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Natural Language Processing

  Natural Languages has ambiguities

  I love spicy dishes .
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Natural Language Processing

  Natural Languages has ambiguities

  I love spicy dishes .

• S: (n) a piece of dishware normally used as a container for holding 
or serving food

• S: (n) a particular item of prepared food
• S: (n) the quantity that a dish will hold
• S: (n) a very attractive or seductive looking woman
• S: (n) directional antenna consisting of a parabolic reflector for 

microwave or radio frequency radiation
• S: (n) an activity that you like or at which you are superior
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http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&s=dishes&i=3&h=00000000#c
http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&s=dishes&i=4&h=00000000#c
http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&s=dishes&i=4&h=00000000#c
http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&s=dishes&i=5&h=00000000#c
http://wordnetweb.princeton.edu/perl/webwn?o2=&o0=1&o8=1&o1=1&o7=&o5=&o9=&o6=&o3=&o4=&s=dishes&i=5&h=00000000#c
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  Natural Languages has ambiguities

  a word can be used in different ways

3Sunday, February 16, 14



Natural Language Processing

  Natural Languages has ambiguities

  a word can be used in different ways

  it is important to:

3Sunday, February 16, 14



Natural Language Processing
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Natural Language Processing

  Natural Languages has ambiguities
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  it is important to:
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  find words that are similar to each other
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Natural Language Processing
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  a word can be used in different ways

  it is important to:

  disambiguate
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Natural Language Processing

  Natural Languages has ambiguities

  a word can be used in different ways

  it is important to:

  disambiguate

  find words that are similar to each other

  to do that one can use words features

  Word context is one of the word features
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Outline
Tagging 

Paradigmatic Context representation

Clustering Model

Co-occurrence Modeling 

Probabilistic Voting 

HMM based Model

Noisy Channel Model
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Part of speech disambiguation

U.N.     

Proper 
Noun

official

Adjective 
Noun

Ekeus

Proper 
Noun

heads

Noun
Verb

for

Preposition

Baghdad

Proper 
Noun

.

.

Part-of-speech represents groups of words that are substitutable

without altering the grammaticality of a sentence
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Part of speech disambiguation

U.N.     

Proper 
Noun

official

Adjective 
Noun

Ekeus

Proper 
Noun

heads

Noun
Verb

for

Preposition

Baghdad

Proper 
Noun

.

.

Part-of-speech represents groups of words that are substitutable

without altering the grammaticality of a sentence
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Part of speech induction

U.N.     

Cluster1

official

Cluster2

Ekeus

Cluster1

heads

Cluster3

for

Cluster4

Baghdad

Cluster1

.

Cluster5

Clusters represents the groups of words that are substitutable

No tag information is available
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Word-sense disambiguation

U.N.     Ekeus for Baghdad .heads

 identifying which sense of a word (i.e. meaning) is used

X :  has no entry in WordNet

official

7
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Word-sense disambiguation

U.N.     

noun(1): United Nations (an organization of independent states formed in 1945 to 
promote international peace and security)

Ekeus for Baghdad .heads

 identifying which sense of a word (i.e. meaning) is used

X :  has no entry in WordNet

official
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Word-sense disambiguation

U.N.     

noun(1): United Nations (an organization of independent states formed in 1945 to 
promote international peace and security)

Ekeus for Baghdad .heads

 identifying which sense of a word (i.e. meaning) is used

X :  has no entry in WordNet

official

X

noun(1): a worker who holds or is invested with and office.
noun(2): someone who administers the rules of an organization.
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Word-sense disambiguation

U.N.     

noun(1): United Nations (an organization of independent states formed in 1945 to 
promote international peace and security)

Ekeus for

X

Baghdad .heads

verb(1): to go or travel towards

 identifying which sense of a word (i.e. meaning) is used

X :  has no entry in WordNet

official

X

noun(1): a worker who holds or is invested with and office.
noun(2): someone who administers the rules of an organization.
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Word-sense disambiguation

U.N.     

noun(1): United Nations (an organization of independent states formed in 1945 to 
promote international peace and security)

Ekeus for

X

Baghdad

noun(1): capital and largest 
city of Iraq

.heads

verb(1): to go or travel towards

X

 identifying which sense of a word (i.e. meaning) is used

X :  has no entry in WordNet

official

X

noun(1): a worker who holds or is invested with and office.
noun(2): someone who administers the rules of an organization.
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Tagging in General
Things that are common?

8
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Tagging in General
Things that are common?

 input: Sequence of words

w1 w2 w3 w4 w5 w6 w7
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Tagging in General
Things that are common?

 input: Sequence of words

w1 w2 w3 w4 w5 w6 w7

t1 t2 t3 t4 t5 t6 t7

 output: Sequence of tags
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Tagging in General
Things that are common?

 input: Sequence of words

w1 w2 w3 w4 w5 w6 w7

t1 t2 t3 t4 t5 t6 t7

 output: Sequence of tags

 objective: best tag sequence (depends on the task)
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Why tagging is not trivial?

Disambiguation
Some words have multiple tags  (ambiguous words)

Ex:  in POS tagging offer can be verb or noun

VERB:     ... it will also offer buyers the option ...

NOUN:    The offer is begin launched ....

Correct tag depends on the context

9
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Why tagging is not trivial?

Induction
put similar words into same clusters

Ex:  instances of verb offer and noun offer should be in 
different clusters.

cluster i:     ... it will also offer buyers the option ...

cluster j:    The offer is begin launched ....

Cluster id depends on the context

10
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Disambiguation! !  vs ! ! Induction
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Disambiguation! !  vs ! ! Induction

  Requires some level of tag 
information

  Tagging is expensive

  no annotation (no tag 
information)

good for resource poor 
languages
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Disambiguation! !  vs ! ! Induction

  Requires some level of tag 
information

  Tagging is expensive

  no annotation (no tag 
information)

good for resource poor 
languages

  puts similar words into same 
cluster

  disambiguates the correct 
tag of an ambiguous word
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Disambiguation! !  vs ! ! Induction

  Requires some level of tag 
information

  Tagging is expensive

  no annotation (no tag 
information)

good for resource poor 
languages

  More relevant to Child Language 
Acquisition

  Used by higher level NLP 
tools (ex: parsing, translation)

  puts similar words into same 
cluster

  disambiguates the correct 
tag of an ambiguous word
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Tagging Models:

Unsupervised
Models

(induction)

Supervised
Models 

Level of annotation during training

word sequence word sequence
tag sequence
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Tagging Models:

Unsupervised
Models

(induction)

Supervised
Models 

Level of annotation during training

word sequence word sequence
tag sequence

word sequence
word-tag dictionary
word tags

of Prepositionof

Adverb

of

Particle
.... ....
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Tagging Models:

Unsupervised
Models

(induction)

Supervised
Models 

Level of annotation during training

word sequence word sequence
tag sequence

word sequence
word-tag dictionary
word tags

of Prepositionof

Adverb

of

Particle
.... ....

word sequence
word-tag distribution

word tags

of Preposition .99of

Adverb     .005
of

Particle     .005
.... ....

12
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Outline

Paradigmatic Context representation

Clustering Model

Co-occurrence Modeling 

Probabilistic Voting 

HMM based Model

Noisy Channel Model

Conclusion
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Representations of Word Context

Syntagmatic Representation

Similar words share similar neighbors.

Context is represented by the 
neighboring words of the target word
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Syntagmatic Context Representation

Pierre Vinken, 61 years old , will join the board as a nonexecutive director  Nov. 29 .
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Syntagmatic Context Representation

Pierre Vinken, 61 years old , will join the board as a nonexecutive director  Nov. 29 .

2-gram context the as

3-gram context join the as a
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Syntagmatic Context Representation

Pierre Vinken, 61 years old , will join the board as a nonexecutive director  Nov. 29 .

2-gram context the as

3-gram context join the as a

4-gram context will join the as a nonexecutive
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Syntagmatic Context Representation

Pierre Vinken, 61 years old , will join the board as a nonexecutive director  Nov. 29 .

2-gram context the as

3-gram context join the as a

4-gram context will join the as a nonexecutive

5-gram context , will join the as a nonexecutive director
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Syntagmatic Context Representation

Pierre Vinken, 61 years old , will join the board as a nonexecutive director  Nov. 29 .

2-gram context the as

3-gram context join the as a

4-gram context will join the as a nonexecutive

5-gram context , will join the as a nonexecutive director

Pierre Vinken, 61 years old , will join the         as a nonexecutive director  Nov. 29 .
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Syntagmatic Context Representation

let’s relate two similar words

Pierre Vinken, 61 years old , will join the board as a nonexecutive director  Nov. 29 .

... Joseph Corr was succeeded by Frank Lorenzo , chief of parent Texas Air .
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Syntagmatic Context Representation

let’s relate two similar words

Pierre Vinken, 61 years old , will join the board as a nonexecutive director  Nov. 29 .

... Joseph Corr was succeeded by Frank Lorenzo , chief of parent Texas Air .

5-gram context board as a nonexecutive Nov. 29 .

5-gram context by Frank Lorenzo , of parent Texas Air
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Syntagmatic Context Representation

let’s relate two similar words

Pierre Vinken, 61 years old , will join the board as a nonexecutive director  Nov. 29 .

... Joseph Corr was succeeded by Frank Lorenzo , chief of parent Texas Air .

5-gram context board as a nonexecutive Nov. 29 .

5-gram context by Frank Lorenzo , of parent Texas Air

 suffers from sparsity as the context becomes larger
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Syntagmatic Context Representation

let’s relate two similar words

Pierre Vinken, 61 years old , will join the board as a nonexecutive director  Nov. 29 .

... Joseph Corr was succeeded by Frank Lorenzo , chief of parent Texas Air .

5-gram context board as a nonexecutive Nov. 29 .

5-gram context by Frank Lorenzo , of parent Texas Air

 suffers from sparsity as the context becomes larger

Chance of having same context becomes smaller
16
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Representations of Word Context

Paradigmatic Representation

  Similar words have similar substitute 
distributions

  Context is represented by the 
distribution of substitutes.
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Paradigmatic Context Representation

let’s relate two similar words

Pierre Vinken, 61 years old , will join the board as a nonexecutive director Nov. 29 .

... Joseph Corr was succeeded by Frank Lorenzo , chief of parent Texas Air .

18
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Paradigmatic Context Representation

let’s relate two similar words

Pierre Vinken, 61 years old , will join the board as a nonexecutive ______ Nov. 29 .

... Joseph Corr was succeeded by Frank Lorenzo , ________ of parent Texas Air .

19
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Paradigmatic Context Representation

let’s relate two similar words

Pierre Vinken, 61 years old , will join the board as a nonexecutive ______ Nov. 29 .

... Joseph Corr was succeeded by Frank Lorenzo , ________ of parent Texas Air .

chairman 0.8242
director 0.0127
directors 0.0127
.... ....

chairman 0.9945
president 0.0031
directors 0.0012
.... ....

19
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Paradigmatic Context Representation

let’s relate two similar words

Pierre Vinken, 61 years old , will join the board as a nonexecutive ______ Nov. 29 .

... Joseph Corr was succeeded by Frank Lorenzo , ________ of parent Texas Air .

chairman 0.8242
director 0.0127
directors 0.0127
.... ....

chairman 0.9945
president 0.0031
directors 0.0012
.... ....

✓Given the context, substitute distribution is independent of the target word!

