corpus and a dictionary

with possible word-POS-tag pairs. The performance of an unsupervised POS tagging sys-

tem depends highly on the quality of the word-tag dictionary (Banko and Moore, 2004) or

the constraints on the learning models (Johnson, 2007b).

The rest of this chapter is organized as follows: Section 5.1 reviews the related work

on POS tagging. Section 5.2 defines the experimental settings that are used in this chap-

ter. Section 5.3 defines supervised and unsupervised baselines. Section 5.4 presents the

results of experiments with the dictionary reduction method (see Section 4.4.1) to improve

the performance of the methods involving expectation maximization (EM). Section 5.5

presents the results of experiments with the data-enhanced Viterbi decoding method (see

Section 4.4.2). Section 5.5.3 shows an application of the data-enhanced Viterbi decoding

on out-of-vocabulary (OOV) words. Finally, Section 5.7 defines the road map for future

work. This section also introduces a new method that incorporates substitute words in the

disambiguation process during the estimation of the probabilistic model parameters, rather

than just using them for Viterbi decoding or dictionary reduction.

1Throughout this chapter POS tagging is used interchangeably with POS disambiguation.

5.1 Related Work

Probabilistic models such as the hidden Markov model trained by expectation maximiza-

tion (HMM-EM), maximum a posteriori (MAP) estimation, and Bayesian methods have

been used to solve the unsupervised POS tagging problem (Merialdo, 1994; Goldwater and

Griffiths, 2007a). All of these approaches first learn the parameters relating the hidden

structure to the observed sequence of variables and then identify the most probable values

of the hidden structure for a given observed sequence. They differ in the way they estimate

the model parameters. HMM-EM estimates model parameters by using the maximum like-

lihood estimation (MLE), MAP defines a prior distribution over parameters and finds the

parameter values that maximize the posterior distribution for a given data, and Bayesian

methods integrate over the posterior of the parameters to incorporate all possible parameter

settings into the estimation process. Some baseline results and performance reports from

the literature are presented in Table 5.1.

Johnson (2007b) criticizes the standard HMM-EM approaches for their poor perfor-

mance on unsupervised POS tagging and their tendency to assign equal number of words

to each hidden state. Mintzenmacher (2004) further claims that words have skewed POS

tag distributions, and a Bayesian method with sparse priors over the POS tags may perform

better than HMM-EM. Goldwater and Griffiths (2007a) use a fully Bayesian HMM model

that averages over all possible parameter values. Their model achieves 86.8% tagging accu-

racy with sparse POS priors, outperforming the standard second-order HMM-EM (3-gram

tag model) with 74.50% accuracy on a 24K (PTB24K) word subset of the Penn Treebank

corpus. Taking a different approach, Smith and Eisner (2005) use the conditional random

fields estimated using contrastive estimation, which achieves 88.6% accuracy on the same

PTB24K corpus, and thus outperforms the HMM-EM and Bayesian methods.

Despite the fact that HMM-EM has a poor reputation in the POS literature, Goldberg et

al. (2008) have shown that with good initialization in conjunction with certain language-

53

Accuracy System

64.2 Random baseline

74.4 Second-order HMM

81.8 Most frequent tag baseline

82.0 First-order HMM

86.8 Fully Bayesian approach with sparse priors (Goldwater and Griffiths, 2007a)

88.6 CRF/CE (Smith and Eisner, 2005)

91.4 EM-HMM with language specific information, good initialization and

manual adjustments to standard dictionary (Goldberg et al., 2008)

91.8 Minimized models for EM-HMM with 100 random restarts (Ravi and Knight, 2009b).

Table 5.1: Tagging accuracy on a PTB24K-word corpus. All the systems—except (Gold-

water and Griffiths, 2007a)—use the same 45-tag dictionary that is constructed from the

Penn Treebank.

specific features and language-dependent constraints, HMM-EM achieves 91.4% accuracy.

Aside from the language-specific information and the good initialization, they also employ

some manual tuning to reduce the noise in the word-tag dictionary.

Ravi and Knight (2009b) focus on POS tag collection to find the smallest POS model

that explains the data. They apply integer programming to construct a minimal bi-gram

POS tag set, and use this set to constrain the training phase of the EM algorithm. The model

trained by EM is used to reduce the dictionary, and these steps are iteratively repeated

until no further improvement is observed. Their model achieves 91.6% accuracy on the

PTB24K word corpus. (The accuracy increases to 91.8% with 100 random starts.) The

main advantage of this model is the restriction of the tag set so that rare POS tags and the

noise in the corpus do not influence the estimation process.

54

5.2 Experimental Settings

In this section, we present a number of experiments measuring the performance of dic-

tionary reduction and data-enhanced Viterbi decoding, which have been defined in Sec-

tion 4.4. As the models in this section are trained2 and tested on the same unlabeled data,

no out-of-vocabulary words are involved.

5.2.1 Language Model

To obtain accurate domain independent probability estimates, we used the Web 1T data set

(Brants and Franz, 2006b) that contains the counts of word sequences of length up to five

in a 1012-word corpus derived from publicly accessible Web pages. The SRILM toolkit is

used to train a 5-gram language model (Stolcke, 2002a). The language model parameters

are optimized by using a randomly selected PTB24K word corpus from Penn Treebank.

In order to efficiently apply the language model to a given test corpus, the vocabulary is

limited to the words seen in the test corpus.

5.2.2 Dataset

In the rest of this chapter, we limit ourselves to the 4 corpora consisting of the first 12K

(PTB12K), 24K (PTB24K), 48K (PTB48K), and 96K (PTB96K) words of the 1M-word

Wall Street Journal Section of the Penn Treebank (PTB) corpus. To be consistent with the

POS literature, the tag dictionary is constructed by listing all of the observed tags for each

word in PTB. Nearly 55% of the words in Penn Treebank corpus are ambiguous, and the

average number of tags is 2.3.

Table 5.2 shows the POS speech groups and their distributions in the PTB24K word

corpus. We report the model accuracy on several POS groups. Our motivation is to deter-

2The GMTK tool is used to train the HMM-EM model on an unlabeled corpus (Bilmes and Zweig, 2002).

55

Groups Member POS tags Count %

Noun NN, NNP, NNS, NNPS 7511 31.30

Verb VBD, VB, VBZ, VBN, VBG, VBP 3285 13.69

Adj JJ, JJR, JJS 1718 7.16

Adv RB, RBR 742 3.09

Pronoun CD, PRP, PRP$ 1397 5.82

Content Noun, Verb, Adj, Adv, Pronoun 14653 61.05

Function Other 9347 38.95

Total All 45 POS tags 24K 100.00

Table 5.2: Group names, members, number, and percentage of words according to their

gold POS tags.

mine the accuracy of the HMM-EM model on the subgroups before and after implementing

the dictionary reduction procedure.

5.3 Baseline

Table 5.3 presents some standard baselines for comparison. We define a random and a

supervised baseline on the PTB24K corpus. The random baseline is calculated by randomly

picking one of the tags of each word. This baseline also represents the amount of ambiguity

in the corpus. The supervised baseline consists simply of the most frequent POS tag of

each word, using the 1M-word Penn Treebank corpus as the training corpus. (The first 24K

words of the corpus are not included in the 1M-word training corpus.) If the target word

does not exist in the training set, then the supervised baseline randomly picks one of the

possible tags of the missing word.

The first- and second-order HMMs can be treated as the unsupervised baselines. These

56

Noun Verb Adj Adv Pronoun Content Function Total(%)

Random Baseline 76.98 53.87 68.46 72.98 87.64 71.59 52.64 64.21

3-gram HMM 77.43 68.16 78.06 73.32 94.85 76.88 70.45 74.38

Supervised Baseline 85.29 59.24 64.52 59.03 84.57 75.62 91.37 81.75

2-gram HMM 92.22 83.84 85.22 83.96 95.56 89.42 70.49 82.05

Table 5.3: Percentages of words tagged correctly by different models using the standard

dictionary.

unsupervised baselines are calculated by training the uniformly initialized first- and second-

order HMMs on the target corpus without any smoothing. All the initial parameters of

HMM-EM are uniformly initialized so as to observe only the effect of the artificial sen-

tences on the performance of HMM-EM.

The success of the supervised baseline on the Noun, Pronoun, and Function word

groups indicates that tag distributions of the words in these groups are highly skewed to-

wards one of the available tags. Compared to the above groups, the supervised baseline

performs poorly on Verb, Adj, and Adv. This is a result of the less skewed POS tag behavior

of these tags.

The second-order HMM is commonly taken to be the baseline in the POS tagging lit-

erature. However, as is clear from Table 5.3, this model can be outperformed by an unsu-

pervised first-order HMM or a simple supervised baseline like majority voting. It is worth

noting that although the first-order HMM and the supervised baseline have similar overall

accuracies, the first-order HMM is better on the content words while the supervised base-

line is better on Function words. This is to be expected, since EM tends to assign words

uniformly to the available POS tags. Thus, EM cannot capture the skewed behavior of

Function words. Moreover, the amount of skewness affects the accuracy of EM in such

57

a manner that the performance gain over the supervised baseline on Verb, Adj, and Adv is

around 20–25% while the performance gain on Noun and Pronoun is around 6–7%.

5.4 Experiment: Dictionary Reduction

EM tends to assign equal number of words to each POS tag because it cannot capture the

sparse structure of word distributions. If the word-tag dictionary is noisy, then a large

number of function words are tagged with very rare POS tags. Table 5.4 illustrates this

abuse of rare tags, also seen in (Ravi and Knight, 2009b). In this set of experiments we

assume that we only have the top k substitutes and have no information regarding their

probabilities in the corresponding context.

To remove rare tags from the word-tag dictionary, we apply the following steps:

Algorithm

1. Choose the top k most likely unambiguous substitutes in the target word context.

2. Substitutes must be observed in the word-tag dictionary.

3. Count the tags of the top k substitutes for all target word instances.

4. Remove the tags that are not observed as the tag of substitutes in any of the target

word instances.

The first rule decreases the level of ambiguity by selecting only the unambiguous sub-

stitutes from the word-tag dictionary. The second rule makes sure that the unambiguous

substitutes do occur in the word-tag dictionary. The counts of substitute POS tags and the

deleted rare POS tags for two erroneous function words are shown in Table 5.4. The exper-

iments in this section focus on: (1) the analysis of dictionary reduction and (2) the number

of top substitutes used for each ambiguous word.

58

Word Tag Gold EM Substitutes

dictionary tagging tagging POS counts

of {RB, RP, IN} IN(632) IN(0) IN(2377)

RP(0) RP(632) RP(0)

RB(0) RB(0) RB(850)

a {LS, SYM, NNP, DT(458) DT(0) DT(513)

FW, JJ, IN, DT} IN(1) IN(0) IN(317)

JJ(2) JJ(0) JJ(1329)

SYM(1) SYM(258) SYM(0)

LS(0) LS(230) LS(0)

Table 5.4: Deleted POS tags of the given words are shown in bold.

The results obtained with the dictionary that is reduced by using the top 5 likely un-

ambiguous substitutes are presented in Table 5.5. Note that with the reduced dictionary

the uniformly initialized first-order HMM-EM achieves 91.85% accuracy. We execute 100

random restarts of the EM algorithm and select the model with the highest corpus likeli-

hood. Our model achieves 92.25% accuracy—so far the highest accuracy reported for the

PTB24K corpus.

As Table 5.5 shows, the effect of dictionary reduction is more noticeable on the content

words than on the function words. This happens mainly because function words are fre-

quently tagged with one of their tags. The same explanation can also be given for the high

accuracy of the majority voting-based supervised baseline on function words.

The reduced dictionary (RD) removes the problematic rare POS tags of the words, thus

improving significantly the accuracy on the content and function words as compared to the

HMM models trained on the original dictionary.

59

POS

Groups

2-gram HMM

Accuracy (%)

2-gram HMM RD

Accuracy (%)

Noun 92.22 94.01

Verb 83.84 84.90

Adj 85.22 89.52

Adv 83.96 85.18

Pronoun 95.56 95.92

Content 89.42 91.18

Function 70.49 92.92

All 82.05 91.85

Table 5.5: Percentages of correctly tagged words by different models with the modified

dictionary. The dictionary size is reduced by using the top 5 substitutes of each target

word.

60

5.4.1 Number of Substitutes

In this set of experiments, we try different numbers of artificial substitute words for each

ambiguous word in a given sentence. We run our method on the PTB24K corpus with

1, 5, 10, 25, and 50 substitutes per ambiguous word. Table 5.6 displays the results. The

performance of our method is dependent on the number of substitutes, the highest score

being achieved when 5 substitutes are used. Incorporating the probability of the substitutes

into the model rather than using a hard cutoff might offer a better solution.

Number of

Substitutes

2-gram HMM RD

Accuracy (%)

none 82.05

1 89.65

5 91.85

10 90.09

25 89.97

50 89.83

Table 5.6: Percentages of correctly tagged words by the models trained on the PTB24K

corpus with different reduced dictionaries. The dictionary size is reduced by using different

number substitutes.

5.4.2 Amount of Data

In this set of experiments we doubled the size of the data and trained HMM-EM models

on a corpus that consists of the first 48K words of the Penn Treebank corpus. Our aim

is to observe the effect of more data on our dictionary reduction procedure. Using the 5

replacements of each ambiguous word we reduce the dictionary and train a new HMM-EM

61

model using this dictionary. The additional data together with 100 random starts increases

the model accuracy to 92.47% on the 48K corpus.

POS

Groups

3-gram HMM RD

Accuracy (%)

2-gram HMM RD

Accuracy (%)

Noun 89.45 93.47

Verb 85.56 88.99

Adj 86.02 87.53

Adv 94.44 95.92

Pronoun 94.08 94.04

Content 88.91 91.97

Function 92.44 92.26

All 90.31 92.09

Table 5.7: Percentages of the correctly tagged words by the first and second order HMM-

EM model trained on the 48K corpus with reduced dictionary. The dictionary size is re-

duced by using the top 5 replacements of each target word.

As we mentioned before, when the model is trained using the original dictionary, the

performance gap between the first order HMM the second order HMM is around 8% as

presented in Table 5.3. On the other hand, when we use the reduced dictionary together

with more data the accuracy gap between the second order and the first order HMM-EM

becomes less than 2% as shown in Table 5.7. This confirms the hypothesis that the low

performance of the second order HMM is due to data sparsity in the 24K-word dataset, and

better results may be achieved with the second order HMM in larger datasets.

62

5.4.3 17-Tag Set

To observe the effect our method on a model with coarse grained dictionary, we collapsed

the 45–tagset treebank dictionary to a 17–tag set coarse dictionary (Smith and Eisner,

2005). The POS literature after the work of Smith and Eisner follows this tradition and also

tests the models on this 17–tagset. Table 5.8 summarizes the previously reported results on

coarse grained POS tagging. Our system achieves 92.9% accuracy where the oracle accu-

racy of 24K dataset with the reduced 17–tagset dictionary is 98.3% and the state-of-the-art

system IP+EM scores 96.8%.

Model Accuracy Data Size

BHMM 87.3 24K

CE+spl 88.7 24K

RD 92.9 24K

LDA+AC 93.4 1M

InitEM-HMM 93.8 1M

IP+EM 96.8 24K

Table 5.8: Performance of different systems using the coarse grained dictionary.

The IP+EM system constructs a model that describes the data by using minimum num-

ber of bi-gram POS tags then uses this model to reduce the dictionary size (Ravi and Knight,

2009b). InitEM-HMM uses the language specific information together with good initial-

ization and it achieves 93.8% accuracy on the 1M word treebank corpus. LDA+AC semi-

supervised Bayesian model with strong ambiguity class component given the morpholog-

ical features of words and scores 93.4% on PTB (Toutanova and Johnson, 2007). CE+spl

is HMM model estimated by contrastive estimation method and achieves 88.7% accuracy

(Smith and Eisner, 2005). Finally, BHMM is a fully Bayesian approach that uses sparse

63

POS priors and scores 87.3% (Goldwater and Griffiths, 2007a).

5.5 Experiment: Data-Enhanced Viterbi Search Algorithm

This method uses the statistical language model for generating artificial sentences to im-

prove the disambiguation of ambiguous words. The improvement results from the amended

Viterbi decoding algorithm described in Section 4.4.2. The steps of the data-enhanced

HMM-EM can be summarized as follows:

Algorithm

1. Select the substitute words of the ambiguous words in w0 . . . wn, using the Criteria 1,

2, or 3.

2. Construct r artificial sentences by replacing wi with the selected substitutes..

3. Finally, apply the Viterbi search algorithm to jointly predict the tag sequence of the

original and the artificial sequences.

The experiments in this section focus on: (1) substitute selection criteria and (2) the

number of the substitutes used for each ambiguous word.

The selected substitute words may not always have a common tag. If so, then the prob-

ability of the optimum tag sequence will be zero whenever a zero clique occurs, and the

Viterbi search algorithm will not be able to find an optimum tag sequence. To prevent zero

cliques in data-enhanced HMM-EM, we perform smoothing to assign non-zero probabil-

ities to every entry of the Pr(w|t) matrix. To solve this problem, we assign a very small

fraction ε of the probability to the zero entries of the Pr(w|t) matrix. The remaining part of

the probability, namely (1− ε), is distributed among the non-zero entries of Pr(w|t) matrix

in proportion to their probabilities. Assigning negligible probabilities to the zero entries of

64

the word given in the tag matrix is a smoothing operation that prevents the occurrence of

zero cliques in the Viterbi algorithm.

5.5.1 Substitute Selection Criteria

The main idea of our model is that similar sentences should have the same tag sequence.

Our method derives similar sentences from the target sentence by replacing each word

with its likely substitutes. In order to observe the effect of selected substitutes, we define

three different selection criteria: (1) select the words with at least one common tag, (2)

select the words whose tag set is a subset of the target word tag set, and (3) select only the

unambiguous words that have a common tag with the target word. The number of substitute

words is fixed to 25 for the experiments in this section.

12K 24K 48K 96K

Criterion 1 74.61 77.42 79.72 80.68

Criterion 2 75.17 77.42 81.02 80.99

Criterion 3 76.38 80.00 81.55 81.61

Unsup. Baseline 72.18 74.38 77.43 78.75

Random Baseline 66.57 67.03 67.07 66.99

Table 5.9: Results of our approach on different corpora with different settings. All the

results are statistically significant and the 25 best substitute words for each ambiguous

word are used in all the experiments.

As Table 5.9 shows, Criterion 3 (i.e. selecting the unambiguous words in the given

context) outperforms the other criteria on all of the corpora. The main problem with Cri-

terion 1 is that it accepts any word as long as that word has a common tag with the target

word, and some of these words have more tags than the target ambiguous word. Criterion 2

65

performs better than Criterion 1 in almost all of the experiments. Thus, words with one tag

(unambiguous), or fewer tags than the replaced word, are better substitutes than the words

that have more tags than the replaced word.