Do not 
suffer from 

sparsity

19
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Paradigmatic Representations of Word Context
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Paradigmatic Representations of Word Context

‣ Substitute distributions are successfully applied to
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Paradigmatic Representations of Word Context

‣ Substitute distributions are successfully applied to

✓  Morphological disambiguation (NIPS, 2009.) 
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Paradigmatic Representations of Word Context

‣ Substitute distributions are successfully applied to

✓  Morphological disambiguation (NIPS, 2009.) 
✓ POS disambiguation(COLING, 2010.)
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Paradigmatic Representations of Word Context

‣ Substitute distributions are successfully applied to

✓  Morphological disambiguation (NIPS, 2009.) 
✓ POS disambiguation(COLING, 2010.)
✓ Word sense disambiguation (Computational Linguistics, 2010.) 
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Paradigmatic Representations of Word Context

‣ Substitute distributions are successfully applied to

✓  Morphological disambiguation (NIPS, 2009.) 
✓ POS disambiguation(COLING, 2010.)
✓ Word sense disambiguation (Computational Linguistics, 2010.) 
✓ Learning Syntactic Categories Using Paradigmatic Representations 

of Word Context (EMNLP, 2012)
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Paradigmatic Representations of Word Context

‣ Substitute distributions are successfully applied to

✓  Morphological disambiguation (NIPS, 2009.) 
✓ POS disambiguation(COLING, 2010.)
✓ Word sense disambiguation (Computational Linguistics, 2010.) 
✓ Learning Syntactic Categories Using Paradigmatic Representations 

of Word Context (EMNLP, 2012)
✓ Unsupervised Instance-Based Part of Speech Induction Using 

Probable Substitutes (submitted to ACL2014)

20
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Outline

Paradigmatic Context representation

Clustering Model 

Co-occurrence Modeling 

Probabilistic Voting 

HMM based Model 

Noisy Channel Model 

Conclusion
21
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Clustering of the substitute distributions:

• Pierre Vinken  ,  61 years old will join the board as a nonexecutive director .

...........................

  Domain of the substitute distributions is the vocabulary 

  Entries of the substitute distributions are probabilities
22
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Clustering of the substitute distributions:

• Pierre Vinken  ,  61 years old will join the board as a nonexecutive director .

• Apply clustering model on substitute distributions.

...........................

23
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Clustering of the substitute distributions:

• Pierre Vinken  ,  61 years old will join the board as a nonexecutive director .

• Apply clustering model on substitute distributions.

...........................

achieves ~60 % accuracy on POS 
induction

23
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Clustering of the substitute distributions:
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Clustering of the substitute distributions:

   Assumes a word is independent of the tag given the context.
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Clustering of the substitute distributions:

   Assumes a word is independent of the tag given the context.

  Ignores word features

  Different instances of the same word can not share information
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Clustering of the substitute distributions:

   Assumes a word is independent of the tag given the context.

  Ignores word features

  Different instances of the same word can not share information

  Tags of consecutive words are independent of each other given the 
contexts:

  Ex: determiner  “a” usually followed by a singular noun (ex: cat).  

24
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Outline

Paradigmatic Context representation

Clustering Model  (POS induction)

Co-occurrence Modeling (POS induction)

Probabilistic Voting (POS disambiguation)

HMM based Model (POS disambiguation)

Noisy Channel Model (WSD disambiguation)

Conclusion
25
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Co-occurrence Modeling

  Incorporates word-features by modeling co-occurrence of words and their 
substitutes

  Maps co-occurrence data to embeddings on n-dimensional sphere

  Transforms co-occurrence probabilities to distances on sphere

26
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Modeling Co-occurrence
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Modeling Co-occurrence

‣ ... will join the board as a nonexecutive ...
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Modeling Co-occurrence

‣ ... will join the board as a nonexecutive ...
board 0.4288
company 0.2584
firm 0.2024
bank 0.0731
.... ....
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Modeling Co-occurrence

‣ ... will join the board as a nonexecutive ...

‣ sample k substitutes from substitute distribution .

board 0.4288
company 0.2584
firm 0.2024
bank 0.0731
.... ....
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Modeling Co-occurrence

‣ ... will join the board as a nonexecutive ...

‣ sample k substitutes from substitute distribution .
‣ “will join the _____ as a nonexecutive”

board 0.4288
company 0.2584
firm 0.2024
bank 0.0731
.... ....

when k = 1
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Modeling Co-occurrence

‣ ... will join the board as a nonexecutive ...

‣ sample k substitutes from substitute distribution .
‣ “will join the _____ as a nonexecutive”

board 0.4288
company 0.2584
firm 0.2024
bank 0.0731
.... ....

board when k = 1
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Modeling Co-occurrence

‣ ... will join the board as a nonexecutive ...

‣ sample k substitutes from substitute distribution .
‣ “will join the _____ as a nonexecutive”

‣ “will join the _____ as a nonexecutive”

board 0.4288
company 0.2584
firm 0.2024
bank 0.0731
.... ....

board when k = 1

when k = 4
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Modeling Co-occurrence

‣ ... will join the board as a nonexecutive ...

‣ sample k substitutes from substitute distribution .
‣ “will join the _____ as a nonexecutive”

‣ “will join the _____ as a nonexecutive”

board 0.4288
company 0.2584
firm 0.2024
bank 0.0731
.... ....

board when k = 1

firm
board
company
board

when k = 4

27
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Modeling Co-occurrence

‣ ... will join the board as a nonexecutive ...

‣ ... 25 % of the seats on the council . </s>

W

W

board

bank

company

board

S

S

Example Co-occurrencesExample Co-occurrences

Words Substitutes

board board

board bank

council company

council board

when k = 2

S

S

28
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Modeling Co-occurrence

‣ ... will join the board as a nonexecutive ...

‣ ... 25 % of the seats on the council . </s>

W

W

board

bank

company

board

S

S

Example Co-occurrencesExample Co-occurrences

Words Substitutes

board board

board bank

council company

council board

Different W values are 
pulled together by shared 

S values.
when k = 2

S

S

28
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Modeling Co-occurrence
W

w:director

w:chief

w:Pierre

w:Frank

S
s:chairman

s:chairman

s:John

s:John

w:director

s:chairman

w:chief

w:Pierre

w:Frank

s:John

29

29Sunday, February 16, 14



Modeling Co-occurrence

‣ CODE (Maron et al. 2010)
W

w:director

w:chief

w:Pierre

w:Frank

S
s:chairman

s:chairman

s:John

s:John

w:director

s:chairman

w:chief

w:Pierre

w:Frank

s:John

29
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Modeling Co-occurrence

‣ CODE (Maron et al. 2010)
‣ W,S two categorical random 

variables.

W
w:director

w:chief

w:Pierre

w:Frank

S
s:chairman

s:chairman

s:John

s:John

w:director

s:chairman

w:chief

w:Pierre

w:Frank

s:John

29
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Modeling Co-occurrence

‣ CODE (Maron et al. 2010)
‣ W,S two categorical random 

variables.
‣ Observe W,S pairs drawn i.i.d. 

from Pr(W,S)

W
w:director

w:chief

w:Pierre

w:Frank

S
s:chairman

s:chairman

s:John

s:John

w:director

s:chairman

w:chief

w:Pierre

w:Frank

s:John
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Modeling Co-occurrence

‣ CODE (Maron et al. 2010)
‣ W,S two categorical random 

variables.
‣ Observe W,S pairs drawn i.i.d. 

from Pr(W,S)
‣ Want to model Pr(W,S)

W
w:director

w:chief

w:Pierre

w:Frank

S
s:chairman

s:chairman

s:John

s:John

w:director

s:chairman

w:chief

w:Pierre

w:Frank

s:John
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Modeling Co-occurrence

‣ CODE (Maron et al. 2010)
‣ W,S two categorical random 

variables.
‣ Observe W,S pairs drawn i.i.d. 

from Pr(W,S)
‣ Want to model Pr(W,S)
‣ Map W and S values to points on 

N-Sphere

W
w:director

w:chief

w:Pierre
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S
s:chairman
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s:John

w:director

s:chairman

w:chief
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s:John
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Modeling Co-occurrence

‣ CODE (Maron et al. 2010)
‣ W,S two categorical random 

variables.
‣ Observe W,S pairs drawn i.i.d. 

from Pr(W,S)
‣ Want to model Pr(W,S)
‣ Map W and S values to points on 

N-Sphere
‣  Transform probabilities to 

distances on n-sphere

W
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s:John
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Modeling Co-occurrence

‣ CODE (Maron et al. 2010)
‣ W,S two categorical random 

variables.
‣ Observe W,S pairs drawn i.i.d. 

from Pr(W,S)
‣ Want to model Pr(W,S)
‣ Map W and S values to points on 

N-Sphere
‣  Transform probabilities to 

distances on n-sphere
‣ Frequently co-occurring values 

should map to nearby points.

W
w:director
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CODE
‣ CODE defines the model joint probability of W and S as 

p(w, s) = 1
Z
p(w)p(s)e−d

2 (w,s )
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Modeling Co-occurrence

‣ Click here for a demo (may take a few minutes to load)
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Best Published Many-to-one
Our Model Many-to-one

Multext-east Corpora

Conll-06 Corpora

‣ Significantly improves17 
(on par with 2 languages) 
out of 19 corpora
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Experiments and Results

‣ Hinton Graph

Mehmet Ali Yatbaz Unsupervised Part of Speech Induction

gether with the syntagmatic bigram baseline and the best published accuracies on each language
corpus.

DIS significantly outperforms the syntagmatic bigram baseline in both MTO and VM scores
on 14 languages. DIS+O+M has the state-of-the-art MTO and VM accuracy on the PTB. DIS+O
and DIS+O+M achieve the highest MTO scores on all languages of MULTEXT-East corpora
while scoring the highest VM accuracies on English and Romanian. On the CoNLL-X languages
our models perform better than the best published MTO or VM accuracies on 10 languages.

9. Discussion

In this section we perform further analysis on the clustering output of our best model and indicate
the possible reasons of comparably low VM scores. To illustrate how words are distributed in the
induced clusters, we compare the output of our model with gold-tags of the PTB. We also discuss
the effect of coarse gold-tag sets on our model performance.

Figure 6
Hinton diagram comparing most frequent tags and clusters. Area of each square is proportional to the joint
probability of the given tag and cluster.

Figure 6 is the Hinton diagram of the PTB showing the relationship between the most
frequent tags and clusters from the experiment in Section 7. In general the errors seem to be the
lack of completeness (multiple large entries in a row), rather than lack of homogeneity (multiple
large entries in a column). The algorithm tends to split large word classes into several clusters.
Some examples are:

r Titles like Mr., Mrs., and Dr. are split from the rest of the proper nouns in cluster
(39).r Auxiliary verbs (10) and the verb “say” (22) have been split from the general verb
clusters (12) and (7).r Determiners “the” (40), “a” (15), and capitalized “The”, “A” (6) have been split
into their own clusters.

17

number of clusters is set to number of gold-tags44
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Auxiliary verbs (10) and the verb 
“said” (22) have been split from the 
general verb clusters (12) and (7).
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gether with the syntagmatic bigram baseline and the best published accuracies on each language
corpus.

DIS significantly outperforms the syntagmatic bigram baseline in both MTO and VM scores
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Determiners “the” (40), “a” (15), 
have been split into their own 
clusters.
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gether with the syntagmatic bigram baseline and the best published accuracies on each language
corpus.

DIS significantly outperforms the syntagmatic bigram baseline in both MTO and VM scores
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frequent tags and clusters from the experiment in Section 7. In general the errors seem to be the
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Prepositions “of” (19), and “by”, 
“at” (17) have been split from the 
general preposition cluster (8).
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! ! ! Induction!     vs     ! Disambiguation

Put similar words into

same clusters
given the contexts.

do not have tag info
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! ! ! Induction!     vs     ! Disambiguation

Disambiguate the 
correct tag

of an ambiguous word
given the context.

Have possible tags

Put similar words into

same clusters
given the contexts.

do not have tag info
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Outline

Paradigmatic Context representation

Clustering Model  (POS induction)

Co-occurrence Modeling (POS induction)

Probabilistic Voting (POS disambiguation)

HMM based Model (POS disambiguation)

Noisy Channel Model (WSD disambiguation)

Conclusion
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Probabilistic Voting Model

  Word sequence and a word-tag dictionary is available

  ... it will also offer buyers the option ...

  The offer is begin launched ....

Verb

Noun

50

50Sunday, February 16, 14



Probabilistic Voting Model

  Word sequence and a word-tag dictionary is available

  ... it will also offer buyers the option ...

  The offer is begin launched ....

give
help
attract
...

campaign
project
scheme
...

Verb

Noun

50

50Sunday, February 16, 14



Probabilistic Voting Model

  Word sequence and a word-tag dictionary is available

  ... it will also offer buyers the option ...

  The offer is begin launched ....

give
help
attract
...

campaign
project
scheme
...

Verb

Noun

 Substitutes can disambiguate the correct tag.
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Probabilistic Voting Model

  Estimates the tag distribution in a given word context

 where t is the tag, S is the set of substitutes and c is the context

4.3 Model 3: Probabilistic Voting Model

In this section, we model the tag distribution in a given context, and assign the most likely

tag to the context instead of the target word-instance. The distribution of t in c can be

defined in terms of the substitutes and their possible tags in a word-tag dictionary or distri-

bution. The model is defined as

argmax

t2T
Pr(t|c) =

X

s2S

Pr(t|s, c) Pr(s|c) (4.6)

=

X

s2S

Pr(t|s) Pr(s|c) (4.7)

where s is a substitute word in the substitute distribution S of the context c. Pr(s|c) is

the probability of observing s in c which is the entry corresponding to s in S. Eq.(4.6) is

simplified to Eq.(4.7) by making the assumption that the tag of a substitute word and the

context are independent of each other for a given substitute word s.

The model distributes Pr(s|c) among the possible tags of s in a word-tag dictionary,

taking into consideration Pr(t|s) which is the probability of observing s with tag t. The

estimation of Pr(t|s) depends on the level of supervision. For example, if the word-tag

dictionary is available, then Pr(t|s) could be uniform over the possible tags of s, or if the

word-tag distribution is available, then Pr(t|s) would consist of the observation frequencies

of s with t. One could only have the substitutes but not the corresponding Pr(s|c) or simply

wants to assign equal weights to each substitute instead of weighting them with Pr(s|c). In

this situation Pr(s|c) could be uniform over the possible substitutes in a given context.

As is the case with the previous models, this model also assumes that the tags of

two consecutive words are independent of each other for any fixed contexts of the words.

Model 3 also assumes that tag distribution is independent of the target word given the con-

text of the target word. The models in the following section relaxes this assumption by
42
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  Turkish word has multiple morphological parses (tags)

 Example word: masalı

  Random unsupervised baseline is 39.4%

  Most frequent tag with word-tag distribution baseline is 71.0%

  I achieved 64.5%.

Probabilistic Voting Model on the Morphological 
Disambiguation of Turkish

masal + Noun+A3sg+Pnon+acc the story

masal + Noun+A3sg+P3sg+Nom his story

masa + Noun+A3sg+Pnon+Nom+^DG+Adj+With with tables

Accuracy on ambiguous words (45 % of our test corpus)
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Probabilistic Voting Model

  This model ignores the target word features and only uses 
substitute words and their tags

  One limitation is it ignores the tags of the consecutive words.
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Outline

Paradigmatic Context representation

Clustering Model

Co-occurrence Modeling

Probabilistic Voting

HMM based Model

Noisy Channel Model

Conclusion
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Constraining HMM-Based Models

W� W� W� W�

Z� Z� Z� Z�

K� K� K� K�

Z�� Z�� Z�� Z��

Z�� Z�� Z�� Z��

Z�� Z�� Z�� Z��

Z�� Z�� Z�� Z��

 The word sequence is generated by the hidden tag sequence.
 Each tag depends on the previous n-1 tags 
 Each word is independent of each other given the tag
 Likelihood of an n-th order HMM model:

integrating the substitute distributions into the HMM-based models.

4.4 Model 4: Constraining HMM-Based Models

None of the previous models captures the relationship between consecutive tags because of

the independence assumption of consecutive tags in fixed contexts. However, one can take

advantage of consecutive tags to constrain the output sequence. For example, in a POS dis-

ambiguation task, determiners (DT) are usually followed by a noun (NN) or a proper-noun

(NNP). In this section, we introduce two different ways of incorporating substitute words

into the HMM-based probabilistic models in which consecutive tag sequences depend on

each other while consecutive words are independent of each other for any given tags.

The HMM-based probabilistic models have been used to solve NLP tagging tasks

(Merialdo, 1994; Goldwater and Griffiths, 2007a) with different levels of supervision. The

prototypical n-tag HMM model maximizes the likelihood of the corpus w
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Figure 4.2: Graphical structure of a standard second-order HMM tagger on an example

4-word sequence.

43

Emission
probabilities

Transition
probabilities
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Constraining HMM-Based Models

The model parameters are estimated using the Expectation 
Maximization (EM) algorithm.

  Transition Probabilities

  Emission Probabilities

  Viterbi search algorithm finds the best tag sequence

Pr(ti | ti−1)

Pr(wi | ti )
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Constraining HMM-Based Models: POS tagging

w1 w2 w3 w4 w5 w6 w7

t1

t2

t3

t4

t5
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Constraining HMM-Based Models: POS tagging

w1 w2 w3 w4 w5 w6 w7

t1

t2

t3

t4

t5

  Nodes are emission probabilities

  Arrows are transition probabilities
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Constraining HMM-Based Models: POS tagging

w1 w2 w3 w4 w5 w6 w7

t1

t2

t3

t4

t5

58

58Sunday, February 16, 14



Constraining HMM-Based Models: POS tagging

w1 w2 w3 w4 w5 w6 w7

t1

t2

t3

t4

t5

After EM, the Viterbi algorithm finds the best tag sequence

t1 t4 t3 t2 t4 t6 t7 58
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Constraining HMM-Based Models: POS tagging

  In POS tagging we have a word-tag dictionary

  Example dictionary
Word Tags
w1 t1
w2 t2, t4
w3 t3
w4 t2, t3
w5 t3, t4
w6 t5
w7 t4
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Constraining HMM-Based Models: POS tagging

w1 w2 w3 w4 w5 w6 w7

t1

t2

t3

t4

t5

  In POS tagging we have a word-tag dictionary  
60

60Sunday, February 16, 14



Constraining HMM-Based Models: POS tagging

w1 w2 w3 w4 w5 w6 w7

t1

t2

t3

t4

t5
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Constraining HMM-Based Models: POS tagging

w1 w2 w3 w4 w5 w6 w7

t1

t2

t3

t4

t5

  Constrain using the word-tag dictionary
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Constraining HMM-Based Models: POS tagging

  Johnson (2007b) showed that HMM-EM has tendency of 
assigning similar number of words to each tag.

However POS tags have skewed distributions
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Constraining HMM-Based Models: POS tagging

  Johnson (2007b) showed that HMM-EM has tendency of 
assigning similar number of words to each tag.

However POS tags have skewed distributions

How to constrain more?
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Constraining HMM-Based Models: POS tagging

w1 w2 w3 w4 w5 w6 w7

t1

t2

t3

t4

t5
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Constraining HMM-Based Models: POS tagging

w1 w2 w3 w4 w5 w6 w7

t1

t2

t3

t4

t5

 Ravi and Knight (2009a) improve the accuracy by constraining the number
 of non-zero transition probabilities

63

63Sunday, February 16, 14



Constraining HMM-Based Models: POS tagging

w1 w2 w3 w4 w5 w6 w7

t1

t2

t3

t4

t5

 Ravi and Knight (2009a) improve the accuracy by constraining the number
 of non-zero transition probabilities
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Constraining HMM-Based Models: POS tagging

w1 w2 w3 w4 w5 w6 w7

t1

t2

t3

t4

t5
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Constraining HMM-Based Models: POS tagging

w1 w2 w3 w4 w5 w6 w7

t1

t2

t3

t4

t5

  Constraint the emission probabilities by reducing dictionary size
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Constraining HMM-Based Models: POS tagging

w1 w2 w3 w4 w5 w6 w7

t1

t2

t3

t4

t5
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Constraining HMM-Based Models: POS tagging

w1 w2 w3 w4 w5 w6 w7

t1

t2

t3

t4

t5

 Estimate P(T|C) of all instances of w4 with probabilistic voting

  Average them and remove the unlikely tags 66
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Constraining HMM-Based Models: POS tagging

w1 w2 w3 w4 w5 w6 w7

t1

t2

t3

t4

t5

  Constraint the emission probabilities by reducing dictionary size
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Dictionary reduction on POS tagging

POS

Groups

2-gram HMM

Accuracy (%)

2-gram HMM RD

Accuracy (%)

Noun 92.22 94.01

Verb 83.84 84.90

Adj 85.22 89.52

Adv 83.96 85.18

Pronoun 95.56 95.92

Content 89.42 91.18

Function 70.49 92.92

All 82.05 91.85

Table 5.5: Percentages of correctly tagged words by different models with the modified

dictionary. The dictionary size is reduced by using the top 5 substitutes of each target

word.

62

State-of-the-art 
tagging results when 

only word-tag 
dictionary is available.68
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Outline

Paradigmatic Context representation

Clustering Model

Co-occurrence Modeling 

Probabilistic Voting 

HMM based Model 

Noisy Channel Model

Conclusion
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Noisy Channel Model

  Input:

 word sequence  

  word-tag distribution
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Noisy Channel Model

Intended
Message

Received
MessageNoisy Channel

Intended
Message
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Noisy Channel Model

Intended
Message

Received
MessageNoisy Channel

In tagging problems

Tag WordContext

Intended
Message
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Noisy Channel Model in Tagging Problems

Tag WordContext

Message
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Noisy Channel Model in Tagging Problems

Tag WordContext

Message

noun sense1: a particular 
item of prepared food I love spicy dishes .I love spicy _ .

72

72Sunday, February 16, 14



Noisy Channel Model in Tagging Problems

Tag WordContext

Message

noun sense1: a particular 
item of prepared food I love spicy dishes .I love spicy _ .

noun sense 2: a container for 
holding or serving food I love washing dishes .I love washing _ .

72
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Noisy Channel Model
dependence on the context.

Pr(T |W,C) =

Pr(W |T,C) Pr(T |C)

Pr(W |C)

(4.16)

To perform disambiguation, we need to find the tag T that maximizes the probability

Pr(T |W,C). This is equivalent to the maximization of the product Pr(W |T,C) Pr(T |C),

because the denominator Pr(W |C) does not depend on T . To perform the maximization,

the two distributions Pr(W |T,C) and Pr(T |C) need to be estimated for each context C.

How to estimate Pr(T |C), the distribution of word tags that can be expressed in the

given context? The only supervision is the word-tag distribution, since we do not have

access to any tagged data, and consequently we do not know what tags are likely to be

expressed in any given context. Therefore, it is not possible to estimate Pr(T |C) directly.

What we do have is the word frequencies for each tag Pr(W |T ), and the word frequen-

cies for the given context Pr(W |C). We use the word-tag distribution to estimate Pr(W |T ),

and a statistical language model to estimate Pr(W |C), as detailed in Section 2. We make

the independence assumption Pr(W |T,C) = Pr(W |T ), i.e. the distribution of words used

to express a particular tag is the same for all contexts. Finally, the relationship between the

three distributions, Pr(T |C), Pr(W |T,C), and Pr(W |C) is given by the total probability

theorem:

Pr(W |C) =

X

T

Pr(T |C) Pr(W |T,C) (4.17)

We can now solve for Pr(T |C) using linear algebra. Let WT be a matrix, ~t and ~w two

vectors such that:

WT
ij

= Pr(W = i|T = j)

~

t

j

= Pr(T = j|C = k)

~w

i

= Pr(W = i|C = k) (4.18)
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Noisy Channel Model

  find the tag, T that maximizes the Pr(T | W, C)
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three distributions, Pr(T |C), Pr(W |T,C), and Pr(W |C) is given by the total probability

theorem:
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vectors such that:
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Noisy Channel Model

  find the tag, T that maximizes the Pr(T | W, C)

dependence on the context.