5.5.2 Experiments on the Number of Substitutes

Number of Substitutes

Data 0 1 10 25 50

12K 72.19 73.85 74.67 74.61 74.40

24K 74.38 77.51 77.48 77.43 77.80

48K 77.43 79.78 80.06 79.72 79.40

Table 5.10: Results of our approach on different corpora with different number of substi-

tute words per ambiguous word. Selection criterion 1 is used to obtain these results, and

accuracies are reported as percentages.

In this set of experiments, we vary the number of substitute words for each ambiguous

word in a given sentence. This directly affects the number of artificial sentences generated.

We run our method on the corpora PTB12K, PTB24K, and PTB48K with 1, 10, 25, and

50 substitute words per ambiguous word. Table 5.10 shows the results of our experiments.

The performance of our method does not change significantly as the number of substitutes

increases.

5.5.3 Out-of-Vocabulary (OOV) Words

To observe the performance of our model on OOV words, we tested the data-enhanced

Viterbi on a corpus that is different from the one used during the training of the model. The

test corpus thus includes some words that are not observed in training data.

66

We do not perform any smoothing on the model parameter θ, that is, we do not assign

non-zero OOV word probabilities. Hence θ does not contain any information related to

OOV words. The main disadvantage of smoothing is that it assigns the same tag distribution

to all OOV words. In our method, by replacing each OOV word in a sentence S with the

most likely word that can be used in the same context, we get another sentence S ′ that

consists only of in-vocabulary (IV) words. We repeat this step to construct more and more

artificial sentences like S ′, and then proceed with the Viterbi algorithm.

We performed two experiments: (1) the possible tags of the OOV words are known,

and (2) the possible tags of the OOV words are unknown. In the first case, the selected

substitutes words and the OOV word have at least one common tag in the worst case. In the

latter case, this is not guaranteed since the possible tags are unknown. In these experiments,

we used the first PTB24K words of Penn Treebank as the training corpus and 5 random 12K

words corpora from the Penn Treebank as the test corpora. Since the model trained on the

PTB24K corpus has no information related to the OOV words, the Viterbi search algorithm

assigns zero to all OOV word with certain tag probabilities, and thus leads to the generation

of zero clique. The smoothing that we use assigns negligible probabilities to all zero entries

of P (word|tag). Therefore only the contextual information of hidden states is utilized in

assigning the correct tag of the OOV word. The baseline model is trained on the PTB24K

corpus. The performance of this model on the test corpus with OOV is summarized in Table

5.11 in the row labeled “Unsup. Baseline.”

When the possible tags of the OOV word are given, our method improves HMM-EM.

Its performance on both IV and OOV words is significantly better than the baseline score,

which implies that artificial sentences without OOV words successfully represent the hid-

den tag sequence of S and improve the algorithm performance. Even when possible tags

cannot be found for OOV word, our method still improves HMM-EM. While the improve-

ment resulting from this method is significantly higher compared to the baseline system, it

is significantly lower than in the previous case. The main reason for such a performance

67

Accuracy(%) All words IV OOV

With tags 74.91 73.77 79.21

Without tags 66.36 72.53 40.06

Unsup. Baseline 57.5 66.57 18.84

Table 5.11: The performance of the data-enhanced Viterbi algorithm that uses the 25 most

likely unambiguous substitutes for each ambiguous word. All of the results are averaged

over 5 test corpora. The first two rows give the performance of the system with and without

the possible tags of the OOV words, and the last row gives the performance of the baseline

system. The average percentage of OOV words is 18.99%.

difference is that the most frequent words of SLM dominate the substitute word sets, and

cannot be eliminated because we do not have the possible tags for the OOV words.

5.6 Conclusion

In this chapter we present an application a dictionary reduction data enhancement method

that can be applied to HMM-based models. With the help of a SLM, our system created

artificial sentences that are assumed to have the same POS tag sequence with the target

sentence.

In dictionary reduction method, I use artificial sentences to reduce the size of the

word–tag dictionary. To test our method we used HMM-EM as the unsupervised model.

Our method significantly improves the prediction accuracy of the unsupervised first order

HMM-EM system in all of the POS groups and achieves 92.25% and 92.47% word tagging

accuracy on the 24K and 48K word corpora respectively. We also tested our model on a

coarse grained dictionary with 17 tags and achieved an accuracy of 92.8%.

In data enhanced Viterbi, I fed them to the model based approach to jointly predict the

68

optimum tag sequence of the target and its artificial counterparts. To present our method we

used HMM-EM as the model based approach. Our method significantly improves the pre-

diction accuracies of the unsupervised HMM-EM system in all of the corpora and achieves

%2.6 error accuracy gain in the worst case and %5.6 in the best case.

Finally, I also demonstrated the performance gain with data enhancement on OOV

words whether the possible tags of OOV words are available or not. In both cases our

method increases the accuracy of the baseline system substantially. Moreover the predic-

tion accuracy of OOV words are comparable to the accuracy of IV words when the possible

tags are available for the OOV word. Thus we concluded that our method successfully

generates artificial sentences without OOV words for a given sentence with OOV words.

In this chapter, I show that unambiguous replacements of an ambiguous word can re-

duce the amount of the ambiguity thus replacement words might also be incorporated into

the unsupervised disambiguation problems.

5.7 Future Work

In Section 4.4.1 and 4.4.2, the statistical language models (SLMs) have been used in an

ad-hoc manner to generate and use likely substitutes, or have been incorporated into a

probabilistic model to provide the Pr(word|context) term. These models assign the same

uniform weight to all likely substitutes, even though the language model ranks these sub-

stitutes with different probabilities.

Some ideas for future work as follows: We intend to use the statistical language model

for generating artificial data to expedite the disambiguation process during the expectation

maximization. Specifically, we assume that the same hidden tag sequence that has gener-

ated a particular test sentence can also generate artificial sentences where one of the words

has been replaced with a likely substitute. Thus, words that are observed frequently in the

context of an ambiguous target are incorporated into the disambiguation process. More-

69

over, every substitute is weighted according to the probability estimate assigned to it by

the language model. As a result, the EM algorithm estimates the probabilities according to

not only the original observation sequences but also the artificial observation created and

weighted by the statistical language model.

By the very the nature of EM, the estimation process can converge to a local maximum,

which might decrease the accuracy of disambiguation. On the other hand, non-parametric

Bayesian approaches do not suffer from this convergence problem. Consequently, we in-

tend to replace EM with non-parametric Bayesian methods.

Finally, the quality of the likely replacements and the probabilities assigned to them

have a crucial role in the disambiguation process. We will conduct experiments to investi-

gate the effect of in-domain and out-of-domain corpora on the selection of replacements.

70

Chapter 6

MORPHOLOGICAL DISAMBIGUATION

The terminology of morphological disambiguation can be applied to agglutinative lan-

guages as follows: In the latter, the equivalent of POS tagging is morphological disam-

biguation and the equivalent of the term tag is parse. The morphological disambiguation

problem can therefore be defined as selecting the correct parse of a word in a given con-

text from the possible candidate parses of the word. Our approach does not directly assign

any parses to the target word. Instead, it uses the target word to limit the set of possible

parses, and then assigns probabilities to these depending on the context. This approach has

been previously applied to the word-sense disambiguation problem where the aim was to

determine the sense of an ambiguous word in a given context (Pustejovsky et al., 2004).

The tags in English and the parses in an agglutinative language differ in a major respect.

Unlike the tags in English, the number of theoretically possible parses in agglutinative

languages can be infinite although the number of features is finite. Therefore, even in a

training corpus of 1 million words, it is possible to observe thousands of different possible

parses—a situation that leads to data sparseness. Finally, our model can be applied to any

agglutinative language since it does not require any hand-crafted rules and does not depend

on the knowledge of a native speaker.

To predict the correct parse of an ambiguous word, we proceed as follows: First, the

possible parses are generated using a morphological analyzer. Then, using the language

model together with the vocabulary of the corpus, a probabilistic model is applied to

each ambiguous word. The resulting disambiguation accuracy for the ambiguous words

is 64.5%, whereas 31.9% and 71.0% are the unsupervised and supervised baselines, re-

spectively.

Morphological disambiguation, an important step in a number of NLP tasks, is quite

crucial for agglutinative languages, such as Turkish, Finnish, Hungarian, and Czech. For

example, a morphological analyzer used in conjunction with a disambiguator can signifi-

cantly reduce the perplexity of a Turkish language model (Yuret and Biçici, 2009).

Three possible morphological parses for the Turkish word “masalı” are shown below.

The candidate parses are generated using a morphological analyzer. The first token of the

masal +Noun+A3sg+Pnon+Acc (= the story)

masal +Noun+A3sg+P3sg+Nom (= his story)

masa +Noun+A3sg+Pnon+NomˆDG+Adj+With (= with tables)

analyzer output is the root of the word while the rest is the parse of the word that consists

of features concatenated to each other either by a “+” or “ˆDG”. The first two lines output

by the analyzer for “masalı” have the same root, masal (= story) but different parses, while

the last line has a different root masa (= table) and parse. Feature groups that are separated

by a derivation boundary (ˆDG) are called “inflection groups” (OflazerH et al., 2002). The

first feature following the root or a ˆDG represents the part-of-speech (POS) tag of the new

derived word. A morphological disambiguation system should pick the correct parse of the

word “masalı”, given the context in which this word appears.

In this chapter, we present an application of the probabilistic voting model (described

in detail in Section 4.3) for the morphological disambiguation task of Turkish. The main

idea behind the model is that instead of assigning parses to words, it assigns parses to the

contexts of the words. The probability of the morphological analysis in a given context is

estimated by a language model that is trained on an unlabeled corpus. Therefore, the model

does not require any predefined rule set, and can be applied to any language as long as a

parse (tag) dictionary for each word and a corpus are available.

72

The rest of this chapter is organized as follows: First, Section 6.1 reviews the related

work on morphological disambiguation. Section 6.2 specifies in detail the steps of the

probabilistic voting algorithm. Section 6.3 gives the details of the tag-parse dictionary

construction and a simplification procedure that jointly increase the chance of there being

shared parses between the entries of the dictionary. Section 6.4 summarizes our results on

morphological disambiguation for Turkish. Finally, Section 6.6 discusses the probabilistic

voting model and outlines the road map of future work.

6.1 Related Work

Several studies undertaken in the past decade have contributed to progress in the unsuper-

vised morphological disambiguation of morphologically rich languages .

In Hebrew, a context-free model was used to estimate the morpho-lexical probabilities

of a given word from an untagged corpus (Levinger et al., 1995). Like Turkish, Hebrew is a

morphologically rich language, and morphemes in Hebrew can combine into a single word

in both agglutinative and fusional ways. Thus a Hebrew word can have various segmenta-

tions and multiple morphological analyses. The method referred to above is very similar to

ours because both use substitute words to disambiguate the target word. Our method uses

one set of substitute words from the vocabulary while the other method explicitly uses a

predefined set of rules to select the set of similar words for each target word before disam-

biguation takes place. Another important difference is that this method does not use any

contextual information during the disambiguation task.

A more recent study has shown that morpheme-based segmentation and tagging in He-

brew can be learned simultaneously by using a stochastic unsupervised learning with HMM

(Adler and Elhadad, 2006). Their model first estimates the probabilities of each segmen-

tation and their possible tags by using a variation of the Baum-Welch algorithm. Then an

adaptation of the Viterbi algorithm is applied to get the most probable segmentation and

73

tagging sequence.

6.2 Algorithm

Section 4.3 has described the mathematical framework of the model applied to the tag

disambiguation task when a word-tag dictionary is available. The probabilistic model of

Section 4.3 decomposes the problem into the estimation of Pr(t|c) and Pr(t|s, c), where t,

c, and s represent the tag, the context, and the substitute words in c, respectively. Hence, we

estimate Pr(s|c) using a statistical language model. We make the following two assump-

tions when estimating Pr(t|s, c).

1. Pruning Assumption: Every w has a possible tag set Tw which is available from the

word-tag dictionary. Instead of assigning non-zero probabilities to all possible tags,

our model simply assumes that, in the context ofw, the only possible tags are the ones

that are contained in Tw. Therefore, tags that are not in Tw have zero probability.

2. Uniformity Assumption: We assume that, given a substitute word s and context c,

the distribution of the tags is uniform on Tw ∩ Ts.

Pr(t|s, c) =

 1
|Tw∩Ts| if t ∈ Tw ∩ Ts,

0 otherwise.
(6.1)

Another interpretation of this model is that each substitute word votes for the possible

tags of the target word. The weight of the vote of s is determined by Pr(s|c). If the

substitute and the target word have more than one common tag, then Pr(s|c) is equally

distributed among the common tags.

The algorithmic steps of the disambiguator are specified below. Throughout this sec-

tion, wi denotes the ith word from the set of target words W , ci denotes the context of ith

74

target word, sij denotes the jth substitute of wi, Si denotes all substitutes of wi, and Ti

denotes the set of possible tags of wi.

For all wi ∈ W , we perform the following steps:

Algorithm

1. Calculate P (sij|ci) for each substitute, using the estimation method described in

Chapter 2.

2. Determine the intersection of Twi
with each sij ∈ Si for all s ∈ Swi

. P (t|vij) is equal

to 1
|Twi∩Tsij |

because of the uniformity assumption.

3. Select t ∈ Ti that maximizes P (t|ci).

6.3 Word-tag Dictionary Construction and Simplification

The estimation quality of P (t|cw) is highly dependent on the parse set Tw of the target

word. Using a Turkish morphological analyzer (OflazerH et al., 2002), we get the possible

parses of the target word and its substitutes, and construct the word-parse dictionary. The

analyzer produces the parses of each word as shown in the second column of Table 6.1.

Because of the agglutinative nature of Turkish, the parses are complex and it is hard to find

substitute words with common parses.

Original Parse Simplified Parse

masal +Noun+A3sg+Pnon+Acc Pnon+Acc

masal +Noun+A3sg+P3sg+Nom P3sg+Nom

masa +Noun+A3sg+Pnon+NomˆDG+Adj+With With

Table 6.1: Parse simplification of the word “masalı”.

75

If the number of substitute words that have common parses with the target word is

small, then P (t|cw) will be estimated using very few substitute words. Thus, instead of

using the parses directly, we construct a discriminative minimal feature set T ∗w from Tw

by using only the final inflection groups (IG) for each parse. To construct T ∗w, our model

selects the minimum number of rightmost features from each of the last IGs such that these

rightmost features uniquely discriminate the corresponding parse from the other parses in

Tw. Table 6.1 illustrates the simplifications of the parses of the word “masalı”.

6.4 Experiments and Results

Test Set Tagged Training Set

Sentences 446 50673

Tokens 5365 948404

Ambiguous tokens 2437(45.4%) 399223(42.1%)

Average Parses 1.85 1.76

Table 6.2: Test and Tagged Training Data Statistics

In this section, we present a number of experiments to observe the effects of the model

parameters on the algorithm performance. We define an unsupervised and a supervised

baseline on the test set to compare with the results of our method. The unsupervised base-

line is calculated by randomly picking one of the parses of each word in the test set. To

calculate a supervised baseline, we use a tagged training set consisting of 1 million words

of semi-automatically disambiguated Turkish news text. Some brief statistics relevant to

the tagged training set and the test set are presented in Table 6.2. Using the training set, the

supervised baseline simply does majority voting for each word. If the target word does not

exist in the training set, then the supervised baseline randomly picks one of the possible

76

parses of the missing word. The unsupervised baseline disambiguates 31.9% of the am-

biguous words correctly, while the supervised baseline correctly disambiguates 71.0% of

them. All the accuracy scores reported in this section are only for ambiguous words. The

experiments in this section can be categorized as language model-related and substitute

word-related1.

6.4.1 Language Model

The substitutes are calculated using a language model that is trained on the Turkish corpus

(Sak et al., 2008), as described in Section 2. The data set contains about 440 million words,

and 10% of this data is extracted and used as the test set to calculate the perplexity of the

language models. The SRILM toolkit is used to train the 4-gram model with Kneser-Ney

interpolated smoothing, n-gram orders, and training corpus sizes. The effect of the training

corpus size and the n-gram order on the model are discussed in the next section.

6.4.2 Corpus size

We used three corpora of different sizes to train the 4-gram language model and observe

the performance of our disambiguator. For our experiments, we randomly select 1% and

10% of the original training corpus described in Section 2. The performance of the disam-

biguator with different corpus sizes are summarized in Table 6.3.

As Table 6.3 shows, the performance worsens as the corpus size decreases. However,

using as little as10% of the corpus, our disambiguator can still achieve results comparable to

the model using the whole corpus (in terms of 95% confidence interval). This is not the case

when we use only 1% of the corpus, since in this case the loss of performance compared

to the model using the whole corpus becomes statistically significant. These experiments

1For the sake of simplicity, all the reported results in this section are obtained (unless otherwise stated) by
using the most frequent 200K words of the vocabulary.

77

Corpus Size Accuracy

4M 60.4

40M 63.1

400M 64.5

Table 6.3: The performance of the model using the parse simplification together with dif-

ferent corpus sizes. Statistically significant results are displayed in bold (p < 0.05).

indicate that the performance may be improved by using larger Turkish corpora.

We used the Good-Turing and the Kneser-Ney smoothing techniques to observe the

effect of smoothing on the probability estimates of our disambiguator. However, we found

that the model performance is not significantly affected by the choice of the smoothing

method. Similarly, 2, 3, and 4-gram language models were trained, but these different

models did not have any significant effect on the model performance.

6.4.3 Number of Substitute Words

Number of

Substitute
Accuracy

Top 10 63.4

Top 100 64.3

Top 200 64.4

Top 2000 64.5

Table 6.4: The performance of the model with different number of substitutes. Statistically

significant results are displayed in bold (p < 0.05).

In these experiments, we calculate P (s|c) of each substitute word, select 10, 100, 200,

78

and 2000 substitutes that have the highest P (s|c), and use only these words to estimate

P (s|c). Table 6.4 shows the performance for different numbers of substitutes chosen. In-

creasing the number of substitutes to more than 100 makes no significant difference. Thus,

the computational efficiency of our model can be increased by using a possibly faster algo-

rithm that heuristically finds the top k substitutes with the highest P (s|c).

6.5 Conclusion

In this chapter, we have presented an application of the probabilistic voting model (see

Section 4.3) on the morphological disambiguation task of Turkish. The main idea behind

our model is instead of assigning parses to words, it assigns parses to the contexts of the

words. The probability of the morphological analysis in a given context is estimated by

a language model that is trained on an unlabeled corpus. Therefore, the model does not

require any predefined rule set and it can be applied to any language as long as a parse

(tag) dictionary for each word and a corpus are available. We were able to achieve 64.5%

accuracy on ambiguous words using this model. This accuracy might be improved by

relaxing the uniformity assumption of the target word parse distribution and letting it to

converge to the actual probabilities by using better statistical inference methods.