Pr(T |W,C) =

Pr(W |T,C) Pr(T |C)

Pr(W |C)

(4.16)

To perform disambiguation, we need to find the tag T that maximizes the probability

Pr(T |W,C). This is equivalent to the maximization of the product Pr(W |T,C) Pr(T |C),

because the denominator Pr(W |C) does not depend on T . To perform the maximization,

the two distributions Pr(W |T,C) and Pr(T |C) need to be estimated for each context C.

How to estimate Pr(T |C), the distribution of word tags that can be expressed in the

given context? The only supervision is the word-tag distribution, since we do not have

access to any tagged data, and consequently we do not know what tags are likely to be

expressed in any given context. Therefore, it is not possible to estimate Pr(T |C) directly.

What we do have is the word frequencies for each tag Pr(W |T ), and the word frequen-

cies for the given context Pr(W |C). We use the word-tag distribution to estimate Pr(W |T ),

and a statistical language model to estimate Pr(W |C), as detailed in Section 2. We make

the independence assumption Pr(W |T,C) = Pr(W |T ), i.e. the distribution of words used

to express a particular tag is the same for all contexts. Finally, the relationship between the

three distributions, Pr(T |C), Pr(W |T,C), and Pr(W |C) is given by the total probability

theorem:

Pr(W |C) =

X

T

Pr(T |C) Pr(W |T,C) (4.17)

We can now solve for Pr(T |C) using linear algebra. Let WT be a matrix, ~t and ~w two

vectors such that:

WT
ij

= Pr(W = i|T = j)

~

t

j

= Pr(T = j|C = k)

~w

i

= Pr(W = i|C = k) (4.18)
50

 Pr(W|C) does not depend on T
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Noisy Channel Model

  find the tag, T that maximizes the Pr(T | W, C)

dependence on the context.

Pr(T |W,C) =

Pr(W |T,C) Pr(T |C)

Pr(W |C)

(4.16)

To perform disambiguation, we need to find the tag T that maximizes the probability

Pr(T |W,C). This is equivalent to the maximization of the product Pr(W |T,C) Pr(T |C),

because the denominator Pr(W |C) does not depend on T . To perform the maximization,

the two distributions Pr(W |T,C) and Pr(T |C) need to be estimated for each context C.

How to estimate Pr(T |C), the distribution of word tags that can be expressed in the

given context? The only supervision is the word-tag distribution, since we do not have

access to any tagged data, and consequently we do not know what tags are likely to be

expressed in any given context. Therefore, it is not possible to estimate Pr(T |C) directly.

What we do have is the word frequencies for each tag Pr(W |T ), and the word frequen-

cies for the given context Pr(W |C). We use the word-tag distribution to estimate Pr(W |T ),

and a statistical language model to estimate Pr(W |C), as detailed in Section 2. We make

the independence assumption Pr(W |T,C) = Pr(W |T ), i.e. the distribution of words used

to express a particular tag is the same for all contexts. Finally, the relationship between the

three distributions, Pr(T |C), Pr(W |T,C), and Pr(W |C) is given by the total probability

theorem:

Pr(W |C) =

X

T

Pr(T |C) Pr(W |T,C) (4.17)

We can now solve for Pr(T |C) using linear algebra. Let WT be a matrix, ~t and ~w two

vectors such that:

WT
ij

= Pr(W = i|T = j)

~

t

j

= Pr(T = j|C = k)

~w

i

= Pr(W = i|C = k) (4.18)
50

 Pr(W|C) does not depend on T

  need to estimate Pr(W | T, C) and Pr(T|C)

Assume W is independent of C given T so Pr(W | T,C) = Pr(W | T)
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Noisy Channel Model

Pr( T | W, C)∝Pr(W|T) Pr(T|C)
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Noisy Channel Model

  need to estimate Pr(W | T) and Pr(T|C)

Pr( T | W, C)∝Pr(W|T) Pr(T|C)
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Noisy Channel Model

  need to estimate Pr(W | T) and Pr(T|C)

  Estimate Pr(W | T) from word tag distribution

Pr( T | W, C)∝Pr(W|T) Pr(T|C)
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Noisy Channel Model

  need to estimate Pr(W | T) and Pr(T|C)

  Estimate Pr(W | T) from word tag distribution

  We have Pr(W | C) and Pr(W | T), how to estimate Pr(T | C)

Pr( T | W, C)∝Pr(W|T) Pr(T|C)
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Noisy Channel Model

  need to estimate Pr(W | T) and Pr(T|C)

  Estimate Pr(W | T) from word tag distribution

  We have Pr(W | C) and Pr(W | T), how to estimate Pr(T | C)

Pr( T | W, C)∝Pr(W|T) Pr(T|C)

dependence on the context.

Pr(T |W,C) =

Pr(W |T,C) Pr(T |C)

Pr(W |C)

(4.16)

To perform disambiguation, we need to find the tag T that maximizes the probability

Pr(T |W,C). This is equivalent to the maximization of the product Pr(W |T,C) Pr(T |C),

because the denominator Pr(W |C) does not depend on T . To perform the maximization,

the two distributions Pr(W |T,C) and Pr(T |C) need to be estimated for each context C.

How to estimate Pr(T |C), the distribution of word tags that can be expressed in the

given context? The only supervision is the word-tag distribution, since we do not have

access to any tagged data, and consequently we do not know what tags are likely to be

expressed in any given context. Therefore, it is not possible to estimate Pr(T |C) directly.

What we do have is the word frequencies for each tag Pr(W |T ), and the word frequen-

cies for the given context Pr(W |C). We use the word-tag distribution to estimate Pr(W |T ),

and a statistical language model to estimate Pr(W |C), as detailed in Section 2. We make

the independence assumption Pr(W |T,C) = Pr(W |T ), i.e. the distribution of words used

to express a particular tag is the same for all contexts. Finally, the relationship between the

three distributions, Pr(T |C), Pr(W |T,C), and Pr(W |C) is given by the total probability

theorem:

Pr(W |C) =

X

T

Pr(T |C) Pr(W |T,C) (4.17)

We can now solve for Pr(T |C) using linear algebra. Let WT be a matrix, ~t and ~w two

vectors such that:

WT
ij

= Pr(W = i|T = j)

~
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j

= Pr(T = j|C = k)

~w

i

= Pr(W = i|C = k) (4.18)
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Noisy Channel Model

where the intended message is a tag T , and the received signal is an ambiguous word W .

The model assumes the independence of consecutive messages. In this section, we will

describe how to model a given context C as a noisy channel, and, in particular, how to

estimate the context-specific tag distribution by using the word-tag distribution.

Equation 3.16 expresses the probability of a tag T of word W in a given context C.

This is the well-known Bayes’ formula with an extra P(.|C) in each term to indicate the

dependence on the context.

P(T |W,C) =

P(W |T,C)P(T |C)

P(W |C)

(3.16)

To perform disambiguation, we need to find the tag T that maximizes the probability

P(T |W,C). This is equivalent to the maximization of the product P(W |T,C)P(T |C),

because the denominator P(W |C) does not depend on T . To perform the maximization,

the two distributions P(W |T,C) and P(T |C) need to be estimated for each context C.

How to estimate P(T |C), the distribution of word tags that can be expressed in the

given context? The only supervision is the word-tag distribution, since we do not have

access to any tagged data, and consequently we do not know what tags are likely to be

expressed in any given context. Therefore, it is not possible to estimate Pr(T |C) directly.

What we do have is the word frequencies for each tag Pr(W |T ), and the word frequen-

cies for the given context Pr(W |C). We use the word-tag distribution to estimate Pr(W |T ),

and a statistical language model to estimate Pr(W |C), as detailed in Section 2. We make

the independence assumption Pr(W |T,C) = Pr(W |T ), i.e. the distribution of words used

to express a particular tag is the same for all contexts. Finally, the relationship between the

three distributions, Pr(T |C), Pr(W |T,C), and Pr(W |C) is given by the total probability

theorem:

Pr(W |C) =

X

T

Pr(W |T,C) Pr(T |C) (3.17)

Pr(W |C) =

X

T

Pr(W |T ) Pr(T |C) (3.18)
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Noisy Channel Model

where the intended message is a tag T , and the received signal is an ambiguous word W .
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This is the well-known Bayes’ formula with an extra P(.|C) in each term to indicate the
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and a statistical language model to estimate Pr(W |C), as detailed in Section 2. We make

the independence assumption Pr(W |T,C) = Pr(W |T ), i.e. the distribution of words used

to express a particular tag is the same for all contexts. Finally, the relationship between the

three distributions, Pr(T |C), Pr(W |T,C), and Pr(W |C) is given by the total probability

theorem:

Pr(W |C) =
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For every wi ∈ W in a fixed context (channel) C
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Noisy Channel Model

where the intended message is a tag T , and the received signal is an ambiguous word W .

The model assumes the independence of consecutive messages. In this section, we will

describe how to model a given context C as a noisy channel, and, in particular, how to

estimate the context-specific tag distribution by using the word-tag distribution.

Equation 3.16 expresses the probability of a tag T of word W in a given context C.

This is the well-known Bayes’ formula with an extra P(.|C) in each term to indicate the
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How to estimate P(T |C), the distribution of word tags that can be expressed in the

given context? The only supervision is the word-tag distribution, since we do not have

access to any tagged data, and consequently we do not know what tags are likely to be

expressed in any given context. Therefore, it is not possible to estimate Pr(T |C) directly.

What we do have is the word frequencies for each tag Pr(W |T ), and the word frequen-

cies for the given context Pr(W |C). We use the word-tag distribution to estimate Pr(W |T ),

and a statistical language model to estimate Pr(W |C), as detailed in Section 2. We make

the independence assumption Pr(W |T,C) = Pr(W |T ), i.e. the distribution of words used

to express a particular tag is the same for all contexts. Finally, the relationship between the

three distributions, Pr(T |C), Pr(W |T,C), and Pr(W |C) is given by the total probability

theorem:

Pr(W |C) =

X

T

Pr(W |T,C) Pr(T |C) (3.17)

Pr(W |C) =

X

T

Pr(W |T ) Pr(T |C) (3.18)

37
For every wi ∈ W in a fixed context (channel) C

Pr(w1 |C) = Pr(w1 |T )Pr(T |C)
T
∑

75

Pr( T | W, C)∝Pr(W|T) Pr(T|C)
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Noisy Channel Model

where the intended message is a tag T , and the received signal is an ambiguous word W .

The model assumes the independence of consecutive messages. In this section, we will

describe how to model a given context C as a noisy channel, and, in particular, how to

estimate the context-specific tag distribution by using the word-tag distribution.

Equation 3.16 expresses the probability of a tag T of word W in a given context C.

This is the well-known Bayes’ formula with an extra P(.|C) in each term to indicate the

dependence on the context.

P(T |W,C) =

P(W |T,C)P(T |C)

P(W |C)

(3.16)

To perform disambiguation, we need to find the tag T that maximizes the probability

P(T |W,C). This is equivalent to the maximization of the product P(W |T,C)P(T |C),

because the denominator P(W |C) does not depend on T . To perform the maximization,

the two distributions P(W |T,C) and P(T |C) need to be estimated for each context C.

How to estimate P(T |C), the distribution of word tags that can be expressed in the

given context? The only supervision is the word-tag distribution, since we do not have

access to any tagged data, and consequently we do not know what tags are likely to be

expressed in any given context. Therefore, it is not possible to estimate Pr(T |C) directly.

What we do have is the word frequencies for each tag Pr(W |T ), and the word frequen-

cies for the given context Pr(W |C). We use the word-tag distribution to estimate Pr(W |T ),

and a statistical language model to estimate Pr(W |C), as detailed in Section 2. We make

the independence assumption Pr(W |T,C) = Pr(W |T ), i.e. the distribution of words used

to express a particular tag is the same for all contexts. Finally, the relationship between the

three distributions, Pr(T |C), Pr(W |T,C), and Pr(W |C) is given by the total probability

theorem:

Pr(W |C) =

X

T

Pr(W |T,C) Pr(T |C) (3.17)

Pr(W |C) =

X

T

Pr(W |T ) Pr(T |C) (3.18)

37
For every wi ∈ W in a fixed context (channel) C

Pr(w1 |C) = Pr(w1 |T )Pr(T |C)
T
∑

Pr(w2 |C) = Pr(w2 |T )Pr(T |C)
T
∑

75

Pr( T | W, C)∝Pr(W|T) Pr(T|C)

75Sunday, February 16, 14



Noisy Channel Model

where the intended message is a tag T , and the received signal is an ambiguous word W .

The model assumes the independence of consecutive messages. In this section, we will

describe how to model a given context C as a noisy channel, and, in particular, how to

estimate the context-specific tag distribution by using the word-tag distribution.

Equation 3.16 expresses the probability of a tag T of word W in a given context C.

This is the well-known Bayes’ formula with an extra P(.|C) in each term to indicate the

dependence on the context.

P(T |W,C) =

P(W |T,C)P(T |C)

P(W |C)

(3.16)

To perform disambiguation, we need to find the tag T that maximizes the probability

P(T |W,C). This is equivalent to the maximization of the product P(W |T,C)P(T |C),

because the denominator P(W |C) does not depend on T . To perform the maximization,

the two distributions P(W |T,C) and P(T |C) need to be estimated for each context C.

How to estimate P(T |C), the distribution of word tags that can be expressed in the

given context? The only supervision is the word-tag distribution, since we do not have

access to any tagged data, and consequently we do not know what tags are likely to be

expressed in any given context. Therefore, it is not possible to estimate Pr(T |C) directly.

What we do have is the word frequencies for each tag Pr(W |T ), and the word frequen-

cies for the given context Pr(W |C). We use the word-tag distribution to estimate Pr(W |T ),

and a statistical language model to estimate Pr(W |C), as detailed in Section 2. We make

the independence assumption Pr(W |T,C) = Pr(W |T ), i.e. the distribution of words used

to express a particular tag is the same for all contexts. Finally, the relationship between the

three distributions, Pr(T |C), Pr(W |T,C), and Pr(W |C) is given by the total probability

theorem:

Pr(W |C) =

X

T

Pr(W |T,C) Pr(T |C) (3.17)

Pr(W |C) =

X

T

Pr(W |T ) Pr(T |C) (3.18)

37
For every wi ∈ W in a fixed context (channel) C

Pr(w1 |C) = Pr(w1 |T )Pr(T |C)
T
∑

Pr(w2 |C) = Pr(w2 |T )Pr(T |C)
T
∑

75

Pr( T | W, C)∝Pr(W|T) Pr(T|C)
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Noisy Channel Model

where the intended message is a tag T , and the received signal is an ambiguous word W .

The model assumes the independence of consecutive messages. In this section, we will

describe how to model a given context C as a noisy channel, and, in particular, how to

estimate the context-specific tag distribution by using the word-tag distribution.

Equation 3.16 expresses the probability of a tag T of word W in a given context C.

This is the well-known Bayes’ formula with an extra P(.|C) in each term to indicate the

dependence on the context.

P(T |W,C) =

P(W |T,C)P(T |C)

P(W |C)

(3.16)

To perform disambiguation, we need to find the tag T that maximizes the probability

P(T |W,C). This is equivalent to the maximization of the product P(W |T,C)P(T |C),

because the denominator P(W |C) does not depend on T . To perform the maximization,

the two distributions P(W |T,C) and P(T |C) need to be estimated for each context C.

How to estimate P(T |C), the distribution of word tags that can be expressed in the

given context? The only supervision is the word-tag distribution, since we do not have

access to any tagged data, and consequently we do not know what tags are likely to be

expressed in any given context. Therefore, it is not possible to estimate Pr(T |C) directly.

What we do have is the word frequencies for each tag Pr(W |T ), and the word frequen-

cies for the given context Pr(W |C). We use the word-tag distribution to estimate Pr(W |T ),

and a statistical language model to estimate Pr(W |C), as detailed in Section 2. We make

the independence assumption Pr(W |T,C) = Pr(W |T ), i.e. the distribution of words used

to express a particular tag is the same for all contexts. Finally, the relationship between the

three distributions, Pr(T |C), Pr(W |T,C), and Pr(W |C) is given by the total probability

theorem:

Pr(W |C) =

X

T

Pr(W |T,C) Pr(T |C) (3.17)

Pr(W |C) =

X

T

Pr(W |T ) Pr(T |C) (3.18)

37
For every wi ∈ W in a fixed context (channel) C

Pr(w1 |C) = Pr(w1 |T )Pr(T |C)
T
∑

Pr(w2 |C) = Pr(w2 |T )Pr(T |C)
T
∑

Pr(w|W | |C) = Pr(w|W | |T )Pr(T |C)
T
∑

75

Pr( T | W, C)∝Pr(W|T) Pr(T|C)
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Pr(w1 |C) = Pr(w1 |T )Pr(T |C)
T
∑

Pr(w2 |C) = Pr(w2 |T )Pr(T |C)
T
∑

Pr(w|W | |C) = Pr(w|W | |T )Pr(T |C)
T
∑

dependence on the context.

Pr(T |W,C) =

Pr(W |T,C) Pr(T |C)

Pr(W |C)

(4.16)

To perform disambiguation, we need to find the tag T that maximizes the probability

Pr(T |W,C). This is equivalent to the maximization of the product Pr(W |T,C) Pr(T |C),

because the denominator Pr(W |C) does not depend on T . To perform the maximization,

the two distributions Pr(W |T,C) and Pr(T |C) need to be estimated for each context C.

How to estimate Pr(T |C), the distribution of word tags that can be expressed in the

given context? The only supervision is the word-tag distribution, since we do not have

access to any tagged data, and consequently we do not know what tags are likely to be

expressed in any given context. Therefore, it is not possible to estimate Pr(T |C) directly.

What we do have is the word frequencies for each tag Pr(W |T ), and the word frequen-

cies for the given context Pr(W |C). We use the word-tag distribution to estimate Pr(W |T ),

and a statistical language model to estimate Pr(W |C), as detailed in Section 2. We make

the independence assumption Pr(W |T,C) = Pr(W |T ), i.e. the distribution of words used

to express a particular tag is the same for all contexts. Finally, the relationship between the

three distributions, Pr(T |C), Pr(W |T,C), and Pr(W |C) is given by the total probability

theorem:

Pr(W |C) =

X

T

Pr(T |C) Pr(W |T,C) (4.17)

We can now solve for Pr(T |C) using linear algebra. Let WT be a matrix, ~t and ~w two

vectors such that:

WT
ij

= Pr(W = i|T = j)

~

t

j

= Pr(T = j|C = k)

~w

i

= Pr(W = i|C = k) (4.18)
50|W| x |T| |T| x 1|W| x 1
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Pr(w1 |C) = Pr(w1 |T )Pr(T |C)
T
∑

Pr(w2 |C) = Pr(w2 |T )Pr(T |C)
T
∑

Pr(w|W | |C) = Pr(w|W | |T )Pr(T |C)
T
∑

dependence on the context.

Pr(T |W,C) =

Pr(W |T,C) Pr(T |C)

Pr(W |C)

(4.16)

To perform disambiguation, we need to find the tag T that maximizes the probability

Pr(T |W,C). This is equivalent to the maximization of the product Pr(W |T,C) Pr(T |C),

because the denominator Pr(W |C) does not depend on T . To perform the maximization,

the two distributions Pr(W |T,C) and Pr(T |C) need to be estimated for each context C.

How to estimate Pr(T |C), the distribution of word tags that can be expressed in the

given context? The only supervision is the word-tag distribution, since we do not have

access to any tagged data, and consequently we do not know what tags are likely to be

expressed in any given context. Therefore, it is not possible to estimate Pr(T |C) directly.

What we do have is the word frequencies for each tag Pr(W |T ), and the word frequen-

cies for the given context Pr(W |C). We use the word-tag distribution to estimate Pr(W |T ),

and a statistical language model to estimate Pr(W |C), as detailed in Section 2. We make

the independence assumption Pr(W |T,C) = Pr(W |T ), i.e. the distribution of words used

to express a particular tag is the same for all contexts. Finally, the relationship between the

three distributions, Pr(T |C), Pr(W |T,C), and Pr(W |C) is given by the total probability

theorem:

Pr(W |C) =

X

T

Pr(T |C) Pr(W |T,C) (4.17)

We can now solve for Pr(T |C) using linear algebra. Let WT be a matrix, ~t and ~w two

vectors such that:

WT
ij

= Pr(W = i|T = j)

~

t

j

= Pr(T = j|C = k)

~w

i

= Pr(W = i|C = k) (4.18)
50|W| x |T| |T| x 1|W| x 1
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Pr(w1 |C) = Pr(w1 |T )Pr(T |C)
T
∑

Pr(w2 |C) = Pr(w2 |T )Pr(T |C)
T
∑

Pr(w|W | |C) = Pr(w|W | |T )Pr(T |C)
T
∑

dependence on the context.

Pr(T |W,C) =

Pr(W |T,C) Pr(T |C)

Pr(W |C)

(4.16)

To perform disambiguation, we need to find the tag T that maximizes the probability

Pr(T |W,C). This is equivalent to the maximization of the product Pr(W |T,C) Pr(T |C),

because the denominator Pr(W |C) does not depend on T . To perform the maximization,

the two distributions Pr(W |T,C) and Pr(T |C) need to be estimated for each context C.

How to estimate Pr(T |C), the distribution of word tags that can be expressed in the

given context? The only supervision is the word-tag distribution, since we do not have

access to any tagged data, and consequently we do not know what tags are likely to be

expressed in any given context. Therefore, it is not possible to estimate Pr(T |C) directly.

What we do have is the word frequencies for each tag Pr(W |T ), and the word frequen-

cies for the given context Pr(W |C). We use the word-tag distribution to estimate Pr(W |T ),

and a statistical language model to estimate Pr(W |C), as detailed in Section 2. We make

the independence assumption Pr(W |T,C) = Pr(W |T ), i.e. the distribution of words used

to express a particular tag is the same for all contexts. Finally, the relationship between the

three distributions, Pr(T |C), Pr(W |T,C), and Pr(W |C) is given by the total probability

theorem:

Pr(W |C) =

X

T

Pr(T |C) Pr(W |T,C) (4.17)

We can now solve for Pr(T |C) using linear algebra. Let WT be a matrix, ~t and ~w two

vectors such that:

WT
ij

= Pr(W = i|T = j)

~

t

j

= Pr(T = j|C = k)

~w

i

= Pr(W = i|C = k) (4.18)
50|W| x |T| |T| x 1|W| x 1
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Pr(w1 |C) = Pr(w1 |T )Pr(T |C)
T
∑

Pr(w2 |C) = Pr(w2 |T )Pr(T |C)
T
∑

Pr(w|W | |C) = Pr(w|W | |T )Pr(T |C)
T
∑

dependence on the context.

Pr(T |W,C) =

Pr(W |T,C) Pr(T |C)

Pr(W |C)

(4.16)

To perform disambiguation, we need to find the tag T that maximizes the probability

Pr(T |W,C). This is equivalent to the maximization of the product Pr(W |T,C) Pr(T |C),

because the denominator Pr(W |C) does not depend on T . To perform the maximization,

the two distributions Pr(W |T,C) and Pr(T |C) need to be estimated for each context C.