6.6 Future Work on Morphological Disambiguation

The accuracy might be improved by relaxing the uniformity assumption of the target word’s

parse distribution, and letting it converge to the actual probabilities by means of better

statistical inference methods.

79

Chapter 7

WORD-SENSE DISAMBIGUATION

Word-sense disambiguation (WSD) is the task of identifying the correct sense of an

ambiguous word in a given context. An accurate word-sense disambiguation system would

be of benefit to applications such as machine translation and information retrieval. The most

successful WSD systems to date rely on supervised learning and are trained on sense-tagged

corpora. In this chapter, we present an unsupervised word-sense disambiguation algorithm

that can leverage untagged text and can perform at the level of the best supervised systems

for the all-noun disambiguation task.

Our unsupervised system uses the Web1T dataset (Brants and Franz, 2006a) for un-

labeled examples. This dataset contains counts from a 1012-word corpus derived from

publicly available web pages.

The proposed approach to word-sense disambiguation is a probabilistic generative model

to seamlessly integrate unlabeled text data into the model building process. Our approach

makes use of the noisy channel model (Shannon, 1948), which has been an essential tool

in fields such as speech recognition and machine translation. In this study, we demonstrate

that the noisy channel model can also be a key component in unsupervised word-sense

disambiguation, provided that we can solve the context-dependent sense distribution prob-

lem. In Section 4.5, we show one way to estimate the context-dependent sense distribution

without using any sense-tagged data. Section 7.2 outlines the complete unsupervised WSD

algorithm using this model. We estimate the distribution of coarse-grained semantic classes

rather than fine-grained senses. The solution uses the two distributions for which we do

have data: the distribution of words used to express a given sense, and the distribution of

words that appear in a given context. The first can be estimated using WordNet sense fre-

quencies, and the second can be estimated using an n-gram language model, as described

in Section 7.3.

7.1 Related Work

For a general overview of different approaches to word-sense disambiguation, see (Navigli,

2009; Stevenson, 2003). The Senseval and SemEval workshops (Cotton et al., 2001; Mi-

halcea and Edmonds, 2004; Agirre et al., 2007) are good sources of recent work, and have

been used in this chapter to benchmark our results.

Generative models that utilize the noisy channel framework have previously been used

in speech recognition (Bahl et al., 1983), machine translation (Brown et al., 1990), question

answering (Echihabi and Marcu, 2003), spelling correction (Brill and Moore, 2000), and

document compression (Daume III and Marcu, 2002), among other applications. To our

knowledge, our work is the first application of the noisy channel model to unsupervised

word-sense disambiguation.

The use of statistical language models that rely on large corpora for word-sense dis-

ambiguation has been explored in (Yuret, 2007; Hawker, 2007). For the specific modeling

techniques used in this paper, see (Yuret, 2008). For a more general review of statistical

language modeling, see (Chen and Goodman, 1999; Rosenfeld, 2000; Goodman, 2001).

Grouping similar senses into semantic classes for word-sense disambiguation has been

explored previously. Senses that are similar have been identified using WordNet relations

(Peters et al., 1998; Crestan et al., 2001; Kohomban and Lee, 2005), discourse domains

(Magnini et al., 2003), annotator disagreements (Chklovski and Mihalcea, 2003), and other

lexical resources such as Roget (Yarowsky, 1992), LDOCE (Dolan, 1994), and ODE (Nav-

igli, 2006).

Ciaramita and Altun (2006) build a supervised HMM tagger using “supersenses”, which

81

are essentially the 25 WordNet noun categories that we have used in our first experiment in

addition to the 15 verb categories similarly defined. They report a supersense precision of

67.60 for nouns and verbs of Senseval-3. Table 7.2 gives our supersense score of 78% for

Senseval-3 nouns. However, the results are not directly comparable since they do not report

the noun and verb scores separately, nor do they calculate the corresponding fine-grained

score to compare with other Senseval-3 results.

Kohomban and Lee (2007) go beyond the WordNet categories to utilize lexicographer

files and experiment with clustering techniques for constructing their semantic classes.

Their classes make use of local features from sense-labeled data to optimize feature–class

coherence rather than adhering to the WordNet hierarchy. Their supervised system achieves

an accuracy of 74.7% on Senseval-2 nouns and 73.6% on Senseval-3 nouns.

The systems mentioned so far are supervised WSD systems. Agirre and Martinez

(2004) explore the large-scale acquisition of sense-tagged examples from the Web, and

use this corpus to train supervised, minimally-supervised (requiring sense bias informa-

tion from hand-tagged corpora, similar to our system), and fully unsupervised WSD al-

gorithms. Their results on the Senseval-2 lexical sample data compare favorably to other

unsupervised systems. Martinez et al. (2008) report work with a similar set of systems that

has been trained using automatically acquired corpora on Senseval-3 nouns. Their mini-

mally supervised system achieves a 63.9% accuracy on polysemous nouns from Senseval-3

(corresponding to 71.86% on all nouns).

7.2 Algorithm

Section 4.5 described how to apply the noisy channel model for WSD in a single context.

In this section, we present the steps that we follow in our experiments to simultaneously

apply the noisy channel model to all the contexts in a given word-sense disambiguation

task.

82

Algorithm 1

1. Let W be the vocabulary. In this study, we took the vocabulary to be the set of

approximately 12,000 nouns in WordNet that have non-zero sense frequencies.

2. Let T be the set of senses or semantic classes to be used. In this study, we used

various partitions of noun synsets as semantic classes.

3. Let C be the set of contexts (9-word windows for a 5-gram model) surrounding each

target word in the given WSD task.

4. Compute the matrix WC where WCik = Pr(W = i|C = k). Here i ranges over the

vocabulary W and k ranges over the contexts C. This matrix concatenates the (w)

word distribution vectors from Eqn. 4.19 for each context. The entries of the matrix

are computed using the n-gram language model described in Section 7.3.

5. Compute the matrix WT where WTij = Pr(W = i|T = j). Here i ranges over the

vocabulary W and j ranges over the semantic classes T. The entries of the matrix

are computed using the WordNet sense frequencies.

6. Compute the matrix TC = WT+ ×WC where TCjk = Pr(T = j|C = k). Here

j ranges over the semantic classes T and k ranges over the contexts C. This step

computes the pseudoinverse solution, which was described in Section 4.5, simulta-

neously for all the contexts. The resulting TC matrix is a concatenation of the (t)

solution vectors from Eqn. 4.19 for each context. WT+ is the pseudoinverse of the

matrix WT.

7. Compute the best semantic class for each WSD instance by using argmaxT Pr(T |W,C) ∝

Pr(W |T) Pr(T |C). Here Pr(T |C) comes from the column of the TC matrix that

83

corresponds to the context of the WSD instance, and Pr(W |T) comes from the row

of the WT matrix that corresponds to the word to be disambiguated.

8. Compute the fine-grained answer for each WSD instance by taking the most frequent

(lowest numbered) sense in the chosen semantic class.

9. Apply the one sense per discourse heuristic: if a word is found to have multiple

senses in a document, then replace it with the majority answer.

Appendix A discusses possible scaling issues of Step 6 and offers alternative solutions. We

use the pseudo-inverse solution in all our experiments because it can be computed fast and

none of the alternatives we tried made a significant difference in WSD performance.

7.3 Estimation Procedure

In Section 4.5, we showed how the unsupervised WSD problem, expressed as a noisy

channel model, can be decomposed into the estimation of two distributions: Pr(W |T) and

Pr(W |C). In this section, we describe our estimation procedure for these two distributions.

To estimate Pr(W |T), namely, the distribution of words that can be used to express a

given meaning, we used the WordNet sense frequencies.1 We did not perform any smooth-

ing for the zero counts, but used the maximum likelihood estimate: count(W,T)/count(T).

As described in later sections, we also experimented with grouping similar WordNet senses

into semantic classes. In this case, T stands for the semantic class, and the counts from var-

ious senses of a word in the same semantic class are added together to estimate Pr(W |T).

To estimate the distribution of words in a given context, Pr(W |C), we used a 5-gram

language model. Estimating Pr(W |C) for each context is expensive because the number of

1The sense frequencies were obtained from the index.sense file included in the WordNet distribu-
tion. We had to correct the counts of three words (person, group, and location) whose WordNet counts
unfortunately include the corresponding named entities and are thus inflated.

84

words that need to be considered is large. The Web 1T dataset contains 13.5 million unique

words, and WordNet defines about 150,000 lemmas. To make the computation feasible, we

needed to limit the set of words for which Pr(W |C) had to be estimated. We limited our set

to those WordNet lemmas which had the same part of speech as the target word. We further

required the word to have a non-zero count in WordNet sense frequencies. The inflection

and capitalization of each word W was automatically matched to the target word. As a

result, we estimated Pr(W |C) for about 10,000 words for each noun context, and assumed

that the other words had zero probability. The n-grams required for all the contexts were

listed, and their counts were extracted from the Web 1T dataset in one pass. The Pr(W |C)

was estimated for all the words and contexts on the basis of these counts. At the end,

we used only the 100 most likely words in each context for efficiency, as the difference in

results using the whole distribution was not significant. For more details on smoothing with

a large language model, see (Yuret, 2008) (we did not see a significant difference in WSD

performance based relative to the smoothing method used).

7.4 Semantic Classes

Our algorithm internally differentiates semantic classes rather than fine-grained senses. Us-

ing fine-grained senses in the noisy channel model would be computationally expensive,

because the word-sense matrix would need to be inverted (see Eqn. 4.19). It is also unclear

whether using fine-grained senses for model building will lead to better learning perfor-

mance: the similarity between the distributions of related senses is ignored and the data

becomes unnecessarily fragmented.

Even though we use coarse-grained semantic classes for model building, we use fine-

grained senses for evaluation. During evaluation, the coarse-grained semantic classes pre-

dicted by the model are mapped to fine-grained senses by picking the lowest numbered

85

WordNet sense in the chosen semantic class.2 This is necessary to perform a meaningful

comparison with published results.

We take semantic classes to be groups of WordNet synsets defined using the hyper-

nym hierarchy (see Section 7.1 for alternative definitions). Section 7.5 presents three WSD

experiments using different sets of semantic classes at different levels of granularity. In

each experiment, we designate a number of synsets that are high in the WordNet hyper-

nym hierarchy as “head synsets”, and use their descendants to form the separate semantic

classes.

An arbitrary set of head synsets will not necessarily have mutually exclusive and collec-

tively exhaustive descendants. To assign every synset to a unique semantic class, we impose

an ordering on the semantic classes. Each synset is assigned only to the first semantic class

of whose head it is a descendant according to this ordering. If there are synsets that are not

descendants of any of the heads, they are collected into a separate semantic class created

for that purpose.

Using the coarse-grained semantic classes for prediction, Algorithm 1 will be unable

to return the correct fine-grained sense when this is not the lowest-numbered sense in a

semantic class. To quantify the restrictive effect of working with a small number of seman-

tic classes, Figure 7.1 plots the number of semantic classes versus the best possible oracle

accuracy for the nouns in the SemCor corpus. To compute the oracle accuracy, we assume

that the program can find the correct semantic class for each instance, but has to pick the

first sense in that class as the answer. To construct a given number of semantic classes, we

used the following algorithm:

Algorithm 2

1. Initialize all synsets to be in a single “default” semantic class.

2The sense numbers are ordered by the frequency of occurrence in WordNet.

86

Figure 7.1: Upper bound on fine-grained accuracy for a given number of semantic classes

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 10 20 30 40 50 60 70 80 90

F
in

e-
gr

ai
ne

d
ac

cu
ra

cy

Number of semantic classes

2. For each synset, compute the following score: the oracle accuracy achieved if that

synset and all its descendants are split into a new semantic class.

3. Take the synset with the highest score, and split that synset and its descendants into

a new semantic class.

4. Repeat steps 2 and 3 until the desired number of semantic classes is achieved.

The upper bound on fine-grained accuracy for a small number of semantic classes is

surprisingly high. In particular, the best reported noun WSD accuracy (78%) is achievable

if we can perfectly distinguish the five semantic classes from each other.

87

7.5 Three Experiments

We ran three experiments with the noisy channel model using different sets of semantic

classes. The first experiment uses the 25 WordNet semantic categories for nouns, the second

experiment looks at what happens when we group all the senses to just two or three semantic

classes, and the final experiment optimizes the number of semantic classes using one dataset

(which gives 135 classes) and reports the output using another dataset.

The noun instances from the last three SensEval/SemEval English all-words tasks are

used for evaluation. We focus on the disambiguation of nouns for several reasons. Nouns

constitute the largest portion of content words (48% of the content words in the Brown

corpus (Kucera and Francis, 1967) are nouns). For many tasks and applications (e.g. web

queries, (Jansen et al., 2000)) nouns are the most frequently encountered and important part

of speech. Finally, WordNet has a more complete coverage of noun-semantic relations than

of other parts of speech—an important consideration for our experiments with semantic

classes.

As described in Section 7.2 we use the model to assign each ambiguous word to its

most likely semantic class in all the experiments. The lowest-numbered sense in that class

is taken as the fine-grained answer. Finally, we apply the one sense per discourse heuristic:

if the same word has been assigned more than one sense within the same document, then

we take a majority vote and use sense numbers to break the ties.

Table 7.1 gives some baselines for comparison. The performance of the best supervised

and unsupervised systems on noun disambiguation for each dataset are given. The first

sense baseline (FSB) is obtained by always picking the lowest-numbered sense for the

word in the appropriate WordNet version. We prefer the FSB baseline over the commonly

used most frequent sense baseline because the tie breaking is unambiguous for the former.

All the results reported are for fine-grained sense disambiguation. The top 3 systems given

in the table for each task are all supervised systems; the result for the best unsupervised

88

Task WN Nouns FSB 1st 2nd 3rd Unsup

senseval2 1.7 1067 71.9 78.0 74.5 70.0 61.8

senseval3 1.7.1 892 71.0 72.0 71.2 71.0 62.6

semeval07 2.1 159 64.2 68.6 66.7 66.7 63.5

total 2118 70.9 74.4 72.5 70.2 62.2

Table 7.1: Baselines for the three SensEval English all-words tasks; the WordNet version

used; number of noun instances; percentage accuracy of the first sense baseline, the top

three supervised systems, and the best unsupervised system. The last row gives the total

score of the best systems on the three tasks.

system is given in the last column. The reported unsupervised systems do use the sense

ordering and frequency information from WordNet.

7.5.1 First experiment: the 25 WordNet categories

In previous work, the descendants of 25 special WordNet synsets (known as the “unique

beginners”) have been used as the coarse-grained semantic classes for nouns (Crestan et al.,

2001; Kohomban and Lee, 2005). These unique beginners were used to organize the nouns

into 25 lexicographer files, depending on their semantic category during WordNet develop-

ment. Figure 7.2 shows the synsets at the top of the noun hierarchy in WordNet. The 25

unique beginners have been shaded, and the two figures show how the hierarchy evolved

between the two WordNet versions used in this study.

We ran our initial experiments using these 25 WordNet categories as semantic classes.

The distribution of words for each semantic class, Pr(W |T), is estimated from WordNet

sense frequencies. The distribution of words for each context, Pr(W |C), is estimated using

a 5-gram model derived from the Web 1T corpus. The system first finds the most likely

89

Figure 7.2: The top of the WordNet noun hypernym hierarchy for version 1.7 (left) and

version 2.1 (right). The 25 WordNet noun categories are shaded.

semantic class using the noisy channel model, then picks the first sense in that class. Ta-

ble 7.2 gives the results for the three datasets. These results are significantly better than the

previously reported unsupervised results.

To illustrate which semantic classes are the most difficult to disambiguate, Table 7.3

gives the confusion matrix for the Senseval2 dataset. We can see that the frequently oc-

curring concrete classes like person and body are disambiguated well. The most serious

sources of error are the abstract classes like act, attribute, cognition and communication.

These 25 classes may not be the ideal candidates for word-sense disambiguation. Even

though they allow a sufficient degree of fine-grained distinction (Table 7.2 shows that we

can get 85–90% if we could pick the right class every time), they seem too easy to confuse.

In the next few experiments, we will use these observations to design better sets of semantic

90

Dataset CorrClass MaxScore Score

senseval2 85.1 90.3 77.7

senseval3 78.0 88.7 70.1

semeval07 75.5 86.2 64.8

total 81.4 89.3 73.5

Table 7.2: The performance of the noisy channel model with the 25 semantic classes found

in WordNet lexicographer files. The columns give the dataset, the percentage of times the

model picks the correct semantic class, maximum possible fine-grained score if the model

had always picked the correct class, and the actual score.

classes.

7.5.2 Second experiment: distinguishing mental and physical concepts

Figure 7.1 shows that the upper bound for fine-grained disambiguation is relatively high

even for a very small number of semantic classes. In our next experiment we look at how

well our approach can perform differentiating only two or three semantic classes.

Using Algorithm 2 on the appropriate version of SemCor, we pick the head synsets to be

used for defining the semantic classes. Figure 7.2 shows that the top level of the hypernym

hierarchy has changed significantly between the WordNet versions. Thus, different head

synsets are chosen for different datasets. However the main distinction captured by our

semantic classes seems to be between mental and physical concepts. Table 7.4 gives the

results. The performance with a few semantic classes is comparable to the top supervised

algorithms in each of the three datasets.

91

ac an ar at bo co co ev fe fo gr lo mo ob pe ph po pr qu re sh st su ti F A

act 58 0 4 7 0 7 2 3 2 0 5 0 0 0 0 0 1 4 1 1 0 2 0 0 9.1 59.8

animal 0 17 5 0 2.1 77.3

artifact 0 0 66 2 0 0 6 5 0 0 5 1 0 1 0 0 0 0 0 0 3 1 0 0 8.4 73.3

attribute 3 0 0 19 0 3 0 0 0 0 0 1 0 1 2 0 2 1 0 0 1 3 0 0 3.4 52.8

body 0 0 0 0 123 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 11.6 99.2

cognition 6 0 1 2 0 82 5 1 0 0 0 2 1 1 1 0 1 0 5 1 0 5 0 0 10.7 71.9

communicat 2 0 1 0 0 2 29 1 0 0 0 2 5 0 0 1 0 0 0 1 0 0 0 2 4.3 63.0

event 0 0 0 0 0 0 0 19 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 2.0 90.5

feeling 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.4 100.

food 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 100.

group 0 0 0 2 0 5 0 0 0 0 69 2 0 3 0 0 0 0 0 1 1 0 0 1 7.9 82.1

location 0 0 0 1 0 0 0 0 0 0 0 22 0 0 0 0 0 0 0 0 0 0 0 0 2.2 95.7

motive 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0.2 50.0

object 2 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0 1 0.7 14.3

person 2 4 0 0 0 1 1 0 0 0 1 0 0 0 168 0 0 0 0 0 0 0 0 0 16.6 94.9

phenomenon 1 0 0 1 0 1 0 2 0 0 0 0 0 0 0 3 0 0 0 3 0 0 0 0 1.0 27.3

possession 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0.4 100.

process 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 12 0 0 0 1 0 0 1.4 80.0

quantity 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 10 0 0 0 0 0 1.2 76.9

relation 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0.3 66.7

shape 0 1 0 0 0 0.1 100.

state 1 0 1 5 0 1 1 2 0 0 1 0 0 0 1 0 0 0 0 0 0 98 0 0 10.4 88.3

substance 0 10 0 0.9 100.

time 1 0 0 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 44 4.8 86.3

Table 7.3: Confusion matrix for Senseval2 data with the 25 WordNet noun classes. The

rows are actual classes and the columns are predicted classes. Column names have been

abbreviated to save space. The last two columns give the frequency of the class (F) and the

accuracy of the class (A).

92

Dataset Heads CorrClass MaxScore Score

senseval2 entity/default 86.6 76.8 74.9

senseval3 entity/default 94.2 75.8 71.2

senseval3 object/entity/default 93.8 77.4 72.9

semeval07 psychological-feature/default 91.2 74.8 68.6

Table 7.4: The performance of the noisy channel model with two to three semantic classes.

The columns give the dataset, the head synsets, the percentage of times the model picks

the correct semantic class, maximum possible fine-grained score if the model had always

picked the correct class, and the actual score.

7.5.3 Third experiment: tuning the number of classes

Increasing the number of semantic classes has two opposite effects on word-sense disam-

biguation performance. The higher the number, the finer distinctions we can make, and the

maximum possible fine-grained accuracy goes up. However the more semantic classes we

define, the more difficult it becomes to distinguish them from one another. For an empirical

analysis of the effect of semantic class granularity on the fine-grained WSD accuracy, we

generated different sets of semantic classes using the following algorithm:

Algorithm 3

1. Sort all the synsets according to their “subtree frequency”: i.e. the total frequency of

its descendants in the hypernym tree.

2. Take the desired number of synsets with the highest subtree frequency and use them

as head synsets, i.e. split their descendants into separate semantic classes.

Figure 7.3 shows the fine-grained accuracy we achieved on the Senseval2 dataset with

up to 600 semantic classes, as generated by Algorithm 3. Note the differences from Fig-

93

Figure 7.3: The fine-grained accuracy on Senseval2 dataset for a given number of semantic

classes

 0.66

 0.67

 0.68

 0.69

 0.7

 0.71

 0.72

 0.73

 0.74

 0.75

 0.76

 0 100 200 300 400 500 600

F
in

e-
gr

ai
ne

d
ac

cu
ra

cy

Number of semantic classes

ure 7.1: (i) Figure 7.1 gives the best possible oracle accuracy, while Figure 7.3 gives the

actual WSD accuracy. (ii) Algorithm 2 chooses the head synsets on the basis of their oracle

score, while Algorithm 3 chooses them on the basis of their subtree frequency.

As we suspected, the relationship is not simple or monotonic. However, one can still

identify distinct peaks at 3, 25, and 100–150 semantic classes. One hypothesis is that

these peaks correspond to “natural classes” at different levels of granularity. Here are some

example semantic classes from each peak:

3 classes entity, abstraction

25 classes action, state, content, location, attribute, ...

135 classes food, day, container, home, word, business, feeling, material, job, man, ...

To test the out-of-sample effect of tuning the semantic classes determined by the peaks

of Figure 7.3, we used the SemEval-2007 dataset as our test sample. When the 135 semantic

94

classes from the highest peak were used for the disambiguation of nouns in the SemEval-

2007 dataset, an accuracy of 69.8% was achieved. This is higher than the accuracy of

the best supervised system on this task (68.6%), although the difference is not statistically

significant.

7.6 Conclusion

We have introduced a new generative probabilistic model based on the noisy channel frame-

work for unsupervised word sense disambiguation. The main contribution of this model is

the reduction of the word sense disambiguation problem to the estimation of two distri-

butions: the distribution of words used to express a given sense, and the distribution of

words that appear in a given context. In this framework, context similarity is determined by

the distribution of words that can be placed in the given context. This replaces the ad hoc

contextual feature design process by a statistical language model, allowing the advances in

language modeling and the availability of large unlabeled corpora to have a direct impact on

WSD performance. We have provided a detailed analysis of using coarse-grained semantic

classes for fine-grained WSD. The noisy channel model is a good fit for class-based WSD,

where the model decides on a coarse-grained semantic class instead of a fine-grained sense.

The chosen semantic class is then mapped to a specific sense based on the WordNet order-

ing during evaluation. We show that the potential loss from using coarse-grained classes

is limited, and state-of-the-art performance is possible using only a few semantic classes.

We explore semantic classes at various levels of granularity and show that the relationship

between granularity and fine-grained accuracy is complex, thus more work is needed to

determine an ideal set of semantic classes. In several experiments we compare the perfor-

mance of our unsupervised WSD system with the best systems from previous Senseval and

SemEval workshops. We consistently outperform any previously reported unsupervised

results and achieve comparable performance to the best supervised results.

95

7.7 Future Work

In order to determine the natural sense clusters, we will apply the non-parametric Bayesian

approach to the raw text data. We have implemented the non-parametric hierarchical

Dirichlet model to determine the latent sense clusters. However, three main challenges

remain:

1. The size of the raw text should be decreased reasonably in order to apply the non-

parametric methods. Otherwise the method would be impractical because of memory

limitations.

2. The convergence of the algorithm is determined by the model hyper-parameters.

Hence the suitable set of parameters needs to be determined for convergence to the

reasonable latent sense clusters.

3. The latent sense clusters determined by the model should be mapped to the Wordnet

clusters in order to compare our model with the relevant work in the literature.

96

Chapter 8

PART OF SPEECH INDUCTION

Unsupervised part-of-speech (POS) induction aims to cluster words into syntactic cate-

gories using unlabeled, plain text input. The problem of induction is important for studying

under-resourced languages that lack labeled corpora and high quality dictionaries. It is

also essential in modeling language acquisition by children because every child manages

to induce syntactic categories without access to labeled sentences, labeled prototypes, or

dictionary constraints (Ambridge and Lieven, 2011). Finally, categories induced from data

may point to shortcomings or inconsistencies of hand-labeled categories, and help improve

natural language processing systems when used as additional features.

A Word-based POS induction systems clusters all instances of a word into a single cat-

egory. (We will refer to this behavior as the one-tag-per-word assumption.) An Instance-

based systems clusters each occurrence of a word separately, and can thus handle ambigu-

ous words.

Examples of word-based systems include the ones that represent each word by the vec-

tor of neighboring words (context vectors) and cluster them (Schütze, 1995; Lamar et al.,

2010b,a), use a prototypical bi-tag HMM that assigns each word to a latent class (Brown

et al., 1992; Clark, 2003), restrict a HMM-based Pitman-Yor process to perform one-tag-

per-word inference (Blunsom and Cohn, 2011), define a word-based Bayesian multinomial

mixture model (Christodoulopoulos et al., 2011), or construct word vector representations

derived from co-occurrences with contextual features (Yatbaz et al., 2012).

The obvious limitation of the one-tag-per-word assumption is that instances of ambigu-

ous words that have more than one POS role are grouped into the same class. For example,

the word offer is tagged as NN(399), VB(105) and VBP(34)1 in its 538 occurrences in the

human labeled Wall Street Journal (WSJ) Section of the Penn Treebank (PTB) corpus (Mar-

cus et al., 1999). If all instances of offer are assigned to the most frequent tag NN, then

36% (139/538) of them will be erroneously labeled. In spite of this shortcoming, word-

based POS induction systems generally do better than instance-based systems because the

one-tag-per-word assumption is mostly valid: 93.69% of the word occurrences are tagged

with their most frequent POS tag in the PTB (Toutanova et al., 2003).

In order to handle ambiguous words, models without a strict one-tag-per-word assump-

tion need to group word instances into clusters according to their contexts. Some of these

instance-based models exhibit the bias of assigning too few tags to words by using sparse

priors in a Bayesian setting (Goldwater and Griffiths, 2007b; Johnson, 2007a; Gao and

Johnson, 2008), or posterior regularization (Ganchev et al., 2010). Schütze and Pedersen

(1993) represent the context of a word instance by concatenating context vectors of its left

and right neighboring words, and then clustering the word instances. Berg-Kirkpatrick

et al. (2010) use an EM algorithm in which they replace the multinomial components

with miniature logistic regressions to achieve the highest instance-based accuracy on PTB.

Christodoulopoulos et al. (2010) select prototypes of each cluster from the output of Brown

(1992), and feed them to a HMM model that can handle prototypes as features (Haghighi

and Klein, 2006). However, none of these models achieve results comparable to the best

word-based systems.

There are two concerns inherent in all distributional methods: (i) words that are gener-

ally substitutable, like “the” and “its”, are placed in separate categories (DT and PRP$) by

the gold standard, (ii) words that are generally not substitutable, like “do” and “put”, are

placed in the same category (VB). Freudenthal et al. (2005) point out that categories with

1NN, VB, and VBP are three POS tags from the Penn Treebank corpus. They correspond to singular
noun, verb in base form, and non-3rdperson singular verb in present tense, respectively. The numbers in
parentheses are the frequencies.

98

unsubstitutable words fail the standard linguistic definition of a syntactic category, and that

children do not seem to make errors of substituting such words in utterances (e.g. “What

do you want?” vs. *“What put you want?”). Whether gold-standard part-of-speech tags or

distributional categories are better suited to applications like parsing or machine translation

can be best decided by extrinsic evaluation. In this study, we obtain our results by compar-

ing induced tags to gold-standard part-of-speech tags, and leave their extrinsic evaluation

for future work.

The rest of this section is organized into subsections as follows: First, Section 8.1 re-

views the related work of POS induction. Then, Section 8.2 and 8.3 define the experimental

settings and tag perplexity, respectively. Section 8.4 presents the experiments of clustering

framework (see Section 4.1). Finally, Section 8.5 presents the experiments of co-occurence

modeling (see Section 4.2).

8.1 Related Work

There are several good reviews of algorithms for unsupervised part-of-speech induction

(Gao and Johnson, 2008; Christodoulopoulos et al., 2010) and models of syntactic category

acquisition (Ambridge and Lieven, 2011).

This work is to be distinguished from the supervised part-of-speech disambiguation sys-

tems which use labeled training data (Toutanova et al., 2003), unsupervised disambiguation

systems which use a dictionary of possible tags for each word (Yatbaz and Yuret, 2010),

and prototype-driven systems which use a small set of prototypes for each class (Haghighi

and Klein, 2006). The problem of induction is important for studying under-resourced

languages that lack labeled corpora and high quality dictionaries. It is also essential in

modeling language acquisition by children because every child manages to induce syntactic

categories without access to labeled sentences, labeled prototypes, or dictionary constraints.

Models of unsupervised part-of-speech induction fall into two broad groups depending

99

upon the information they utilize: Distributional models use only word types and their con-

text statistics. Word-feature models incorporate additional morphological and orthographic

features.

8.1.1 Distributional models

Distributional models can be further categorized into three subgroups depending on their

learning algorithm. The first subgroup represents each word type/token by its context

vector, and then clusters these vectors accordingly (Schütze, 1995). Work in modeling

the syntactic category acquisition by children has generally followed this clustering ap-

proach (Redington et al., 1998; Mintz, 2003). The second subgroup consists of probabilis-

tic models that use the Hidden Markov Model (HMM) framework (Brown et al., 1992).

A third group of algorithms constructs a low-dimensional representation of the empirical

co-occurrence statistics of word types (Globerson et al., 2007) (covered in more detail in

Section 4.2.2).

Clustering Clustering-based methods represent the context by the neighboring words,

typically a single word on the left and a single word on the right. (This context is referred

to as “frame”, e.g., the dog is; the cat is.) They cluster word types rather than word tokens

according to the frames they occupy. Thus, they employ the one-tag-per-word assumption

from the start (with the exception of (Mintz, 2003; St Clair et al., 2010) and some methods

in (Schütze, 1995)). These methods may suffer from data sparsity caused by infrequent

words and infrequent contexts. The solutions suggested to override this data sparsity either

restrict the set of words and set of contexts needed to be clustered to the most frequently

observed, or use dimensionality reduction. By defining context similarity as a function of

the number of common frames, Redington et al. (1998) bypass the data sparsity problem

but achieve lower scores than the best performing systems. Mintz (2003) uses only the

most frequent 45 frames to cluster tokens, and achieves 98% unsupervised accuracy on

100

the tokens observed in the most frequent 45 frames. Similar to Mintz’s work, St Clair

et al. (2010) show that systems that model the left and right frames of tokens separately

perform better than the frequent frames, both in terms of token clustering accuracy and

the token coverage. Biemann (2006) contructs a graph-based view of the most frequent

10,000 words using contexts formed from the most frequent 150-200 words and clustering

the tokens. Schütze (1995) and Lamar et al. (2010b) employ SVD to enhance similarity

between less frequently observed word types and contexts. Lamar et al. (2010a) represent

each context by the currently assigned left and right tag (which eliminates data sparsity)

and cluster word types using a soft k-means style iterative algorithm. They report .708

many-to-one accuracy on the PTB—the best clustering result to date.

HMMs The prototypical bi-tag HMM model maximizes the likelihood of the corpus

w1 . . . wn, with the likelihood defined as P (w1|c1)
∏n

i=2 P (wi|ci)P (ci|ci−1), where wi are

the word tokens and ci are their (hidden) tags. One problem with such a model is its ten-

dency to distribute probabilities equally, and the resulting inability to model highly skewed

word-tag distributions observed in hand-labeled data (Johnson, 2007a). To favor sparse

word-tag distributions, one can enforce a strict one-tag-per-word solution (type clustering)

(Brown et al., 1992; Clark, 2003), use sparse priors in a Bayesian setting (Goldwater and

Griffiths, 2007b; Johnson, 2007a), or use posterior regularization (Ganchev et al., 2010).

Each of these techniques provide significant improvements over the standard HMM model.

For example, Gao and Johnson (2008) show that sparse priors can gain 4% (.62 to .66 on the

PTB) in cross-validated many-to-one accuracy. However Christodoulopoulos et al. (2010)

show that the older one-tag-per-word models, such as (Brown et al., 1992), outperform the

more sophisticated sparse prior and posterior regularization methods both in speed and ac-

curacy (the Brown model gets .68 many-to-one accuracy on the PTB). Given that 93.69%

of the word occurrences in human-labeled data are tagged with their most frequent part-of-

speech tags (Toutanova et al., 2003), this is probably not surprising; one-tag-per-word is a

101

fairly good first approximation for induction.

8.1.2 Word-feature models

One problem with the algorithms in the previous section is the poverty of their input fea-

tures. Of the syntactic, semantic, and morphological information underlying syntactic cat-

egories according to the linguists’ claims, only a limited amount of syntactic information

is represented in the input of context vectors or bi-tag HMMs. Experiments incorporating

morphological and orthographic features into HMM-based models demonstrate significant

improvements. (Clark, 2003; Berg-Kirkpatrick and Klein, 2010; Blunsom and Cohn, 2011)

incorporate similar orthographic features and report improvements of 3, 7, and 10%, re-

spectively, over the baseline Brown model.

(Clark, 2003; Blunsom and Cohn, 2011) cluster types by incorporating similar ortho-

graphic features, and report improvements of 3 and 10% respectively over the baseline

Brown model. Berg-Kirkpatrick et al. incorporate orthographic features into EM algorithm

where they replace the multinomial components with miniature logistic regressions and

cluster tokens, to report improvement over the Brown model by 7%.

Christodoulopoulos et al. (2010) use prototype-based features as described in (Haghighi

and Klein, 2006) with automatically induced prototypes, and report an 8% improvement

over the baseline Brown model by clustering tokens. Abend et al. (2010) train a prototype-

driven model with morphological features by first clustering the high frequent types as the

landmarks and then assigning the remaining types to these landmark clusters. Christodoulopou-

los et al. (2011) define a type-based Bayesian multinomial mixture model in which each

word instance is generated from the corresponding word type mixture component, and

word contexts are represented as features. They achieve a .728 MTO score by extending

their model with additional morphological and alignment features gathered from parallel

corpora. To our knowledge, nobody has yet tried to incorporate phonological or prosodic

102

features in a computational model for syntactic category acquisition.

8.1.3 Paradigmatic representations

Yatbaz et al. (2012) explore the paradigmatic representation of word contexts by model-

ing the co-occurrence of words and their substitutes within the CODE framework. Their

experiments on the PTB types shows that the paradigmatic representation improves the

state-of-the-art MTO and V-measure (VM) accuracies of both distributional models and

models with additional word features. Our work builds on that preliminary work by (1) ex-

ploring induction of part-of-speechs at token level (in addition to type level), (2) improving

the model for using additional features, and (3) experimenting with additional languages.

8.2 Evaluation

We report many-to-one (MTO) and V-measure (VM) scores for our experiments as sug-

gested in (Christodoulopoulos et al., 2010). The many-to-one (MTO) evaluation maps each

cluster to its most frequent gold tag and reports the percentage of correctly tagged instances.

The MTO score naturally gets higher with increasing number of clusters, but it is an intu-

itive metric when comparing results with the same number of clusters.

The V-measure (VM) (Rosenberg and Hirschberg, 2007) is an information-theoretic

metric that reports the harmonic mean of homogeneity (each cluster should contain in-

stances of only a single class) and completeness (all instances of a class should be mem-

bers of the same cluster). In Section 8.5.8, we argue that homogeneity is perhaps more

important in part-of-speech induction, and suggest an MTO scheme with a fixed number of

clusters as a more intuitive metric.

Figure 8.1 illustrates the cases that causes high and low homogeneity and complete-

ness scores on two example clusters. Induced cluster c1 on the top only consists of word

instances that are gold-tagged as noun (NN), and hence the homogeneity of the cluster is

103

Figure 8.1: Illustration of the low and high homogeneity and completeness scores.

high. On the other hand, induced cluster c2 consists of word instances with noun (NN),

proper-noun (NNP), and foreign-word (FW) gold-tags, and hence has a low homogeneity

score compared to c1. Word instances with NN gold-tag are split into c1 and c2 which causes

a low completeness accuracy.

8.3 Tag Perplexity

To measure the level of ambiguity of our models, we propose the tag perplexity of a word

as a measure of its degree of ambiguity defined as follows:

GP (w) = 2−
∑N

i=1 Pr(t|w) log2 Pr(t|w)

Here N is the number of words in the corpus, w is the target word, t is a cluster-id or a tag,

and Pr(t|w) is the probability that the word w has been assigned the tag t. A word with N

equally probable tags would have a GP of N and an ambiguous word has a GP of 1.