How to estimate Pr(T |C), the distribution of word tags that can be expressed in the

given context? The only supervision is the word-tag distribution, since we do not have

access to any tagged data, and consequently we do not know what tags are likely to be

expressed in any given context. Therefore, it is not possible to estimate Pr(T |C) directly.

What we do have is the word frequencies for each tag Pr(W |T ), and the word frequen-

cies for the given context Pr(W |C). We use the word-tag distribution to estimate Pr(W |T ),

and a statistical language model to estimate Pr(W |C), as detailed in Section 2. We make

the independence assumption Pr(W |T,C) = Pr(W |T ), i.e. the distribution of words used

to express a particular tag is the same for all contexts. Finally, the relationship between the

three distributions, Pr(T |C), Pr(W |T,C), and Pr(W |C) is given by the total probability

theorem:

Pr(W |C) =

X

T

Pr(T |C) Pr(W |T,C) (4.17)

We can now solve for Pr(T |C) using linear algebra. Let WT be a matrix, ~t and ~w two

vectors such that:

WT
ij

= Pr(W = i|T = j)

~

t

j

= Pr(T = j|C = k)

~w

i

= Pr(W = i|C = k) (4.18)
50|W| x |T| |T| x 1|W| x 1
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Pr(w1 |C) = Pr(w 1|T )Pr(T |C)
T
∑

Pr(w2 |C) = Pr(w2 |T )Pr(T |C)
T
∑

Pr(w|W | |C) = Pr(w|W | |T )Pr(T |C)
T
∑

dependence on the context.

Pr(T |W,C) =

Pr(W |T,C) Pr(T |C)

Pr(W |C)

(4.16)

To perform disambiguation, we need to find the tag T that maximizes the probability

Pr(T |W,C). This is equivalent to the maximization of the product Pr(W |T,C) Pr(T |C),

because the denominator Pr(W |C) does not depend on T . To perform the maximization,

the two distributions Pr(W |T,C) and Pr(T |C) need to be estimated for each context C.

How to estimate Pr(T |C), the distribution of word tags that can be expressed in the

given context? The only supervision is the word-tag distribution, since we do not have

access to any tagged data, and consequently we do not know what tags are likely to be

expressed in any given context. Therefore, it is not possible to estimate Pr(T |C) directly.

What we do have is the word frequencies for each tag Pr(W |T ), and the word frequen-

cies for the given context Pr(W |C). We use the word-tag distribution to estimate Pr(W |T ),

and a statistical language model to estimate Pr(W |C), as detailed in Section 2. We make

the independence assumption Pr(W |T,C) = Pr(W |T ), i.e. the distribution of words used

to express a particular tag is the same for all contexts. Finally, the relationship between the

three distributions, Pr(T |C), Pr(W |T,C), and Pr(W |C) is given by the total probability

theorem:

Pr(W |C) =

X

T

Pr(T |C) Pr(W |T,C) (4.17)

We can now solve for Pr(T |C) using linear algebra. Let WT be a matrix, ~t and ~w two

vectors such that:

WT
ij

= Pr(W = i|T = j)

~

t

j

= Pr(T = j|C = k)

~w

i

= Pr(W = i|C = k) (4.18)
50|W| x |T| |T| x 1|W| x 1
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dependence on the context.

Pr(T |W,C) =

Pr(W |T,C) Pr(T |C)

Pr(W |C)

(4.16)

To perform disambiguation, we need to find the tag T that maximizes the probability

Pr(T |W,C). This is equivalent to the maximization of the product Pr(W |T,C) Pr(T |C),

because the denominator Pr(W |C) does not depend on T . To perform the maximization,

the two distributions Pr(W |T,C) and Pr(T |C) need to be estimated for each context C.

How to estimate Pr(T |C), the distribution of word tags that can be expressed in the

given context? The only supervision is the word-tag distribution, since we do not have

access to any tagged data, and consequently we do not know what tags are likely to be

expressed in any given context. Therefore, it is not possible to estimate Pr(T |C) directly.

What we do have is the word frequencies for each tag Pr(W |T ), and the word frequen-

cies for the given context Pr(W |C). We use the word-tag distribution to estimate Pr(W |T ),

and a statistical language model to estimate Pr(W |C), as detailed in Section 2. We make

the independence assumption Pr(W |T,C) = Pr(W |T ), i.e. the distribution of words used

to express a particular tag is the same for all contexts. Finally, the relationship between the

three distributions, Pr(T |C), Pr(W |T,C), and Pr(W |C) is given by the total probability

theorem:

Pr(W |C) =

X

T

Pr(T |C) Pr(W |T,C) (4.17)

We can now solve for Pr(T |C) using linear algebra. Let WT be a matrix, ~t and ~w two

vectors such that:

WT
ij

= Pr(W = i|T = j)

~

t

j

= Pr(T = j|C = k)

~w

i

= Pr(W = i|C = k) (4.18)
50 |W| x |T| |T| x 1|W| x 1

w WT

t

Noisy Channel Model

dependence on the context.

Pr(T |W,C) =

Pr(W |T,C) Pr(T |C)

Pr(W |C)

(4.16)

To perform disambiguation, we need to find the tag T that maximizes the probability

Pr(T |W,C). This is equivalent to the maximization of the product Pr(W |T,C) Pr(T |C),

because the denominator Pr(W |C) does not depend on T . To perform the maximization,

the two distributions Pr(W |T,C) and Pr(T |C) need to be estimated for each context C.

How to estimate Pr(T |C), the distribution of word tags that can be expressed in the

given context? The only supervision is the word-tag distribution, since we do not have

access to any tagged data, and consequently we do not know what tags are likely to be

expressed in any given context. Therefore, it is not possible to estimate Pr(T |C) directly.

What we do have is the word frequencies for each tag Pr(W |T ), and the word frequen-

cies for the given context Pr(W |C). We use the word-tag distribution to estimate Pr(W |T ),

and a statistical language model to estimate Pr(W |C), as detailed in Section 2. We make

the independence assumption Pr(W |T,C) = Pr(W |T ), i.e. the distribution of words used

to express a particular tag is the same for all contexts. Finally, the relationship between the

three distributions, Pr(T |C), Pr(W |T,C), and Pr(W |C) is given by the total probability

theorem:

Pr(W |C) =

X

T

Pr(T |C) Pr(W |T,C) (4.17)

We can now solve for Pr(T |C) using linear algebra. Let WT be a matrix, ~t and ~w two

vectors such that:

WT
ij

= Pr(W = i|T = j)

~

t

j

= Pr(T = j|C = k)

~w

i

= Pr(W = i|C = k) (4.18)
50
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dependence on the context.

Pr(T |W,C) =

Pr(W |T,C) Pr(T |C)

Pr(W |C)

(4.16)

To perform disambiguation, we need to find the tag T that maximizes the probability

Pr(T |W,C). This is equivalent to the maximization of the product Pr(W |T,C) Pr(T |C),

because the denominator Pr(W |C) does not depend on T . To perform the maximization,

the two distributions Pr(W |T,C) and Pr(T |C) need to be estimated for each context C.

How to estimate Pr(T |C), the distribution of word tags that can be expressed in the

given context? The only supervision is the word-tag distribution, since we do not have

access to any tagged data, and consequently we do not know what tags are likely to be

expressed in any given context. Therefore, it is not possible to estimate Pr(T |C) directly.

What we do have is the word frequencies for each tag Pr(W |T ), and the word frequen-

cies for the given context Pr(W |C). We use the word-tag distribution to estimate Pr(W |T ),

and a statistical language model to estimate Pr(W |C), as detailed in Section 2. We make

the independence assumption Pr(W |T,C) = Pr(W |T ), i.e. the distribution of words used

to express a particular tag is the same for all contexts. Finally, the relationship between the

three distributions, Pr(T |C), Pr(W |T,C), and Pr(W |C) is given by the total probability

theorem:

Pr(W |C) =

X

T

Pr(T |C) Pr(W |T,C) (4.17)

We can now solve for Pr(T |C) using linear algebra. Let WT be a matrix, ~t and ~w two

vectors such that:

WT
ij

= Pr(W = i|T = j)

~

t

j

= Pr(T = j|C = k)

~w

i

= Pr(W = i|C = k) (4.18)
50 |W| x |T| |T| x 1|W| x 1

w WT

t

Noisy Channel Model

dependence on the context.

Pr(T |W,C) =

Pr(W |T,C) Pr(T |C)

Pr(W |C)

(4.16)

To perform disambiguation, we need to find the tag T that maximizes the probability

Pr(T |W,C). This is equivalent to the maximization of the product Pr(W |T,C) Pr(T |C),

because the denominator Pr(W |C) does not depend on T . To perform the maximization,

the two distributions Pr(W |T,C) and Pr(T |C) need to be estimated for each context C.

How to estimate Pr(T |C), the distribution of word tags that can be expressed in the

given context? The only supervision is the word-tag distribution, since we do not have

access to any tagged data, and consequently we do not know what tags are likely to be

expressed in any given context. Therefore, it is not possible to estimate Pr(T |C) directly.

What we do have is the word frequencies for each tag Pr(W |T ), and the word frequen-

cies for the given context Pr(W |C). We use the word-tag distribution to estimate Pr(W |T ),

and a statistical language model to estimate Pr(W |C), as detailed in Section 2. We make

the independence assumption Pr(W |T,C) = Pr(W |T ), i.e. the distribution of words used

to express a particular tag is the same for all contexts. Finally, the relationship between the

three distributions, Pr(T |C), Pr(W |T,C), and Pr(W |C) is given by the total probability

theorem:

Pr(W |C) =

X

T

Pr(T |C) Pr(W |T,C) (4.17)

We can now solve for Pr(T |C) using linear algebra. Let WT be a matrix, ~t and ~w two

vectors such that:

WT
ij

= Pr(W = i|T = j)

~

t

j

= Pr(T = j|C = k)

~w

i

= Pr(W = i|C = k) (4.18)
50

|T| x |W|

WT
+

multiply from 
left with
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+

multiply from 
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dependence on the context.

Pr(T |W,C) =

Pr(W |T,C) Pr(T |C)

Pr(W |C)

(4.16)

To perform disambiguation, we need to find the tag T that maximizes the probability

Pr(T |W,C). This is equivalent to the maximization of the product Pr(W |T,C) Pr(T |C),

because the denominator Pr(W |C) does not depend on T . To perform the maximization,

the two distributions Pr(W |T,C) and Pr(T |C) need to be estimated for each context C.

How to estimate Pr(T |C), the distribution of word tags that can be expressed in the

given context? The only supervision is the word-tag distribution, since we do not have

access to any tagged data, and consequently we do not know what tags are likely to be

expressed in any given context. Therefore, it is not possible to estimate Pr(T |C) directly.

What we do have is the word frequencies for each tag Pr(W |T ), and the word frequen-

cies for the given context Pr(W |C). We use the word-tag distribution to estimate Pr(W |T ),

and a statistical language model to estimate Pr(W |C), as detailed in Section 2. We make

the independence assumption Pr(W |T,C) = Pr(W |T ), i.e. the distribution of words used

to express a particular tag is the same for all contexts. Finally, the relationship between the

three distributions, Pr(T |C), Pr(W |T,C), and Pr(W |C) is given by the total probability

theorem:

Pr(W |C) =

X

T

Pr(T |C) Pr(W |T,C) (4.17)

We can now solve for Pr(T |C) using linear algebra. Let WT be a matrix, ~t and ~w two

vectors such that:

WT
ij

= Pr(W = i|T = j)

~

t

j

= Pr(T = j|C = k)

~w

i

= Pr(W = i|C = k) (4.18)
50|T| x 1|W| x 1
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Pr(T |W,C). This is equivalent to the maximization of the product Pr(W |T,C) Pr(T |C),

because the denominator Pr(W |C) does not depend on T . To perform the maximization,

the two distributions Pr(W |T,C) and Pr(T |C) need to be estimated for each context C.