104

8.4 Experiments: Substitute Distribution Clustering

In this study, we predict the part of speech of a word in a given context based on its sub-

stitute distribution. This section details the choice of the data set, the vocabulary, and the

estimation of substitute probabilities.

The choice of the clustering algorithm highly depends on the structure of the unsuper-

vised tagging task. Therefore, instead of specifying each step of the algorithm in detail,

we try to construct a general clustering framework that can be used on different kinds of

induction tasks. The steps below can be modified or skipped to get better results on tasks

other than the POS induction.

Algorithm

Optional. Take the average of the substitute vector instances of each word to construct word-

based vectors.

1. Find the best similarity metric between two substitute distributions.

2. Apply dimensionality reduction to find low-dimensional representations.

3. Apply the clustering algorithm on low-dimensional vectors.

The optional step aims to constructs word-based representation of substitute representa-

tions which, by definition, assumes that all instances of a word will be in the same category.

The rest of this section is organized into subsections as follows: Section 8.4.1 details

the test corpus and experimental settings used. Section 8.4.2 compares various similar-

ity metrics. Section 8.4.3 summarizes the effect of dimensionality reduction of substitute

distributions, and Section 8.4.4 compares the performance of clustering algorithms on low-

dimensional substitute distributions. Section 8.4.5 suggests two method to construct word-

based clusters, and Section 8.4.6 applies the findings of the previous sections to the whole

105

PTB corpus. Finally, Section 8.4.7 analyzes the clustering output with the highest MTO

accuracy.

8.4.1 Experimental Settings

The first 24,020 tokens of the Penn Treebank (Marcus et al., 1999) Wall Street Journal Sec-

tion 00 was used as the test corpus. The treebank uses 45 part-of-speech tags which is the

set we used as the gold standard for comparison in our experiments. To compute substitute

probabilities, we trained a language model using approximately 126 million tokens of the

Wall Street Journal data (1987-1994) extracted from the CSR-III Text (Graff et al., 1995)

(we excluded the test corpus). We used SRILM (Stolcke, 2002b) to build a 4-gram lan-

guage model with Kneser-Ney discounting. Words that were observed less than 500 times

in the LM training data were replaced by UNK tags, giving us a vocabulary size of 12,672.

The perplexity of the 4-gram language model on the test corpus was 55.4, which is quite

low as a result of using in-domain data and a small vocabulary.

We computed the 12,672-dimensional substitute distributions at each of the 24,020 po-

sitions in the test corpus, as specified in Section 2.3.

8.4.2 Distance Metrics

This step aims to determine the best similarity metric to judge vectors that belong to the

same category (“similar”) and vectors that belong to different categories (“distant”). The

distance metrics we have considered in this thesis are listed in Table 8.1.

We represent each context with a sparse high-dimensional probability vector, called the

substitute vector, as described in Section 2.3 section. To judge the merit of each distance

metric, we obtained supervised baseline scores using leave-one-out cross validation and the

weighted k-nearest-neighbor algorithm2 on the gold tags of the PTB24K. The results are

2Neighbors were weighted using 1/distance. k = 30 was chosen empirically.

106

Cosine(p,q) = < p,q > /(‖p‖2‖q‖2)

Euclid(p,q) = ‖p− q‖2
Manhattan(p,q) = ‖p− q‖1
Maximum(p,q) = ‖p− q‖∞
KL2(p,q) =

∑
i piln(pi/qi) + qiln(qi/pi)

JS(p,q) =
∑

i piln(pi/mi) + qiln(qi/mi)

where mi = 0.5(pi + qi)

Table 8.1: Similarity metrics. JS is the Jensen-Shannon divergence, and KL2 is a symmetric

implementation of Kullback-Leibler divergence. Bold lower case letters represent vectors.

listed in Table 8.2, and are sorted by score.

The entries with the log-prefix indicate a metric applied to the log of the probability vec-

tors. Distance metrics on log-probability vectors performed poorly compared to their reg-

ular counterparts, indicating that differences in low-probability words are relatively unim-

portant and high-probability substitutes determine the syntactic category. The surprisingly

good result achieved by the simple Maximum metric (which identifies the dimension with

the largest difference between two vectors) also support this conclusion. The maximum

score of .68 can be taken as a rough upper bound for an unsupervised learner using this

space on the PTB24K corpus, because 32% of the instances are assigned to the wrong part

of speech by the majority of their closest neighbors. We will discuss alternative ways to

push this upper bound higher by enforcing a one-tag-per-word rule in Section 8.4.4.

8.4.3 Dimensionality Reduction

In this section, we investigate if there is a low-dimensional representation of the substitute

vectors which still preserves the neighborhood information necessary to learn syntactic cat-

egories. We report experimental results on principal components analysis (PCA), Isomap

107

���

���������

	
��
�

����

�������

������

����������

�������

���������

������������

���� ���� ���� ���� ����
 ���!��"�#�$�%
!&��
��'��
���

Figure 8.2: Supervised baseline scores with different distance metrics. Log-metric indicates

that the metric is applied to the log of the probability vectors.

(Tenenbaum et al., 2000), locally linear embedding (LLE) (Roweis and Saul, 2000), and

Laplacian eigenmaps (Belkin and Niyogi, 2003). Each dimensionality reduction algorithm

tries to preserve certain aspects of the original vectors. PCA is a linear method that min-

imizes reconstruction error. Isomap tries to preserve distances as measured along a low-

dimensional sub-manifold, assuming that the input vectors were sampled from the neigh-

borhood of such a manifold. LLE most faithfully preserves the local linear structure of

nearby input vectors. Laplacian eigenmaps most faithfully preserve proximity relations,

mapping nearby inputs to nearby outputs.

We wanted to see how accuracy (determined by the k-nearest-neighbor supervised base-

line, as in the previous section) changes as a function of the number of dimensions for each

dimensionality reduction algorithm. For algorithms that require a distance matrix rather

than raw input vectors, we used the Jensen-Shannon divergence which was judged the best

by the experiments of the previous section. For graph-based methods we built neighbor-

108

hood graphs using 100 nearest neighbors. The low-dimensional output vectors were com-

pared using the cosine distance metric for the supervised k-nearest-neighbor algorithm.

Figure 8.3 plots the supervised baseline accuracy vs. the number of dimensions for each

algorithm.

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 2 4 8 16 32 64 128 256 512 1K 2K

M
a
n
y-

To
-O

n
e
 A

cc
u
ra

cy

of Clusters

PCA
LLE

ISOMAP
Laplacian Eigenmaps

Figure 8.3: Supervised knn baselines for the four dimensionality reduction algorithms.

All of the graph-based algorithms (Isomap, LLE, and Laplacian eigenmaps) outperform

PCA. They stay within 5% of their peak accuracy with as few as 16 dimensions. In fact

Laplacian eigenmaps outperform the baseline with the original 12,672-dimensional vectors

(68.95%) when allowed to retain more than about 250 dimensions. Spectral clustering

uses the same transformation as the Laplacian eigenmaps algorithm, and we compare its

performance to other clustering algorithms in the next section.

8.4.4 Clustering

In this section, we briefly describe and compare three clustering algorithms on the PTB24K.

Hierarchical agglomerative clustering with complete linkage (HAC) starts with each in-

stance in its own cluster, and iteratively combines the two closest groups (measured by

109

their most distant points) at each step (Manning et al., 2008). k-medoids minimizes sum

of pairwise distances between each data-point and the exemplar at the center of its cluster

(Kaufman and Rousseeuw, 2005). Spectral clustering uses the eigenvalues of the graph

Laplacian L = D−1/2WD−1/2 to reduce the number of dimensions (similar to Laplacian

eigenmaps), and uses simple k-means clustering on the resulting representation (Ng et al.,

2002). All three algorithms accept the distance matrix consistng of the KL2 distance en-

tries.

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5
 0.55

 0.6
 0.65

 0.7
 0.75

 2 4 8 16 32 64 128 256 512 1K 2K

M
a
n
y-

To
-O

n
e
 A

cc
u
ra

cy

of Clusters

k-Medoids
Spectral

HAC

Figure 8.4: Many-to-one score for three clustering algorithms on the 45-tag PTB24K word

corpus.

Figure 8.4 plots the many-to-one score versus the number of clusters for the three algo-

rithms on the PTB24K. The many-to-one score naturally increases as we approach the one

cluster per word limit. However, the evolution of the curves is quite informative. At the

high end (more than 2000 clusters), HAC performs best with its conservative clusters, but

its performance degrades fast as we reduce the number of clusters, because it cannot reverse

the accumulated errors. At the low end (less than 16 clusters), k-medoids and spectral have

similar performance. However, for the region of interest (between 16 to 2000 clusters),

spectral clustering is clearly superior, with .5841 MTO accuracy at 45 clusters.

110

8.4.5 Word-base Clustering

We noted that the 45-cluster spectral clustering result described in the previous section

assigned many more tags to each word than the gold standard. The tag perplexity of the

gold standard 45-tag PTB24K word test corpus is 1.09, whereas the tag perplexity of the

spectral clustering result is 2.76.

We experimented with two methods for reducing the number of tags assigned to each

word: collapsing and word penalties. Collapsing enforces the one-tag-per-word constraint

by re-tagging the corpus, whereas word penalties encourage it by increasing the distance

between instances with different target words.

To collapse a given tag assignment for a corpus, we re-tag each word with its most

frequent tag in the original assignment (we break ties randomly). This forcefully reduces

the tag perplexity to 1, and removes any ambiguity. Collapsing improves the many-to-one

accuracy by more than 10%, from .5841% to .6882%.

Interestingly, when we try to enforce the one-tag-per-word restriction before clustering

(by giving the average substitute vector for each word type to spectral clustering), the results

get worse (58.02% many-to-one accuracy). The information in individual instances seems

to be necessary for good clusters to arise.

Word penalties include information about the target word in the distance metric. The

substitute vectors and their associated KL2 distance metric carry no information about the

target word, only its context. We used the following distance metric which increases the

distance between instances with different target words:

D(i, j) = KL2(~si, ~sj) + δI(wi 6= wj)

Here ~si and ~sj are the substitute vectors that correspond to the ith and jth instances, wi

and wj are the ith and jth word-instances, δ is the regularization parameter, and I is the

indicator function that gives 1 if the two words are different and 0 if they are the same.

111

Increasing δ decreases the tag perplexity, but the accuracy change is non-monotonic. At

δ = 1, the tag perplexity is 1.91, and the many-to-one accuracy increases from .5841%

to 64.35%. This demonstrates that we can significantly increase the accuracy by includ-

ing more information on the target word, yet without employing the full one-tag-per-word

constraint.

8.4.6 Substitute Vector Clustering on the PTB

To demonstrate that the clustering algorithm can scale, we performed spectral clustering

on the full PTB. We calculated the substitute vectors of each position in the PTB by using

an efficient algorithm described in Section 8.4.13. We used the Manhattan distance4 to

compute the vector similarities and achieve .5473 MTO accuracy.

To increase the sparsity of the solution we enforced a one-tag-per-word restriction by

re-tagging each word with its most frequent tag in the original assignment (ties were broken

randomly). One-tag-per-word re-tagging improves the MTO accuracy from .5473 to .6834.

The re-tagging experiment shows that the one-tag-per-word restriction improves the

model performance in terms of the MTO accuracy by explicitly incorporating the word

identity information into the model. In the next section, we suggest an alternative method

that models the co-occurrence of words and their contexts (the latter represented by substi-

tutes), and improves the results on the PTB.

8.4.7 Discussion

Figure 8.5 is the Hinton diagram showing the relationship between the most frequent tags

and clusters found by the collapsed algorithm (.6834% many-to-one accuracy) on the PTB.

3The FASTSUBS algorithm of Section 2.3 calculates only the top 100 substitutes and their unnormalized
probabilities, thus resulting in sparse substitute vectors. The new model is computationally more efficient
than the one in this section, and it is more appropriate for large datasets like the PTB.

4As KL2 is undefined on sparse vectors, we use Manhattan whose performance is close to KL2 on both
the PTB24K and PTB.

112

In this section we present a qualitative comparison of gold standard tags and discovered

clusters.
1 35 38 22 37 27 28 29 23 9 33 26 21 34 30 8 12 6 39 43 13 3 4 41 18 25 10 24 19

NN
NNS
NNP

JJ
VB

VBN
VBD
VBZ
RB
DT
IN
,
.

CD
CC
TO
PRP
POS

Figure 8.5: Hinton diagram of the most frequent tags (rows) and clusters (columns). Area

of each square is proportional to the joint probability of the given tag and cluster.

Nouns and adjectives: Most nouns (NN*) are split between the clusters represented by

the first seven columns of the Hinton graph, but not in the way Penn Treebank splits them.

For example, the titles like Mr., Mrs., Dr. etc. are placed together in cluster 27 which does

not exist as a separate class in the gold tags. Cluster 29 is the largest adjective (JJ) cluster;

however, it also has noun members, probably resulting from the difficulty of separating

noun-noun compounds and adjective modification.

113

Verbs and adverbs: Clusters 9 and 33 contain general verbs (VB*), but the verbs “be”

(26), “say” (21), and “have” (34) have been split into their own clusters (whose count is

shown within parentheses), presumably because they are not generally substitutable with

the rest. Adverb (RB) is an amorphous class and the algorithm seems to have difficulty

isolating it in a cluster.

Determiners and prepositions: We see a fairly clean separation of determiners (DT)

and prepositions (IN) from other parts of speech, although each has been subdivided into

further groups by the algorithm. For example, cluster 39 contains general prepositions but

“of” (43), “in” (13), and “for” (3) are split into their own clusters. Determiners “the” (8),

“a” (12), and capitalized “The”/”A” (6) are also split into their own clusters.

Closed-class items: Most closed-class items are cleanly separated into their own clusters,

as shown in the lower right hand corner of the diagram.

8.5 Experiments: Co-occurrence Modeling

In this chapter, we model the co-occurrence of words and their contextual, orthographic,

and morphological features in a high-dimensional Euclidean space that relates their joint

probability to distance. Using these embeddings, we are able to build both word-based

and instance-based clusters. The word-based model achieves the state-of-the-art results on

17 out of 19 corpora in 15 languages and comparable results on the 2 remaining, corpora.

Although the instance-based model achieves lower scores than the word-based model, it

handles the ambiguous words well, and achieves comparable or better performance than

the best published systems on 15 of 19 corpora.

The rest of this section is organized into subsections as follows: Section 8.5.1 details the

test corpus and experimental settings. Section 8.5.2 presents the performance of our word-

based model and the sensitivity analysis of model parameters. Section 8.5.3 compares our

114

paradigmatic representation-based word model with its word-based syntagmatic counter-

part. Section 8.5.4 explores morphological and orthographic features as additional sources

of information for POS induction of words: its word- and instance-based system are the

state-of-the-art in the field of POS induction. Section 8.5.5 presents the performance of our

instance-based models and the sensitivity analysis of each model. Section 8.5.6 compares

the performance of word-based and instance-based systems on ambiguous words. Finally,

Section 8.5.7 extends the language and corpus coverage by applying the best performing

model to 19 corpora in 15 languages.

8.5.1 Experimental Settings

To make a meaningful comparison with the previous works, the Wall Street Journal Section

of the Penn Treebank (PTB) (Marcus et al., 1999) was used as the test corpus (1,173,766

tokens, 49,206 types) to be induced. The treebank uses 45 part-of-speech tags which is the

set we used as the gold standard for comparison in our experiments.

To compute substitutes in a given context, we trained a language model using the

ukWaC corpus (≈ 2 billion tokens) constructed by crawling the “.uk” Internet domain (Fer-

raresi et al., 2008)5. We used SRILM (Stolcke, 2002b) to build a 4-gram language model

with interpolated Kneser-Ney discounting. Words that were observed less than 2 times in

the language model training data were replaced by<unk> tags, which gave us a vocabulary

size of 4,254,946. The perplexity of the 4-gram language model on the PTB is 303, and

the unknown word rate is 0.008. For computational efficiency, only the top 100 substitutes

and their probabilities were computed for each position in the PTB, using the FASTSUBS

algorithm (Yuret, 2012).

The experiments were run using the following default settings (unless otherwise stated):

(i) each word was kept with its original capitalization, (ii) 90 substitutes were sampled per

5We use the Penn Treebank Tokenizer to make the training data compatible with PTB.

115

instance (iii) the learning rate parameters for S-CODE were set to ϕ0 = 50, η0 = 0.2, (iv)

S-CODE convergence threshold, the log-likelihood difference between two consecutive

iterations, was set to 0.001 , (v) the S-CODE dimensions and Z̃ were set to 25 and 0.166,

respectively, (vi) a modified k-means algorithm with smart initialization was used (Arthur

and Vassilvitskii, 2007), and (vi) the number of k-means restarts was set to 128 to improve

clustering and reduce variance.

Each experiment was repeated 10 times with different random seeds, and the results

are reported with standard errors in parentheses or error bars in graphs. Table 8.2 and 8.6

summarize all the results reported in this section and the ones we cite from the literature.

8.5.2 Word-based System

We cluster the S-CODE embedding of the target word φw using the k-means algorithm.

The cluster-id for each φw becomes the predicted category of the corresponding word and

all of its instances. Using the default settings, the many-to-one accuracy on the PTB is

.7667 (.0056) and the V-measure is .6819 (.0029). These are the highest accuracies among

the distributional models (see Table 8.2).

116

Distributional Models MTO VM

Lamar et al. (2010a) .708 -

Brown et al. (1992)* .678 .630

Goldwater et al. (2007b)* .632 .562

Ganchev et al. (2010)* .625 .548

Maron et al. (2010) .688 (.0016) -

Bigrams (Sec. 8.5.3) .7319 (.0088) .6554 (.0039)

Substitutes(Word-based) (Sec. 8.5.2) .7667 (.0056) .6819 (.0029)

Models with Additional Features MTO VM

Clark (2003)* .712 .655

Christodoulopoulos et al. (2011) .728 .661

Berg-Kirkpatrick et al. (2010) .755 -

Christodoulopoulos et al. (2010) .761 .688

Blunsom and Cohn (2011) .775 .697

Word-based+Features (Sec. 8.5.4) .8045(.0051) .7228 (.0038)

Instance-based+Features (Sec. 8.5.5) .7952 (.0030) .6908 (.0027)

Table 8.2: Summary of results in terms of the MTO and VM scores. Standard errors, when

available, are given in parentheses. Starred entries have been reported in the review paper

(Christodoulopoulos et al., 2010). Distributional models use only the identity of the target

word and its context. The models with features incorporate orthographic and morphological

features. Instance-based models and the significantly best results are shown in bold.

To analyze the sensitivity of results to our specific parameter settings, we ran a number

of experiments where each parameter was varied over a range of values.

The first plot of Figure 8.6 illustrates that the random-substitute result is fairly robust

as long as the training algorithm can observe more than a few random substitutes per word.

117

 0.6

 0.65

 0.7

 0.75

 0.8

 1 10 100
 0.6

 0.65

 0.7

 0.75

 0.8
M

a
n
y-

To
-O

n
e
 A

cc
u
ra

cy

V
-M

e
a
su

re

Number of Samples

MTO
VM

 0.4

 0.5

 0.6

 0.7

 0.8

 1 10 100
 0.4

 0.5

 0.6

 0.7

 0.8

M
a
n
y-

To
-O

n
e
 A

cc
u
ra

cy

V
-M

e
a
su

re

Number of Embedding Dimensions

MTO
VM

 0.4

 0.5

 0.6

 0.7

 0.8

 0.01 0.1 1
 0.4

 0.5

 0.6

 0.7

 0.8

M
a
n
y-

To
-O

n
e
 A

cc
u
ra

cy

V
-M

e
a
su

re

Constant Approximation of Z

MTO
VM

Figure 8.6: Sensitivity of instance-based POS induction performance on the PTB to (a) the

number of sampled substitutes, (b) the number of embedding dimensions, (c) the constant

approximation to the normalization constant Z̃.

The second plot of Figure 8.6 shows that at least 10 embedding dimensions are necessary

to get within 1% of the best result, but there is no significant gain from using more than 25

dimensions. Finally, the third plot of Figure 8.6 shows that the constant Z̃ approximation

can be varied within two orders of magnitude without a significant performance drop in

the many-to-one score. For uniformly distributed points on a 25-dimensional sphere, the

expected Z ≈ 0.146. In the experiments in which we evaluated Z, we found the real Z

to always be in the 0.140-0.170 range. When the constant Z̃, estimate is too small the

attraction in Eq. 4.3 dominates the repulsion in Eq. 4.4, and all points tend to converge to

the same location. When Z̃ is too high, it prevents meaningful clusters from coalescing.

We find our model with random substitute to be fairly robust with respect to different

118

parameter settings, and the resulting many-to-one score is significantly better than the state-

of-the-art distributional models.

8.5.3 Paradigmatic vs Syntagmatic Representations of Word Context

To get a direct comparison between the paradigmatic and syntagmatic context represen-

tations, we feed 4 different co-occurrences into the S-CODE algorithm. The first model

accepts (word (W) , right bigram (C)) pairs as the input, the second model accepts (word

(W) , left bigram(C)) pairs as the input, the third model accepts (word (W) , concatenation

of the left and right bigrams (C)) pairs (Mintz, 2003) as the input, and the final model ac-

cepts (words (W) , left bigram(C1) and right bigram (C2) tuples) (St Clair et al., 2010) as

the input to the S-CODE. Finally, we cluster the word type embeddings (W) with k-means

algorithm using the default settings.

To replicate the work of Maron et al. (2010), we use the model that uses (word (W) ,

right bigram (C)) pairs as the input. At the end, each word w in the vocabulary ends up

with two points on the sphere: a φw point representing the behavior of w as the left word

of a bigram, and a ψw point representing it as the right word. The two vectors for w are

concatenated to create a 50-dimensional representation at the end. These 50-dimensional

vectors are clustered using the k-means algorithm. Maron et al. (2010) report many-to-one

scores of .6880 (.0016) for 45 clusters and .7150 (.0060) for 50 clusters (on the PTB). Us-

ing our default settings, the bigram model achieves .7319 (.0088) MTO and .6554 (.0039)

VM accuracies. Table 8.3 summarizes all the results, and shows that the MTO and VM

accuracies of the paradigmatic model are significantly higher than those of the syntagmatic

models.

119

Input MTO VM

W (word) - C (right bigram) .6625 (.0115) .5809 (.0066)

W (word) - C (left bigram) .6604 (.0054) .5983 (.0028)

W (word) - C (left and right bigram concatenation) .7268 (.0091) .6416 (.0052)

W (word) - C1, C2 (left and right bigrams) .7173 (.0061) .6381 (.0032)

Maron et al. (2010)(replication) .7319 (.0088) .6554 (.0039)

W (word) - C (random substitutes) .7667 (.0056) .6819 (.0029)

Table 8.3: Summary of results in terms of the MTO and VM scores of the S-CODE algo-

rithm when paradigmatic or syntagmatic representations are fed as input. Standard errors,

when available, are given in parentheses. Results of the statistically best performing system

are displayed in bold. We do not report the original results of Maron et al. (2010) since our

replication achieves higher accuracies.

8.5.4 Morphological and Orthographic Features

Clark (2003) demonstrates that using morphological and orthographic features significantly

improves part-of-speech induction with an HMM-based model. Section 8.1 describes a

number of other approaches that show similar improvements. We integrate additional fea-

tures with substitutes by using the modified S-CODE model described in Section 4.2.2.

Word-feature tuples might have null values arising from unobserved features. For ex-

ample, in the case of POS induction, the word “car” has no morphological or orthographic

features. Hence, all the elements of the tuple have null value, except the word type (w)

and the context (c). We do not perform any pull or push updates on embeddings during the

gradient search if the corresponding f (k) is null6.

The orthographic features we used are similar to the ones in (Berg-Kirkpatrick et al.,

6In general, w and c represents the word type and context, so we assume that they are always observed.

120

2010) but with the following minor modifications:

• Initial-Capital: this feature is generated for capitalized words with the exception of

sentence initial words.

• Number: this feature is generated when the token starts with a digit.

• Contains-Hyphen: this feature is generated for lowercase words with an internal hy-

phen.

• Initial-Apostrophe: this feature is generated for tokens that start with an apostrophe.

We generated morphological features using the unsupervised algorithm Morfessor (Creutz

and Lagus, 2005). Morfessor was trained on the PTB using default settings, and a perplex-

ity threshold of 300. We are concerned only with the splits tagged as suffix in the Mor-

fessor output, and allow at most one morphological feature per word7. Table 8.4 presents

the co-occurrence tuples of the example sentence after incorporating the orthographic and

morphological features.

7Splits are concatenated if there are consecutive suffix parts at the end of a word.

121

Word Context Morphology
Initial

Capital
Number

Contains

Hypen

Initial

Apostrophe

W:Pierre C:Mr. F:IC

W:Vinken C:<unk> F:IC

W:, C:,

W:61 C:48 F:N

W:years C:years F:s

W:old C:old

W:join C:head

W:the C:its

W:board C:company

W:as C:as

W:a C:a

W:nonexecutive C:non-executive

W:director C:chairman F:or

W:Nov. C:May F:IC

W:29 C:9 F:N

W. C:.

Table 8.4: The words of input sentence “Pierre Vinken, 61 years old, will join the board

as a nonexecutive director Nov. 29 .” is represented with their substitutes and features.

Words in the left column represent the target word, words in the second column represent

the context, and tokens in the remaining columns are the features of the correponding target

word. Features without values are unobserved, and are therefore set to null.

Using the training settings of the previous section, the addition of morphological and

orthographic features increased the many-to-one score of the random-substitute model to

.8045(.0051) and the V-measure to .7228 (.0038). Both these results improve the state-of-

122

the-art in part-of-speech induction significantly as seen in Table 8.2.

8.5.5 Instance-based System

In the previous section, we group words rather than word instances by clustering the word

embeddings and ignoring their substitute embeddings. In the present section, we remove

the one-tag-per-word assumption, and group the word instances by incorporating their sub-

stitute embeddings. We construct two different instance-based systems according to the

representations defined in Section 4.2.3. The first system represents each instance with the

average of its substitute embeddings ψc, and the second one represents each instance with

the concatenation of the target word embedding (φw) and the average of its substitute em-

beddings (ψc). The first (respectively, second) system clusters the resulting ψc (φw ⊕ ψc)

vectors using the k-means algorithm, and the cluster-id for each ψc (φw ⊕ ψc) becomes

the predicted category of the corresponding word instance. Using the default settings with

orthographic and morphological features, the first system achieves .7346 (.0102) MTO and

.6468 (.0081) VM scores while the second one achieves .7952 (.0030) MTO and .6908

(.0027) VM scores. In the rest of the thesis, we refer to the model that represents each

instance with φw ⊕ψc as the instance-based model, and perform analysis and comparisons

using only this model.

To analyze the sensitivity of this result to our specific parameter settings, we ran a

number of experiments in which each parameter was varied over a range of values.

The first plot in Figure 8.7 illustrates that the result is fairly robust with respect to the

number of random substitutes sampled for each target word instance, as long as the training

algorithm can observe more than a few random substitutes per word. The second plot shows

that at least 10 embedding dimensions are necessary to get within 1% of the best result, but

there is no significant gain from using more than 25 dimensions. The third plot shows

that the constant Z̃ approximation can be varied within two orders of magnitude without

123

any significant performance drop in the scores. For uniformly distributed points on a 25-

dimensional sphere, the expected Z is 0.146. In the experiments in which we evaluated Z,

we found the real Z to always be in the 0.140-0.170 range. When the constant Z̃ estimate is

too small, all points tend to converge to the same location. When Z̃ is too high, it prevents

meaningful clusters from coalescing.

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 1 10 100
 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

M
a
n
y-

To
-O

n
e
 A

cc
u
ra

cy

V
-M

e
a
su

re

Number of Random Substitutes

MTO
VM

 0.4

 0.5

 0.6

 0.7

 0.8

 1 10 100
 0.4

 0.5

 0.6

 0.7

 0.8

M
a
n
y-

To
-O

n
e
 A

cc
u
ra

cy

V
-M

e
a
su

re

Number of Embedding Dimensions

MTO
VM

 0.4

 0.5

 0.6

 0.7

 0.8

 0.01 0.1 1
 0.4

 0.5

 0.6

 0.7

 0.8

M
a
n
y-

To
-O

n
e
 A

cc
u
ra

cy

V
-M

e
a
su

re

Constant Approximation of Z

MTO
VM

Figure 8.7: Sensitivity of instance-based POS induction performance on the PTB to (a) the

number of sampled substitutes, (b) the number of embedding dimensions, (c) the constant

approximation to the normalization constant Z̃.

8.5.6 Word vs. Instance-Based Induction

We compare the output of a word-based model in Section 8.5.2, and two instance-based

POS induction systems in Section 8.5.5. All of the models that are analyzed in this section

incorporate both orthographic and morphological features.

124

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 1.5 2 2.5 3 3.5 4 4.5 5

M
a
n
y-

To
-O

n
e
 A

cc
u
ra

cy

Gold-standard-tag Perplexity

Instance
Word

Figure 8.8: Regression lines for the word- and instance-based models on the MTO accuracy

vs GP plot for the PTB.

Figure 8.8 plots the gold-tag perplexity versus the smoothed MTO accuracy for the

word-based and the instance-based POS induction system. To compose the plot, we find

the best mapping from the induced clusters to the gold-standard tags, then we compute

the MTO accuracy for each word using this mapping, and plot the MTO as a function of

the word’s GP . We use the Nadaraya-Watson kernel regression estimate (Nadaraya, 1964;

Watson, 1964) with normal kernel of bandwidth 1.0 to obtain smooth regression lines.

Figure 8.8 shows that the performance of the instance-based induction model does not

degrade as much as that of the word-based model when the ambiguity of the words increase.

However, only 14.94% of the instances in the PTB consists of words with GP greater than

1.5, and 45.71% consists of words with GP exactly 1. Thus, the overall accuracy numbers

125

do not adequately reflect the improvement on highly ambiguous words.

8.5.7 Multilingual Experiments

We performed experiments with a range of languages and three different feature configu-

rations to establish both the robustness of our model across languages and to observe the

effects of different features. Following Christodoulopoulos et al. (2011), in addition to the

PTB we extend our experiments to 8 languages from MULTEXT-East (Bulgarian, Czech,

English, Estonian, Hungarian, Romanian, Slovene and Serbian) (Erjavec, 2004) and 10

languages from the CoNLL-X shared task (Bulgarian, Czech, Danish, Dutch, German,

Portuguese, Slovene, Spanish, Swedish and Turkish) (Buchholz and Marsi, 2006).

To sample substitutes, we trained language models of Bulgarian, Czech, Estonian, Ro-

manian, Danish, German, Portuguese, Spanish, Swedish and Turkish with their correspond-

ing TenTen corpora (Jakubı́ček et al., 2013), and Hungarian, Slovene and Serbian with

their corresponding Wikipedia dump files8. Serbian shares a common basis with Croat-

ian and Bosnian therefore we trained 3 different language models using Wikipedia dump

files of Serbian together with these two languages and measured the perplexities on the

MULTEXT-East Serbian corpus. We chose the Croatian language model since it achieved

the lowest perplexity score and unknown word ratio on the MULTEXT-East Serbian corpus.

We use the ukWaC corpus (Ferraresi et al., 2008) to train English language models and WaC

corpus (Kilgarriff et al., 2010) to train Dutch language models. We trained the language

model of all languages with the tool and default parameters detailed in Section 8.5.1. Al-

tering these parameters did not significantly improve the perplexity. Table 8.5 summarizes

the language model related statistics and perplexity scores that vary across the languages.

We used the default settings in Section 8.5.1 and incorporated only the orthographic

8The latest Wikipedia dump files are freely available at http://dumps.wikimedia.org/ and the
text in the dump files can be extracted using WP2TXT (http://wp2txt.rubyforge.org/)

126

http://dumps.wikimedia.org/
http://wp2txt.rubyforge.org/

features9. Extracting unsupervised morphological features for languages with different

characteristics would be of great value, but it is beyond the scope of this thesis. For each

language, the number of induced clusters is set to the number of tags in the gold-set. To

perform meaningful comparisons with the previous work, we train and evaluate our models

on the training section of MULTEXT-East10 and CONLL-X languages (Lee et al., 2010).

9As all corpora (except German, Spanish and Swedish) label the punctuation marks with the same gold-
tag, we add an extra punctuation feature for those languages.
10As the languages of MULTEXT-East corpora do not tag the punctuations, we add an extra tag for punc-
tuation to the tag-set of these languages.

127

Language Tags
Best

Published

Instance

Based

Word

Based
W

SJ English 45 .775 / .697‡ .7952 / .6908 .8045 / .7224
M

U
LT

E
X

T-
E

as
t

Bulgarian 12+1 .665 / .556? .6644 / .5126 .7008 / .5802

Czech 12+1 .642 / .539? .7051 / .5109 .7263 / .5487

English 12+1 .733 / .633? .8352 / .6612 .8396 / .6914

Estonian 11+1 .644 / .533? .6425 / .4569 .6764 / .5092

Hungarian 12+1 .682 / .548? .6474 / .4588 .6988 / .5202

Romanian 14+1 .611 / .523? .6600 / .5287 .6808 / .5567

Slovene 12+1 .679 / .567? .6666/ .4513 .6996 / .5037

Serbian 12+1 .641 / .510† .5936 / .4021 .6372/ .4611

C
oN

L
L

-X
Sh

ar
ed

Ta
sk

Bulgarian 54 .704 / .596† .7509 / .5827 .7679 / .6179

Czech 12 .701‡ / .484? .7006 / .4864 .7354 / .5629

Danish 25 .761‡ / .591? .7606 / .5840 .7766 / .6208

Dutch 13 .711‡ / .547? .7120 / .5368 .7418 / .6030

German 54 .744? / .630† .7495 / .6185 .7850 / .6634

Portuguese 22 .785‡ / .639? .7820 / .6078 .8072 / .6567

Slovene 29 .642? / .539† .6380 / .4698 . 6639 / .5192

Spanish 47 .788‡ / .632? .7527 / .6017 .7925 / .6505

Swedish 41 .682 / .589† .6814 / .5463 .7052 / .5812

Turkish 30 .628 / .408? .6373 / .4012 .6602 / .4319

Table 8.6: The MTO and VM scores on 19 corpora in 15 languages together with number

of induced clusters. Statistically significant results shown in bold (p < 0.05). MULTEXT-

East corpora do not tag the punctuation marks, thus we add an extra tag for punctuation and

represent it with “+1”.

128

For each language we report the results of instance and word-based models. Table 8.6

presents the performance of our instance- and word-based models on 19 corpora in 15

languages together with the corresponding syntagmatic baseline and the best published

results from �(Yatbaz et al., 2012), ‡(Blunsom and Cohn, 2011), ?(Christodoulopoulos et al.,

2011) and †(Clark, 2003). All of the state-of-the-art systems in Table 8.6 are word-based

and incorporate morphological features.

Our word-based model achieves the state-of-the-art MTO accuracies on all languages

except Serbian and Spanish. The MTO accuracies of our model on Serbian and Spanish

are comparable with the best published results. Our word-based model scores lower VM

accuracies then the best published results on Estonian, Hungarian, Slovene and Serbian.

Our instance-based results are lower than the word-based results which is mainly due to

the absence of one-tag-per-word assumption. However instance-based model still performs

comparable to or significantly better than the best published system on most languages. We

show significant improvements on MULTEXT-East Czech, Romanian, CoNLL-X Bulgar-

ian and Turkish, and comparable results on MULTEXT-East Bulgarian, Estonian, CoNLL-

X Czech, Danish, Dutch, German, Slovene, Portuguese and Swedish in terms of the MTO

score. Our model achieves the comparable MTO with the word-based model on MULTEXT-

East English and the PTB. Our instance-based model has statistically lower VM scores in

spite of good MTO scores on 11 corpora which is discussed in Section 8.5.8.

Serbian and Slovene language models are trained on the Wikipedia corpora. TenTen,

ukWaC and WaC corpora are cleaner and tokenized better compared to the Wikipedia cor-

pora. These corpora also have larger vocabulary sizes and lower out-of-vocabulary rates

(see Table 8.5). Thus language models trained on these corpora have much lower perplexi-

ties and generate better substitutes than the Wikipedia-based models.

129

8.5.8 Discussion

In this section we perform further analysis on the clustering output of our best performing

models, and indicate the possible reasons for the low VM scores compared to the MTO

ones. To illustrate how words are distributed in the induced clusters, we compare the output

of our model with gold-tags of the PTB by using a Hinton diagram.

Analysis of Word-based Model

Figure 8.9: Each row corresponds to a gold tag, and each column is an induced tag in the

Hinton diagram above. The area of each square is proportional to the joint probability of

the given tag and cluster.

Figure 8.9 is the Hinton diagram for the PTB, showing the relationship between the

most frequent tags and clusters from the experiment in Section 8.5.4. In general, the errors

seem to be the lack of completeness (multiple large entries in a row), rather than the lack of

130

homogeneity (multiple large entries in a column). The algorithm tends to split large word

classes into several clusters. Some examples are:

• Titles like Mr., Mrs., and Dr. are split from the rest of the proper nouns in cluster

(39).

• Auxiliary verbs (10) and the verb “say” (22) have been split from the general verb

clusters (12) and (7).

• Determiners “the” (40), “a” (15), and capitalized “The”/ “A” (6) have been split into

their own clusters.