How to estimate Pr(T |C), the distribution of word tags that can be expressed in the

given context? The only supervision is the word-tag distribution, since we do not have

access to any tagged data, and consequently we do not know what tags are likely to be

expressed in any given context. Therefore, it is not possible to estimate Pr(T |C) directly.

What we do have is the word frequencies for each tag Pr(W |T ), and the word frequen-

cies for the given context Pr(W |C). We use the word-tag distribution to estimate Pr(W |T ),

and a statistical language model to estimate Pr(W |C), as detailed in Section 2. We make

the independence assumption Pr(W |T,C) = Pr(W |T ), i.e. the distribution of words used

to express a particular tag is the same for all contexts. Finally, the relationship between the

three distributions, Pr(T |C), Pr(W |T,C), and Pr(W |C) is given by the total probability

theorem:

Pr(W |C) =

X

T

Pr(T |C) Pr(W |T,C) (4.17)

We can now solve for Pr(T |C) using linear algebra. Let WT be a matrix, ~t and ~w two

vectors such that:

WT
ij

= Pr(W = i|T = j)

~

t

j

= Pr(T = j|C = k)

~w

i

= Pr(W = i|C = k) (4.18)
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Noisy channel model on WSD

Applied on WSD of English nouns

 State of the art results among the models with word-tag 
distribution or dictionary available

 Comparable results with supervised systems (tag sequence 
is available)
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Conclusion

 I propose a new context representation

 I propose 5 models that can use this representations

  Achieve the state-of-the-art results  on 19 corpus in 15 languages 
languages in POS induction problem

  Applied to the probabilistic voting to morphological 
disambiguation of Turkish and achieve promising results

  Achieve the state-of-the art results on POS disambiguation of 
English when a word-tag dictionary is available

  Achieve the state-of-the-art results on WSD disambiguation of 
English nouns when a word-tag distribution is available
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Any Questions?

Thanks to  _______ .

83

Dad
Mom
Deniz Yuret 
Professors
Friends
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How to calculate substitute distrbitions?

• Statistical Language 
Models

• read large amount of 
plain text

• assign probabilities to 
a given word 
sequence

I like my car .

Plain text Statistical 
Language

Model

P(I like my car .)
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How to calculate substitute distributions?

, will join w_i board as a

Plain text Statistical 
Language

Model

s_i = P(, will join w_i board as a)

for w_i in LM vocabulary perform: • For all w_i in vocabulary

• Replace with target 
word

• use LM to get 
probability of the 
new sequence

• will have a |vocabulary| 
dimensional vector, s

•normalize s to make it 
probability distribution
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Paradigmatic Representations of Word Context

‣ Distance metrics on log 
probability vectors performed 
poorly compared to their 
regular counterparts

‣ The differences in low 
probability words are relatively 
unimportant 

‣ High probability substitutes 
determine syntactic category.

KL2

Manhattan

Jensen

Cosine

Maximum

Euclid

log-Maximum

log-Cosine

log-Euclid

log-Manhattan

30 70

37.29

40.38

48.47

53.61

62.55

66.63

67.06

68.01

68.65

68.89

Supervised kNN baseline (%)
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Paradigmatic Representations of Word Context

• Supervised KNN baselines for POS accuracy using various dimensionality 
reduction algorithms on substitute vectors.

Computational Linguistics Volume ?, Number ?

the simple Maximum metric (which identifies the dimension with the largest difference between
two vectors) also support this conclusion. The maximum score of .68 can be taken as a rough
upper bound for an unsupervised learner using this space on the PTB24K corpus because 32% of
the instances are assigned to the wrong part of speech by the majority of their closest neighbors.
We will discuss alternative ways to push this upper bound higher by enforcing a one-tag-per-
word rule in Section 3.4 and considering the context together with the co-occurring word type in
Section 4.

3.3 Dimensionality Reduction

Using high dimensional vectors is problematic with many learning algorithms because of the
computational cost and the curse of dimensionality. In this section we investigate if there is a low
dimensional representation of the substitute vectors which still preserve the neighborhood infor-
mation necessary to learn syntactic categories. We first briefly describe then report experimental
results on principal components analysis (PCA), Isomap (Tenenbaum, Silva, and Langford 2000),
locally linear embedding (LLE) (Roweis and Saul 2000), and Laplacian eigenmaps (Belkin and
Niyogi 2003).

Each dimensionality reduction algorithm tries to preserve certain aspects of the original
vectors. PCA is a linear method that minimizes reconstruction error. Isomap tries to preserve
distances as measured along a low dimensional submanifold assuming the input vectors were
sampled from the neighborhood of such a manifold. LLE most faithfully preserves the local
linear structure of nearby input vectors. Laplacian eigenmaps most faithfully preserve proximity
relations, mapping nearby inputs to nearby outputs.

We wanted to see how accuracy (based on the k-nearest-neighbor supervised baseline as
in the previous section) changes based on the number of dimensions for each dimensionality
reduction algorithm. For algorithms that require a distance matrix rather than raw input vectors
we used the Jensen-Shannon divergence judged best by the experiments of the previous section.
For graph based methods we built neighborhood graphs using 100 nearest neighbors. The low
dimensional output vectors were compared using the cosine distance metric for the supervised
k-nearest-neighbor algorithm. Figure 2 plots supervised baseline accuracy vs. number of dimen-
sions for each algorithm.

Figure 2
Supervised knn baselines for the four dimensionality reduction algorithms.

8
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Paradigmatic Representations of Word Context

• Supervised KNN baselines for POS accuracy using various dimensionality 
reduction algorithms on substitute vectors.

Mehmet Ali Yatbaz Unsupervised Part of Speech Induction

The graph based algorithms (Isomap, LLE, and Laplacian eigenmaps) all outperform PCA.
They stay within 5% of their peak accuracy with as few as 16 dimensions. In fact Laplacian
eigenmaps outperform the baseline with the original 12,672 dimensional vectors (68.95%)
when allowed to retain more than about 250 dimensions. Spectral clustering uses the same
transformation as the Laplacian eigenmaps algorithm and we compare its performance to other
clustering algorithms in the next section.

3.4 Clustering

We compared three clustering algorithms applied to the original substitute vectors using many-
to-one accuracy on the PTB24K. Hierarchical agglomerative clustering with complete linkage
(HAC) starts with each instance in its own cluster and iteratively combines the two closest groups
(measured by their most distant points) at each step (Manning, Raghavan, and Schütze 2008). K-
medoids minimizes sum of pairwise distances between each data-point to the exemplar at the
center of its cluster (Kaufman and Rousseeuw 2005). Spectral clustering2 uses the eigenvalues
of the graph Laplacian L = D

�1/2
WD

�1/2 to reduce the number of dimensions (similar to
Laplacian eigenmaps) and uses simple k-means clustering on the resulting representation (Ng,
Jordan, and Weiss 2002). All three algorithms accept the distance matrix based on the KL2
distance (see Section 3.2) as input.

Figure 3
Many-to-one score for three clustering algorithms on the 45-tag 24K word corpus.

Figure 3 plots the many-to-one score versus number of clusters for the three algorithms on
the PTB24K. The many-to-one score naturally increases as we approach the one cluster per word
limit, however we find the evolution of the curves informative. At the high end (more than 2000
clusters) HAC performs best with its conservative clusters, but its performance degrades fast as
we reduce the number of clusters because it cannot reverse the accumulating mistakes. At the
low end (less than 16 clusters) k-medoids and spectral have similar performance. However for
the region of interest (between 16 to 2000 clusters) spectral clustering is clearly superior with
.5841 MTO accuracy at 45 clusters.

To demonstrate that the clustering algorithm can scale, we performed spectral clustering
on the full PTB. We calculated the substitute vectors of each position in the PTB by using an

2 We used the implementation in (Chen et al. 2011) with a symmetric sparse affinity matrix of 550 nearest neighbors.

9
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Experiments and Results

• Sensitivity Analysis

Computational Linguistics Volume ?, Number ?
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Figure 4
MTO is fairly stable as long as the Z̃ constant is within an order of magnitude of the real Z value.

5.3 Random Substitutes

Another way to use substitute vectors in a discrete setting is simply to sample individual
substitute words from them according to the corresponding probabilities. The random-substitutes
algorithm cycles through the test data and pairs each word with a random substitute picked from
the pre-computed substitute vectors (see Section ??). We ran the random-substitutes algorithm
to generate 76 million word (X) – random-substitute (Y ) pairs (64 substitutes for each token)
as input to S-CODE. Clustering the resulting �

x

vectors yields a many-to-one score of .7667
(.0050) and a V-measure of .6819 (.0026).

This result is close to the previous result by the random-partition algorithm, .7554 (.0055),
demonstrating that two very different discrete representations of context based on paradigmatic
features give consistent results. Figure 5 illustrates that the random-substitute result is fairly
robust as long as the training algorithm can observe more than a few random substitutes per
word.

Figure 5
MTO is not sensitive to the number of random substitutes sampled per word token.

5.4 Paradigmatic vs Syntagmatic Representations of Word Context

To get a direct comparison of the paradigmatic and syntagmatic context representations we
feed the adjacent word pairs (bigrams) in the corpus into the S-CODE algorithm as X,Y

samples (Maron, Lamar, and Bienenstock 2010) instead of pairing each word with a paradigmatic

12
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POS induction related work

This Work (features)
Blunsom and Cohn (2011)

Christodoulopoulos et al. (2011)
Berg-Kirkpatrich et al. (2010)

Clark (2003)

This work (distributional)
Lamar et al. (2010)

Ganchev et al. (2010)
Goldwater et al. (2007)

Brown et al. (1992)

60 81

67.8

63.2

62.5

70.8

76.8

71.2

75.7

76.1

77.5

80.02

Many-to-one accuracies (%)
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How to evaluate Unsupervised Results

‣ compare their consistency with 
answer (gold) tags:

‣ Many-to-one Score:

‣ Label each word in a 
cluster with the most 
observed gold tag in 
that cluster. 

NN
NNP

PRP FW

The gold  tag distribution of Cluster C
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How to evaluate Unsupervised Results

‣ compare their consistency with 
answer (gold) tags:

‣ Many-to-one Score:

‣ Label each word in a 
cluster with the most 
observed gold tag in 
that cluster. 

NN
NNP

PRP FW

The gold  tag distribution of Cluster C

Cluster C is mapped to NN
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How to evaluate Unsupervised Results

‣ compare their consistency with 
answer (gold) tags:

‣ Many-to-one Score:

‣ Label each word in a 
cluster with the most 
observed gold tag in 
that cluster. 

NN
NNP

PRP FW

The gold  tag distribution of Cluster C

Cluster C is mapped to NN

NN

PRP NNNNPFW

m2o
Accuracy =

       +      +        +
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How to evaluate Unsupervised Results

‣ VM Score

‣ Entropy based measure

‣ Analogous to F measure

‣ harmonic mean of 
homogeneity and 
completeness.
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How to evaluate Unsupervised Results

‣ VM Score

‣ Entropy based measure

‣ Analogous to F measure

‣ harmonic mean of 
homogeneity and 
completeness.

Induced
Cluster c1

NN
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How to evaluate Unsupervised Results

‣ VM Score

‣ Entropy based measure

‣ Analogous to F measure

‣ harmonic mean of 
homogeneity and 
completeness.

Induced
Cluster c1

NN

High homogeneity
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How to evaluate Unsupervised Results

‣ VM Score

‣ Entropy based measure

‣ Analogous to F measure

‣ harmonic mean of 
homogeneity and 
completeness.