• Prepositions “of” (19), and “by”, “at” (17) have been split from the general preposi-

tion cluster (8).

Nevertheless, there are also some homogeneity errors:

• The adjective cluster (5) also contains some noun members, probably caused by the

difficulty of separating noun-noun compounds from adjective modification.

• Cluster (6) contains capitalized words that span a number of categories.

Most closed-class items are cleanly separated into their own clusters, as seen in the lower

right hand corner of the diagram.

The completeness errors are not surprising, given that the words that have been split are

not generally substitutable with the other members of their gold-tag set category. Thus it

can be argued that metrics such as MTO that emphasize homogeneity are more appropriate

in this context than metrics such as VM that average homogeneity and completeness as

long as the number of clusters is controlled.

The gold-tags of PTB, on the other hand, do not always respect whether words with

the same tag are substitutable for one another. Freudenthal et al. (2005) argues, from the

131

perspective of language acquisition by children, that the standard linguistic definition of

syntactic groups requires the substitutability of words in a syntactic category. Word pairs

that are placed in the same category in the PTB, such as “Mr.” and “Friday”, “be” and

“run”, “not” and “gladly”, “of” and “into” are clearly not generally substitutable.

The completeness errors become more noticeable on languages with coarse tag-sets.

Thus our models perform worse than the best published models on 4 of MULTEXT-East

languages in terms of VM scores while achieving the state-of-the-art or comparable MTO

scores on the same languages, as shown on Table 8.6. On CONLL-X languages the effect

of completeness errors is less noticeable since all languages except Czech and Dutch have

fine grained tag-sets.

Analysis of Instance-based Model

In this section, we perform further analysis on the clustering output of our instance-based

model. The example below illustrates the advantage of the instance-based approach:

(1) . . . it will also offer buyers the option . . .

Substitutes: give, help, attract

(2) The offer is being launched . . .

Substitutes: campaign, project, scheme
The word offer is a verb in the first sentence and a noun in the second one. The word-

based model cannot distinguish the different occurrences of such words, and assigns all

instances of offer to the same cluster. On the other hand, the substitutes of offer in both

sentences can disambiguate the correct category of the corresponding occurrences. In our

experiments, our instance-based representation distinguishes the instances of offer as noun

(cluster 26 and 12) and verb (cluster 35), as shown in Figure 8.10.

To illustrate how words are distributed in the induced clusters, we compare the most

frequent clusters of our model in Section 8.5.5 with the most frequent gold-tags of PTB in

Figure 8.10.

132

Figure 8.10: Each row corresponds to a gold tag, and each column is an induced tag in the

Hinton diagram above. The area of each square is proportional to the joint probability of

the given tag and cluster.

The low VM performance of our instance-based model when compared to the state-of-

the-art word-based systems on some languages is attributable to the completeness part of

the VM score. The Hinton diagram in Figure 8.10 shows that large gold-tag groups are

split into several clusters because of the substitutability of words in that particular cluster

(rows of the Hinton diagram). A noteworthy example is that instance-based model splits

the punctuation mark (,) class of PTB into the clusters 15 and 43 because of the different

usage patterns. The majority of the (,) instances in cluster 15 are used in relative clauses,

reported speech clauses or conjunctions, while cluster 43 generally consists of (,) instances

that are used in non-essential clauses (ex: Time, the largest newsweekly, . . .). On the other

hand, the word-based system assigns all the instances of the (,) to a single cluster.

133

8.6 Conclusion

Our main contributions can be summarized as follows:

• We introduced substitute vectors as paradigmatic representations of word context and

demonstrated their use in unsupervised part of speech induction on 19 corpora in 15

languages.

• We demonstrated that using paradigmatic representations of word context and model-

ing co-occurrences of word and context types with the S-CODE learning framework

give superior results when compared to a syntagmatic bi-gram model.

• We extended the S-CODE framework to incorporate morphological and orthographic

features and improved the state-of-the-art many-to-one accuracy in unsupervised part

of speech induction on 17 out of 19 corpora.

• We introduced an instance based POS induction system that can handle ambiguous

words and is competitive with the word-based systems in overall accuracy.

• All our code and data, including the substitute vectors for the PTB, MULTEXT-East

and CoNLL-X shared task corpora are available at the authors’ website at xxx.xxx.xxx.

134

xxx.xxx.xxx

Language Model Test Corpus

Language Source
Instance

Count

Word

Count

Instance

Count

Word

Count

Unknown

Word

Perplexity

(ppl)

W
SJ English ukWaC 2,303,225,131 4,254,946 1,173,766 49,206 0.0081 303.477

M
U

LT
E

X
T-

E
as

t

Bulgarian TenTen 849,023,297 1,965,178 101,173 16,353 .0151 295.704

Czech TenTen 1,791,613,805 4,758,807 100,368 19,121 .0038 294.022

English ukWaC 2,303,225,131 4,254,946 118,424 9,774 .0046 143.451

Estonian TenTen 330,671,558 2,526,585 94,898 17,847 .0166 477.805

Hungarian Wikipedia 66,069,788 1,065,897 98,426 20,323 .0449 654.086

Romanian TenTen 53,456,650 310,366 118,328 15,192 .0070 126.596

Slovene Wikipedia 18,969,864 363,251 112,278 17,873 .0389 648.347

Serbian Wikipedia 17,129,679 368,778 108,809 18,113 .0580 804.962

C
oN

L
L

-X
Sh

ar
ed

Ta
sk

Bulgarian TenTen 849,023,297 1,965,178 190,217 32,439 .0196 168.592

Czech TenTen 1,791,613,805 4,758,807 1,249,408 130,208 .0050 476.434

Danish TenTen 1,857,746,600 5,304,957 94,386 18356 .0218 185.325

Dutch WaC 127,580,512 774,965 195,069 28,493 .0465 261.709

German TenTen 1,810,802,875 6,513,804 699,610 72,326 .0227 417.676

Portuguese TenTen 3,267,166,367 3,434,834 206,678 28,932 .0493 364.92

Slovene Wikipedia 18,969,864 363,251 28,750 7,128 .0414 596.678

Spanish TenTen 2,445,878,830 3,067,682 89,334 16,458 .0343 193.94

Swedish TenTen 113,975,094 926,875 191,467 20,057 .0179 288.16

Turkish TenTen 1,804,606,896 5,308,241 47,605 17,563 .0550 600.632

Table 8.5: Language model corpos and test corpus statistics are presented.

135

Chapter 9

CONCLUSION

This thesis represents the context by the distribution of substitute words, and proposes

models with different characteristics to incorporate this new representation. The main con-

tributions of the thesis are the following:

• It formulates a new paradigmatic representation of context in Chapter 3.

• It presents a method to calculate the substitute distributions of a given context (see

Section 2.3). It also presents a discretized context representation by sampling substi-

tutes (with replacement) from the substitute distributions (see Section 2.4).

• To incorporate substitute distributions, 4 different tagging models with different char-

acteristics are introduced in Chapter 4.

• Section 8.4 analyzes the performance of substitute distributions according to different

distance metrics, dimensionality reduction methods, and and clustering algorithms,

on the unsupervised part-of-speech induction task of English.

• The word-based co-occurrence model achieves the state-of-the-art many-to-one ac-

curacies in the unsupervised part-of-speech induction task of 19 corpora in 15 lan-

guages.

• The instance-based co-occurrence model achieves results that are competitive in

overall accuracy with the best-published systems on 15 out of 19 corpora in 15 lan-

guages.

• The probabilistic voting algorithm is applied to the morphological disambiguation

task of Turkish, and achieves 64.5% accuracy on ambiguous words.

• The word-tag dictionary reduction method (see Section 4.4.1) improves the accu-

racy of the HMM-EM model (with a word-tag dictionary), and achieves 92.25% and

92.47% word tagging accuracies on the 24K- and 48K-word corpora, respectively.

Both results are the highest reported results on the corresponding datasets (see Sec-

tion 5.4).

• The data-enhanced Viterbi algorithm (see Section 4.4.2) significantly improves the

prediction accuracies of the HMM-EM model (with a word-tag dictionary) in all of

the corpora, and achieves %2.6 error accuracy gain in the worst case and %5.6 in the

best case (see Section 5.5).

• The noisy channel model (see Section 4.5) is applied to the word-sense disambigua-

tion task of English when a word-tag distribution is available. This model consis-

tently outperforms any previously reported unsupervised model results, and achieves

performance comparable to the best supervised model results.

• From the exploration of semantic classes at various levels of granularity, it is shown

that the relationship between granularity and fine-grained accuracy is complex.

137

Appendix A: Solutions for Pr(T |C)

To solve for Pr(T |C) using Pr(W |C) and Pr(W |T), we represent the first two as vectors:

tj = Pr(T = j|C = k) and wi = Pr(W = i|C = k), and the last one as a matrix:

WTij = Pr(W = i|T = j). Our problem becomes finding a solution to the linear

equationw = WT×t. Using the Moore–Penrose pseudoinverse, WT+, we find a solution

t = WT+ × w. This solution minimizes the distance |WT × t − w|. There are two

potential problems with this pseudoinverse solution. First, it may violate the non-negativity

and normalization constraints of a probability distribution. Second, a maximum likelihood

estimate should minimize the cross entropy between WT × t and w, not the Euclidean

distance. We addressed the normalization problem using a constrained linear solver and the

cross entropy problem using numerical optimization. However, our experiments showed

the difference in WSD performance to be less than 1% in each case. The pseudoinverse

solution, t = WT+ × w, can be computed fast and works well in practice so this is the

solution that is used in all our experiments.

138

BIBLIOGRAPHY

Abend, O., Reichart, R., and Rappoport, A. (2010). Improved unsupervised pos induction

through prototype discovery. In Proceedings of the 48th Annual Meeting of the Associa-

tion for Computational Linguistics, ACL ’10, pages 1298–1307, Stroudsburg, PA, USA.

Association for Computational Linguistics. 102

Adler, M. and Elhadad, M. (2006). An unsupervised morpheme-based hmm for hebrew

morphological disambiguation. In Proceedings of the 21st International Conference on

Computational Linguistics and the 44th annual meeting of the Association for Computa-

tional Linguistics, pages 665–672. 73

Agirre, E., Màrquez, L., and Wicentowski, R., editors (2007). Proceedings of the Fourth

International Workshop on Semantic Evaluations (SemEval-2007), Prague, Czech Re-

public. Association for Computational Linguistics. 81

Agirre, E. and Martinez, D. (2004). Unsupervised WSD based on automatically retrieved

examples: The importance of bias. In Lin, D. and Wu, D., editors, Proceedings of the

Conference on Empirical Methods in Natural Language Processing (EMNLP), pages

25–32, Barcelona, Spain. Association for Computational Linguistics. 82

Ambridge, B. and Lieven, E. (2011). Child Language Acquisition: Contrasting Theoretical

Approaches, chapter 6.1. Cambridge University Press. 97, 99

Arthur, D. and Vassilvitskii, S. (2007). k-means++: The advantages of careful seeding.

In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms,

pages 1027–1035. Society for Industrial and Applied Mathematics. 116

Bahl, L. R., Jelinek, F., and Mercer, R. L. (1983). A maximum likelihood approach to

continuous speech recognition. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 5(2):179–190. 48, 81

Banko, M. and Brill, E. (2001). Scaling to very very large corpora for natural language

disambiguation. In Proceedings of 39th Annual Meeting of the Association for Com-

putational Linguistics, pages 26–33, Toulouse, France. Association for Computational

Linguistics. 12

Banko, M. and Moore, R. C. (2004). Part of speech tagging in context. In COLING ’04:

Proceedings of the 20th international conference on Computational Linguistics, page

556, Morristown, NJ, USA. Association for Computational Linguistics. 52

Baum, L. (1972). An inequality and associated maximization technique in statistical esti-

mation for probabilistic functions of Markov processes. Inequalities, 3(1):1–8. 43

Belkin, M. and Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and

data representation. Neural computation, 15(6):1373–1396. 108

Berg-Kirkpatrick, T., Bouchard-Côté, A., DeNero, J., and Klein, D. (2010). Painless un-

supervised learning with features. In Human Language Technologies: The 2010 Annual

Conference of the North American Chapter of the Association for Computational Lin-

guistics, pages 582–590, Los Angeles, California. Association for Computational Lin-

guistics. 120

Berg-Kirkpatrick, T. and Klein, D. (2010). Phylogenetic grammar induction. In Proceed-

ings of the 48th Annual Meeting of the Association for Computational Linguistics, pages

1288–1297, Uppsala, Sweden. Association for Computational Linguistics. 27, 98, 102,

117

140

Biemann, C. (2006). Unsupervised part-of-speech tagging employing efficient graph clus-

tering. In Proceedings of the 21st International Conference on computational Linguistics

and 44th Annual Meeting of the Association for Computational Linguistics: Student Re-

search Workshop, pages 7–12. Association for Computational Linguistics. 101

Bilmes, J. and Zweig, G. (2002). The Graphical Models Toolkit: An open source soft-

ware system for speech and time-series processing. In IEEE INTERNATIONAL CON-

FERENCE ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, volume 4, pages

3916–3919. Citeseer. 55

Blunsom, P. and Cohn, T. (2011). A hierarchical pitman-yor process hmm for unsupervised

part of speech induction. In Proceedings of the 49th Annual Meeting of the Association

for Computational Linguistics: Human Language Technologies, pages 865–874, Port-

land, Oregon, USA. Association for Computational Linguistics. 27, 97, 102, 117, 129

Brants, T. and Franz, A. (2006a). Web 1T 5-gram version 1. Linguistic Data Consortium,

Philadelphia. LDC2006T13. 22, 80

Brants, T. and Franz, A. (2006b). Web 1T 5-gram Version 1. Linguistic Data Consortium,

Philadelphia. 55

Brill, E. and Moore, R. C. (2000). An improved error model for noisy channel spelling cor-

rection. In Proceedings of the 38th Annual Meeting of the Association for Computational

Linguistics, pages 286–293, Hong Kong. Association for Computational Linguistics. 81

Brown, P. F., Cocke, J., Della Pietra, S. A., Della Pietra, V. J., Jelinek, F., Lafferty, J. D.,

Mercer, R. L., and Roossin, P. S. (1990). A statistical approach to machine translation.

Computational Linguistics, 16(2):79–85. 48, 81

Brown, P. F., deSouza, P. V., Mercer, R. L., Pietra, V. J. D., and Lai, J. C. (1992). Class-

141

based n-gram models of natural language. Comput. Linguist., 18:467–479. 27, 97, 98,

100, 101, 117

Buchholz, S. and Marsi, E. (2006). Conll-x shared task on multilingual dependency parsing.

In Proceedings of the Tenth Conference on Computational Natural Language Learning,

CoNLL-X ’06, pages 149–164, Stroudsburg, PA, USA. Association for Computational

Linguistics. 126

Chandler, D. (2007). Semiotics: the basics. The Basics Series. Routledge. 5, 13

Chen, S. and Goodman, J. (1999). An empirical study of smoothing techniques for language

modeling. Computer Speech and Language, 13(4):359–394. 20, 81

Chklovski, T. and Mihalcea, R. (2003). Exploiting agreement and disagreement of human

annotators for word sense disambiguation. In Proceedings of the Conference on Recent

Advances in Natural Language Processing, Borovetz, Bulgaria. 81

Christodoulopoulos, C., Goldwater, S., and Steedman, M. (2010). Two decades of unsu-

pervised pos induction: how far have we come? In Proceedings of the 2010 Conference

on Empirical Methods in Natural Language Processing, EMNLP ’10, pages 575–584,

Stroudsburg, PA, USA. Association for Computational Linguistics. 10, 98, 99, 101, 102,

103, 117

Christodoulopoulos, C., Goldwater, S., and Steedman, M. (2011). A bayesian mixture

model for pos induction using multiple features. In Proceedings of the 2011 Confer-

ence on Empirical Methods in Natural Language Processing, pages 638–647, Edinburgh,

Scotland, UK. Association for Computational Linguistics. 97, 102, 117, 126, 129

Ciaramita, M. and Altun, Y. (2006). Broad-coverage sense disambiguation and information

extraction with a supersense sequence tagger. In Proceedings of the 2006 Conference on

142

Empirical Methods in Natural Language Processing, pages 594–602, Sydney, Australia.

Association for Computational Linguistics. 81

Clark, A. (2003). Combining distributional and morphological information for part of

speech induction. In Proceedings of the tenth conference on European chapter of the

Association for Computational Linguistics - Volume 1, EACL ’03, pages 59–66, Strouds-

burg, PA, USA. Association for Computational Linguistics. 97, 101, 102, 117, 120, 129

Cotton, S., Edmonds, P., Kilgarriff, A., and Palmer, M., editors (2001). SENSEVAL-

2: Second International Workshop on Evaluating Word Sense Disambiguation Systems,

Toulouse, France. 81

Crestan, E., El-Bèze, M., and De Loupy, C. (2001). Improving WSD with Multi-Level

View of Context Monitored by Similarity Measure. In Proceedings of SENSEVAL-2:

Second International Workshop on Evaluating Word Sense Disambiguation Systems. 81,

89

Creutz, M. and Lagus, K. (2005). Inducing the morphological lexicon of a natural language

from unannotated text. In Proceedings of AKRR’05, International and Interdisciplinary

Conference on Adaptive Knowledge Representation and Reasoning, pages 106–113, Es-

poo, Finland. 121

Daume III, H. and Marcu, D. (2002). A noisy-channel model for document compression.

In Proceedings of 40th Annual Meeting of the Association for Computational Linguis-

tics, pages 449–456, Philadelphia, Pennsylvania, USA. Association for Computational

Linguistics. 81

Dolan, W. (1994). Word sense ambiguation: clustering related senses. Proceedings of the

15th conference on Computational linguistics, pages 05–09. 81

143

Echihabi, A. and Marcu, D. (2003). A noisy-channel approach to question answering. In

Proceedings of the 41st Annual Meeting of the Association for Computational Linguis-

tics, pages 16–23, Sapporo, Japan. Association for Computational Linguistics. 81

Erjavec, T. (2004). MULTEXT-east version 3: Multilingual morphosyntactic specifica-

tions, lexicons and corpora. In Fourth International Conference on Language Resources

and Evaluation, LREC’04, pages 1535–1538. ELRA. 126

Ferraresi, A., Zanchetta, E., Baroni, M., and Bernardini, S. (2008). Introducing and evalu-

ating ukwac, a very large web-derived corpus of english. In Proceedings of the 4th Web

as Corpus Workshop (WAC-4) Can we beat Google, pages 47–54. 115, 126

Freudenthal, D., Pine, J., and Gobet, F. (2005). On the resolution of ambiguities in the ex-

traction of syntactic categories through chunking. Cognitive Systems Research, 6(1):17–

25. 98, 131

Ganchev, K., Graça, J. a., Gillenwater, J., and Taskar, B. (2010). Posterior regularization

for structured latent variable models. J. Mach. Learn. Res., 99:2001–2049. 27, 98, 101,

117

Gao, J. and Johnson, M. (2008). A comparison of bayesian estimators for unsupervised hid-

den markov model pos taggers. In Proceedings of the Conference on Empirical Methods

in Natural Language Processing, EMNLP ’08, pages 344–352, Stroudsburg, PA, USA.

Association for Computational Linguistics. 98, 99, 101

Globerson, A., Chechik, G., Pereira, F., and Tishby, N. (2007). Euclidean embedding of

co-occurrence data. J. Mach. Learn. Res., 8:2265–2295. 33, 37, 38, 100

Goldberg, Y., Adler, M., and Elhadad, M. (2008). Em can find pretty good hmm pos-taggers

(when given a good start). Proceedings of ACL-08. Columbus, OH, pages 746–754. 53,

54

144

Goldwater, S. and Griffiths, T. (2007a). A fully Bayesian approach to unsupervised part-

of-speech tagging. In Annual Meeting-Assosiation for Computational Linguistics, vol-

ume 45, page 744. 7, 42, 53, 54, 64

Goldwater, S. and Griffiths, T. (2007b). A fully bayesian approach to unsupervised part-

of-speech tagging. In Proceedings of the 45th Annual Meeting of the Association of

Computational Linguistics, pages 744–751, Prague, Czech Republic. Association for

Computational Linguistics. 27, 98, 101, 117

Goodman, J. (2001). A bit of progress in language modeling. Computer Speech and

Language, pages 403–434. 20, 21, 81

Graff, D., Rosenfeld, R., and Paul, D. (1995). Csr-iii text. Linguistic Data Consortium,

Philadelphia. 106

Haghighi, A. and Klein, D. (2006). Prototype-driven learning for sequence models. In

Proceedings of the main conference on Human Language Technology Conference of the

North American Chapter of the Association of Computational Linguistics, HLT-NAACL

’06, pages 320–327, Stroudsburg, PA, USA. Association for Computational Linguistics.

98, 99, 102

Hakkani-Tür, D. Z., Oflazer, K., and Tür, G. (2002). Statistical morphological disambigua-

tion for agglutinative languages. Computers and the Humanities, 36(4):381–410. 12

Hawker, T. (2007). Usyd: Wsd and lexical substitution using the web1t corpus. In Proceed-

ings of the Fourth International Workshop on Semantic Evaluations (SemEval-2007),

pages 446–453, Prague, Czech Republic. Association for Computational Linguistics. 81

Jakubı́ček, M., Kilgarriff, A., Kovář, V., Rychlỳ, P., and Suchomel, V. (2013). The tenten

corpus family. In International Conference on Corpus Linguistics, Lancaster. 126

145

Jansen, B., Spink, A., and Pfaff, A. (2000). Linguistic aspects of web queries. In Proceed-

ings of the ASIS Annual Meeting, volume 37, pages 169–76. 88

Johnson, M. (2007a). Why doesn’t EM find good HMM POS-taggers? In Proceedings of

the 2007 Joint Conference on Empirical Methods in Natural Language Processing and

Computational Natural Language Learning (EMNLP-CoNLL), pages 296–305, Prague,

Czech Republic. Association for Computational Linguistics. 27, 98, 101

Johnson, M. (2007b). Why doesn’t EM find good HMM POS-taggers. In Proceedings of

the 2007 Joint Conference on Empirical Methods in Natural Language Processing and

Computational Natural Language Learning (EMNLP-CoNLL), pages 296–305. 43, 52,

53

Kaufman, L. and Rousseeuw, P. (2005). Finding groups in data: an introduction to cluster

analysis. Wiley series in probability and mathematical statistics. Applied probability and

statistics. Wiley. 110

Kilgarriff, A., Reddy, S., Pomikálek, J., and Avinesh, P. (2010). A corpus factory for many

languages. In LREC. 126

Kohomban, U. S. and Lee, W. S. (2005). Learning semantic classes for word sense dis-

ambiguation. In Proceedings of the 43rd Annual Meeting of the Association for Com-

putational Linguistics (ACL’05), pages 34–41, Ann Arbor, Michigan. Association for

Computational Linguistics. 81, 89

Kohomban, U. S. and Lee, W. S. (2007). Optimizing Classifier Performance in Word Sense

Disambiguation by Redefining Word Sense Classes. In Proceedings of the International

Joint Conference on Artificial Intelligence, pages 1635–1640. 82

Kucera, H. and Francis, W. N. (1967). Computational Analysis of Present-Day American

English. Brown University Press. 88

146

Lamar, M., Maron, Y., and Bienenstock, E. (2010a). Latent-descriptor clustering for unsu-

pervised pos induction. In Proceedings of the 2010 Conference on Empirical Methods

in Natural Language Processing, EMNLP ’10, pages 799–809, Stroudsburg, PA, USA.

Association for Computational Linguistics. 97, 101, 117

Lamar, M., Maron, Y., Johnson, M., and Bienenstock, E. (2010b). Svd and clustering for

unsupervised pos tagging. In Proceedings of the ACL 2010 Conference Short Papers,

pages 215–219, Uppsala, Sweden. Association for Computational Linguistics. 24, 97,

101

Lee, Y. K., Haghighi, A., and Barzilay, R. (2010). Simple type-level unsupervised pos

tagging. In Proceedings of the 2010 Conference on Empirical Methods in Natural Lan-

guage Processing, EMNLP ’10, pages 853–861, Stroudsburg, PA, USA. Association for

Computational Linguistics. 27, 127

Levinger, M., Itai, A., and Ornan, U. (1995). Learning morpho-lexical probabilities from an

untagged corpus with an application to Hebrew. Computational Linguistics, 21(3):404.

73

MacWhinney, B. (2000). The CHILDES Project: Tools for Analyzing Talk, Volume II: The

Database, volume 2. Lawrence Erlbaum. 25

Magnini, B., Strapparava, C., Pezzulo, G., and Gliozzo, A. (2003). The role of domain

information in word sense disambiguation. Natural Language Engineering, 8(04):359–

373. 81

Manning, C., Raghavan, P., and Schütze, H. (2008). Introduction to information retrieval,

chapter 17. Cambridge University Press. 110

Manning, C. D. and Schütze, H. (1999). Foundations of Statistical Natural Language

Processing. The MIT Press, Cambridge, Massachusetts. 26

147

Marcus, M. P., Santorini, B., Marcinkiewicz, M. A., and Taylor, A. (1999). Treebank-3.

Linguistic Data Consortium, Philadelphia. 98, 106, 115

Maron, Y., Lamar, M., and Bienenstock, E. (2010). Sphere embedding: An application to

part-of-speech induction. In Lafferty, J., Williams, C. K. I., Shawe-Taylor, J., Zemel, R.,

and Culotta, A., editors, Advances in Neural Information Processing Systems 23, pages

1567–1575. 10, 24, 33, 34, 37, 38, 117, 119, 120

Martinez, D., de Lacalle, O. L., and Agirre, E. (2008). On the use of automatically acquired

examples for all-nouns word sense disambiguation. Journal of Artificial Intelligence

Research, 33:79–107. 82

Merialdo, B. (1994). Tagging english text with a probabilistic model. Computational

linguistics, 20(2):155–171. 42, 43, 53

Mihalcea, R. and Edmonds, P., editors (2004). SENSEVAL-3: The Third International

Workshop on the Evaluation of Systems for the Semantic Analysis of Text, Barcelona,

Spain. 81

Mintz, T. (2003). Frequent frames as a cue for grammatical categories in child directed

speech. Cognition, 90(1):91–117. 24, 25, 26, 100, 119

Mitzenmacher, M. (2004). A brief history of generative models for power law and lognor-

mal distributions. Internet mathematics, 1(2):226–251. 43, 53

Nadaraya, E. A. (1964). On estimating regression. Theory of Probability & Its Applications,

9(1):141–142. 125

Navigli, R. (2006). Meaningful clustering of senses helps boost word sense disambiguation

performance. In Proceedings of the 21st International Conference on Computational

Linguistics and 44th Annual Meeting of the Association for Computational Linguistics,

pages 105–112, Sydney, Australia. Association for Computational Linguistics. 81

148

Navigli, R. (2009). Word sense disambiguation: a survey. ACM Computing Surveys,

41(2):1–69. 81

Ng, A., Jordan, M., and Weiss, Y. (2002). On spectral clustering: Analysis and an algo-

rithm. Advances in neural information processing systems, 2:849–856. 110

OflazerH, K., Hakkani-Tür, D., and Tür, G. (2002). Design for a Turkish treebank. 72, 75

Peters, W., Peters, I., and Vossen, P. (1998). Automatic Sense Clustering in EuroWordNet.

In Proceedings of the International Conference on Language Resources and Evaluation,

pages 409–416. 81

Pustejovsky, J., Hanks, P., and Rumshisky, A. (2004). Automated induction of sense in con-

text. In Proceedings of the 20th international conference on Computational Linguistics,

page 924. Association for Computational Linguistics. 71

Ravi, S. and Knight, K. (2009a). Minimized models for unsupervised part-of-speech tag-

ging. In Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and

the 4th International Joint Conference on Natural Language Processing of the AFNLP,

pages 504–512, Suntec, Singapore. Association for Computational Linguistics. 43

Ravi, S. and Knight, K. (2009b). Minimized models for unsupervised part-of-speech tag-

ging. In ACL-IJCNLP ’09: Proceedings of the Joint Conference of the 47th Annual

Meeting of the ACL and the 4th International Joint Conference on Natural Language

Processing of the AFNLP: Volume 1, pages 504–512, Morristown, NJ, USA. Associa-

tion for Computational Linguistics. 54, 58, 63

Redington, M., Crater, N., and Finch, S. (1998). Distributional information: A powerful

cue for acquiring syntactic categories. Cognitive Science, 22(4):425–469. 24, 100

Rosenberg, A. and Hirschberg, J. (2007). V-measure: A conditional entropy-based external

cluster evaluation measure. In Proceedings of the 2007 Joint Conference on Empirical

149

Methods in Natural Language Processing and Computational Natural Language Learn-

ing, pages 410–420. 103

Rosenfeld, R. (2000). Two decades of statistical language modeling: Where do we go from

here. In Proceedings of the IEEE, volume 88, pages 1270–1278. 20, 81

Roweis, S. and Saul, L. (2000). Nonlinear dimensionality reduction by locally linear em-

bedding. Science, 290(5500):2323. 108

Sahlgren, M. (2006). The Word-Space Model: Using distributional analysis to repre-

sent syntagmatic and paradigmatic relations between words in high-dimensional vector

spaces. PhD thesis, Stockholm University. 27

Sak, H., Güngör, T., and Saraçlar, M. (2008). Turkish language resources: Morphological

parser, morphological disambiguator and web corpus. Advances in natural language

processing, pages 417–427. 12, 77

Schütze, H. (1995). Distributional part-of-speech tagging. In Proceedings of the sev-

enth conference on European chapter of the Association for Computational Linguistics,

EACL ’95, pages 141–148, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

27, 28, 97, 100, 101

Schütze, H. and Pedersen, J. (1993). A Vector Model for syntagmatic and paradigmatic

relatedness. In Proceedings of the 9th Annual Conference of the University of Waterloo

Centre for the New OED and Text Research, Oxford, England. 24, 25, 27, 98

Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Tech-

nical Journal, 27:379–423, 623–656. 80

Smith, N. A. and Eisner, J. (2005). Contrastive estimation: training log-linear models on

unlabeled data. In ACL ’05: Proceedings of the 43rd Annual Meeting on Association

150

for Computational Linguistics, pages 354–362, Morristown, NJ, USA. Association for

Computational Linguistics. 53, 54, 63

St Clair, M. C., Monaghan, P., and Christiansen, M. H. (2010). Learning grammatical

categories from distributional cues: flexible frames for language acquisition. Cognition,

116(3):341–60. 24, 26, 100, 101, 119

Stevenson, M. (2003). Word Sense Disambiguation: The Case for Combinations of Knowl-

edge Sources. CSLI. 81

Stolcke, A. (2002a). SRILM-an extensible language modeling toolkit. In Seventh Interna-

tional Conference on Spoken Language Processing, volume 3. Citeseer. 55

Stolcke, A. (2002b). Srilm-an extensible language modeling toolkit. In Proceedings Inter-

national Conference on Spoken Language Processing, pages 257–286. 106, 115

Tenenbaum, J., Silva, V., and Langford, J. (2000). A global geometric framework for

nonlinear dimensionality reduction. Science, 290(5500):2319. 108

Tomasello, M. (2009). Constructing a language: A usage-based theory of language acqui-

sition. Harvard University Press. 30

Toutanova, K. and Johnson, M. (2007). A Bayesian LDA-based model for semi-supervised

part-of-speech tagging. In Proceedings of NIPS, volume 20. 63

Toutanova, K., Klein, D., Manning, C. D., and Singer, Y. (2003). Feature-rich part-of-

speech tagging with a cyclic dependency network. In Proceedings of the 2003 Confer-

ence of the North American Chapter of the Association for Computational Linguistics

on Human Language Technology - Volume 1, NAACL ’03, pages 173–180, Stroudsburg,

PA, USA. Association for Computational Linguistics. 98, 99, 101

151

Turney, P. D. and Pantel, P. (2010). From frequency to meaning: Vector space models of

semantics. J. Artif. Intell. Res. (JAIR), 37:141–188. 24

Véronis, J. (2004). Hyperlex: lexical cartography for information retrieval. Computer

Speech & Language, 18(3):223–252. 25

Viterbi, A. (1967). Error bounds for convolutional codes and an asymptotically optimum

decoding algorithm. Information Theory, IEEE Transactions on, 13(2):260–269. 43

Watson, G. S. (1964). Smooth regression analysis. Sankhyā: The Indian Journal of Statis-

tics, Series A, pages 359–372. 125

Yarowsky, D. (1992). Word sense disambiguation using statistical models of Roget’s cate-

gories trained on large corpora. In Proceedings of the 15th International Conference on

Computational Linguistics, pages 454–460, Nantes. 81

Yarowsky, D. and Florian, R. (2002). Evaluating sense disambiguation across diverse pa-

rameter spaces. Natural Language Engineering, 8(4):293–310. 11

Yatbaz, M. A., Sert, E., and Yuret, D. (2012). Learning syntactic categories using paradig-

matic representations of word context. In Proceedings of the 2012 Joint Conference on

Empirical Methods in Natural Language Processing and Computational Natural Lan-

guage Learning, pages 940–951, Jeju Island, Korea. Association for Computational Lin-

guistics. 97, 103, 129

Yatbaz, M. A. and Yuret, D. (2010). Unsupervised part of speech tagging using unam-

biguous substitutes from a statistical language model. In Coling 2010: Posters, pages

1391–1398, Beijing, China. Coling 2010 Organizing Committee. 99

Yuret, D. (2004). Some experiments with a Naive Bayes WSD system. In Mihalcea, R.

and Edmonds, P., editors, Senseval-3: Third International Workshop on the Evaluation of

152

Systems for the Semantic Analysis of Text, pages 265–268, Barcelona, Spain. Association

for Computational Linguistics. 12

Yuret, D. (2007). KU: Word sense disambiguation by substitution. In Proceedings of the

Fourth International Workshop on Semantic Evaluations (SemEval-2007), pages 207–

214, Prague, Czech Republic. Association for Computational Linguistics. 81

Yuret, D. (2008). Smoothing a tera-word language model. In Proceedings of ACL-08:

HLT, Short Papers, pages 141–144, Columbus, Ohio. Association for Computational

Linguistics. 81, 85

Yuret, D. (2012). Fastsubs: An efficient and exact procedure for finding the most likely

lexical substitutes based on an n-gram language model. Signal Processing Letters, IEEE,

19(11):725–728. 22, 115

Yuret, D. and Biçici, E. (2009). Modeling morphologically rich languages using split words

and unstructured dependencies. In Proceedings of the ACL-IJCNLP 2009 Conference

Short Papers, pages 345–348. Association for Computational Linguistics. 72

Yuret, D. and Ture, F. (2006). Learning morphological disambiguation rules for turkish. In

Moore, R. C., Bilmes, J. A., Chu-Carroll, J., and Sanderson, M., editors, HLT-NAACL.

The Association for Computational Linguistics. 15

153

	List of Figures
	List of Tables
	Introduction
	Relationships Between Linguistic Units
	Scope
	Overview
	Contribution

	Calculating Substitute Distributions
	Statistical Language Modeling
	Language Model Quality
	The Substitute Distribution of a Word Context
	Sampling from a Substitute distribution

	Representing Word Context
	Syntagmatic Representation
	HMM
	Paradigmatic Representation

	Models
	Model 1: Clustering of the Substitute Distributions
	Model 2: Co-occurrence Modeling
	Co-occurrence Data
	The CODE Model
	Clustering Embeddings

	Model 3: Probabilistic Voting Model
	Model 4: Constraining HMM-Based Models
	Method 1: Dictionary Reduction
	Method 2: Data Enhanced Viterbi Search Algorithm

	Model 5: Noisy Channel Model
	Conclusion

	Part of Speech Disambiguation
	Related Work
	Experimental Settings
	Language Model
	Dataset

	Baseline
	Experiment: Dictionary Reduction
	Number of Substitutes
	Amount of Data
	17-Tag Set

	Experiment: Data-Enhanced Viterbi Search Algorithm
	Substitute Selection Criteria
	Experiments on the Number of Substitutes
	Out-of-Vocabulary (OOV) Words

	Conclusion
	Future Work

	Morphological Disambiguation
	Related Work
	Algorithm
	Word-tag Dictionary Construction and Simplification
	Experiments and Results
	Language Model
	Corpus size
	Number of Substitute Words

	Conclusion
	Future Work on Morphological Disambiguation

	Word-Sense Disambiguation
	Related Work
	Algorithm
	Estimation Procedure
	Semantic Classes
	Three Experiments
	First experiment: the 25 WordNet categories
	Second experiment: distinguishing mental and physical concepts
	Third experiment: tuning the number of classes

	Conclusion
	Future Work

	Part of Speech Induction
	Related Work
	Distributional models
	Word-feature models
	Paradigmatic representations

	Evaluation
	Tag Perplexity
	Experiments: Substitute Distribution Clustering
	Experimental Settings
	Distance Metrics
	Dimensionality Reduction
	Clustering
	Word-base Clustering
	Substitute Vector Clustering on the PTB
	Discussion

	Experiments: Co-occurrence Modeling
	Experimental Settings
	Word-based System
	Paradigmatic vs Syntagmatic Representations of Word Context
	Morphological and Orthographic Features
	Instance-based System
	Word vs. Instance-Based Induction
	Multilingual Experiments
	Discussion

	Conclusion

	Conclusion