Induced
Cluster c1

NN

High homogeneity

Induced
Cluster c2

NN NNP

FW
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How to evaluate Unsupervised Results

‣ VM Score

‣ Entropy based measure

‣ Analogous to F measure

‣ harmonic mean of 
homogeneity and 
completeness.

Induced
Cluster c1

NN

High homogeneity

Induced
Cluster c2

NN NNP

FW
Low homogeneity
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How to evaluate Unsupervised Results

‣ VM Score

‣ Entropy based measure

‣ Analogous to F measure

‣ harmonic mean of 
homogeneity and 
completeness.

Induced
Cluster c1

NN

High homogeneity

Induced
Cluster c2

NN NNP

FW

Low completeness

Low homogeneity
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Named entity tagging

official

ordinary 

U.N.     

Organization 

Ekeus

Person 

heads

ordinary 

.

ordinary 

Baghdad

Location

for

ordinary 

tag words with predefined categories such as the names of persons, 
organizations, locations, expressions of times, quantities, monetary 
values, percentages,

93
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Clustering Substitute Distributions

  Ignores target-word identities or features

  93% of the tags in words in English is assigned to most frequent POS 
tag (one-tag-per-word assumption)

  After clustering the substitute distributions, we assigned each word to 
the majority cluster of its instances

  Ex:  If instances of the word W distributed as c1(10), c2(20), c3(60) and 
c4(10)  then all instances will be moved to majority cluster c3.

achieves ~71 % m2o accuracy
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S-CODE (Maron et al. 2010)

‣ Distance is proportional to mutual information

Pr(w, s)
Pr(w)Pr(s)

∝ e−dw ,s
2 dw,s

2 = (w − s)2

Pr(w, s)∝Pr(s)Pr(s)e−dw ,s
2

Pr(w, s) = 1
Z
Pr(x)Pr(y)e−dw ,s

2

Z = Pr(w)Pr(s)e−dw ,s
2

(w,s )
∑

log likelihood = p(w, s)
(w,s )
∑ log(p(w, s))
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S-CODE (Maron et al. 2010)

‣ S-CODE defines the log likelihood of co-occurrence data

l = p(w, s)
(w,s )
∑ log(p(w, s))

96
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S-CODE (Maron et al. 2010)

‣ S-CODE defines the log likelihood of co-occurrence data

l = p(w, s)
(w,s )
∑ log(p(w, s))

l = p
(w,s )
∑ (w, s) − logZ + log p(w)p(s)− dw,s

2( )
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96Sunday, February 16, 14



S-CODE (Maron et al. 2010)

‣ S-CODE defines the log likelihood of co-occurrence data

l = p(w, s)
(w,s )
∑ log(p(w, s))

l = p
(w,s )
∑ (w, s) − logZ + log p(w)p(s)− dw,s

2( )

l = − logZ + p(w, s)log p(w)p(s)
w,s
∑ − p(w, s) ||Φw −Φs ||

2
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S-CODE (Maron et al. 2010)

‣ S-CODE defines the log likelihood of co-occurrence data

l = p(w, s)
(w,s )
∑ log(p(w, s))

l = p
(w,s )
∑ (w, s) − logZ + log p(w)p(s)− dw,s

2( )

l = − logZ + p(w, s)log p(w)p(s)
w,s
∑ − p(w, s) ||Φw −Φs ||

2constant
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S-CODE (Maron et al. 2010)

‣ Take derivative according to embeddings of x and y

Eq1

derivative of y’s embedding is similar

l = − logZ + const − p(w, s) ||Φw −Φs ||
2

w,s
∑
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S-CODE (Maron et al. 2010)

‣ Take derivative according to embeddings of x and y

Eq1

δ l
δΦw

= 1
Z
pw ps

s
∑ e−dw ,s

2

(Φw −Φs )+ pw,s
s
∑ (Φs −Φw ) Eq2

derivative of y’s embedding is similar

l = − logZ + const − p(w, s) ||Φw −Φs ||
2

w,s
∑

97
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S-CODE (Maron et al. 2010)

‣ Take derivative according to embeddings of x and y

Eq1

δ l
δΦw

= 1
Z
pw ps

s
∑ e−dw ,s

2

(Φw −Φs )+ pw,s
s
∑ (Φs −Φw ) Eq2

δ l
δΦw

= pw,s
s
∑ (Φw −Φs )+ pw,s

s
∑ (Φs −Φw ) Eq3

derivative of y’s embedding is similar

l = − logZ + const − p(w, s) ||Φw −Φs ||
2

w,s
∑
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S-CODE (Maron et al. 2010)

‣ Take derivative according to embeddings of x and y

Eq1

δ l
δΦw

= 1
Z
pw ps

s
∑ e−dw ,s

2

(Φw −Φs )+ pw,s
s
∑ (Φs −Φw ) Eq2

δ l
δΦw

= pw,s
s
∑ (Φw −Φs )+ pw,s

s
∑ (Φs −Φw ) Eq3

by definition

derivative of y’s embedding is similar

l = − logZ + const − p(w, s) ||Φw −Φs ||
2

w,s
∑
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Noisy channel model on WSD

Task WN Nouns FSB 1st 2nd 3rd Unsup

senseval2 1.7 1067 71.9 78.0 74.5 70.0 61.8

senseval3 1.7.1 892 71.0 72.0 71.2 71.0 62.6

semeval07 2.1 159 64.2 68.6 66.7 66.7 63.5

total 2118 70.9 74.4 72.5 70.2 62.2

Table 7.1: Baselines for the three SensEval English all-words tasks; the WordNet version

used; number of noun instances; percentage accuracy of the first sense baseline, the top

three supervised systems, and the best unsupervised system. The last row gives the total

score of the best systems on the three tasks.

is taken as the fine-grained answer. Finally, we apply the one sense per discourse heuristic:

if the same word has been assigned more than one sense within the same document, then

we take a majority vote and use sense numbers to break the ties.

Table 7.1 gives some baselines for comparison. The performance of the best supervised

and unsupervised systems on noun disambiguation for each dataset are given. The first

sense baseline (FSB) is obtained by always picking the lowest-numbered sense for the

word in the appropriate WordNet version. We prefer the FSB baseline over the commonly

used most frequent sense baseline because the tie breaking is unambiguous for the former.

All the results reported are for fine-grained sense disambiguation. The top 3 systems given

in the table for each task are all supervised systems; the result for the best unsupervised

system is given in the last column. The reported unsupervised systems do use the sense

ordering and frequency information from WordNet.

92

The distribution of words for each semantic class, Pr(W |S), is estimated from WordNet

sense frequencies. The distribution of words for each context, Pr(W |C), is estimated using

a 5-gram model derived from the Web 1T corpus. The system first finds the most likely

semantic class using the noisy channel model, then picks the first sense in that class. Ta-

ble 7.2 gives the results for the three datasets. These results are significantly better than the

previously reported unsupervised results.

Dataset CorrClass MaxScore Score

senseval2 85.1 90.3 77.7

senseval3 78.0 88.7 70.1

semeval07 75.5 86.2 64.8

total 81.4 89.3 73.5

Table 7.2: The performance of the noisy channel model with the 25 semantic classes found

in WordNet lexicographer files. The columns give the dataset, the percentage of times the

model picks the correct semantic class, maximum possible fine-grained score if the model

had always picked the correct class, and the actual score.

To illustrate which semantic classes are the most difficult to disambiguate, Table 7.3

gives the confusion matrix for the Senseval2 dataset. We can see that the frequently oc-

curring concrete classes like person and body are disambiguated well. The most serious

sources of error are the abstract classes like act, attribute, cognition and communication.

These 25 classes may not be the ideal candidates for word-sense disambiguation. Even

though they allow a sufficient degree of fine-grained distinction (Table 7.2 shows that we

can get 85–90% if we could pick the right class every time), they seem too easy to confuse.

In the next few experiments, we will use these observations to design better sets of semantic

classes.
94

  25 WordNet Semantic Categories for nouns are used
  For a given word w the model

1. find the correct sense class 
2. selects the most frequent sense of w in that class
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Noisy Channel Model

where the intended message is a tag T , and the received signal is an ambiguous word W .

The model assumes the independence of consecutive messages. In this section, we will

describe how to model a given context C as a noisy channel, and, in particular, how to

estimate the context-specific tag distribution by using the word-tag distribution.

Equation 3.16 expresses the probability of a tag T of word W in a given context C.

This is the well-known Bayes’ formula with an extra P(.|C) in each term to indicate the

dependence on the context.

P(T |W,C) =

P(W |T,C)P(T |C)

P(W |C)

(3.16)

To perform disambiguation, we need to find the tag T that maximizes the probability

P(T |W,C). This is equivalent to the maximization of the product P(W |T,C)P(T |C),

because the denominator P(W |C) does not depend on T . To perform the maximization,

the two distributions P(W |T,C) and P(T |C) need to be estimated for each context C.

How to estimate P(T |C), the distribution of word tags that can be expressed in the

given context? The only supervision is the word-tag distribution, since we do not have

access to any tagged data, and consequently we do not know what tags are likely to be

expressed in any given context. Therefore, it is not possible to estimate Pr(T |C) directly.

What we do have is the word frequencies for each tag Pr(W |T ), and the word frequen-

cies for the given context Pr(W |C). We use the word-tag distribution to estimate Pr(W |T ),

and a statistical language model to estimate Pr(W |C), as detailed in Section 2. We make

the independence assumption Pr(W |T,C) = Pr(W |T ), i.e. the distribution of words used

to express a particular tag is the same for all contexts. Finally, the relationship between the

three distributions, Pr(T |C), Pr(W |T,C), and Pr(W |C) is given by the total probability

theorem:

Pr(W |C) =

X

T

Pr(W |T,C) Pr(T |C) (3.17)

Pr(W |C) =

X

T

Pr(W |T ) Pr(T |C) (3.18)

37

dependence on the context.

Pr(T |W,C) =

Pr(W |T,C) Pr(T |C)

Pr(W |C)

(4.16)

To perform disambiguation, we need to find the tag T that maximizes the probability

Pr(T |W,C). This is equivalent to the maximization of the product Pr(W |T,C) Pr(T |C),

because the denominator Pr(W |C) does not depend on T . To perform the maximization,

the two distributions Pr(W |T,C) and Pr(T |C) need to be estimated for each context C.

How to estimate Pr(T |C), the distribution of word tags that can be expressed in the

given context? The only supervision is the word-tag distribution, since we do not have

access to any tagged data, and consequently we do not know what tags are likely to be

expressed in any given context. Therefore, it is not possible to estimate Pr(T |C) directly.

What we do have is the word frequencies for each tag Pr(W |T ), and the word frequen-

cies for the given context Pr(W |C). We use the word-tag distribution to estimate Pr(W |T ),

and a statistical language model to estimate Pr(W |C), as detailed in Section 2. We make

the independence assumption Pr(W |T,C) = Pr(W |T ), i.e. the distribution of words used

to express a particular tag is the same for all contexts. Finally, the relationship between the

three distributions, Pr(T |C), Pr(W |T,C), and Pr(W |C) is given by the total probability

theorem:

Pr(W |C) =

X

T

Pr(T |C) Pr(W |T,C) (4.17)

We can now solve for Pr(T |C) using linear algebra. Let WT be a matrix, ~t and ~w two

vectors such that:

WT
ij

= Pr(W = i|T = j)

~

t

j

= Pr(T = j|C = k)

~w

i

= Pr(W = i|C = k) (4.18)
50

For a fixed context (channel) k
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Figure 8.8: Regression lines for the word- and instance-based models on the MTO accuracy

vs GP plot for the PTB.

8.5.6 Word vs. Instance-Based Induction

We compare the output of a word-based model in Section 8.5.2, and two instance-based

POS induction systems in Section 8.5.5. All of the models that are analyzed in this section

incorporate both orthographic and morphological features.

Figure 8.8 plots the gold-tag perplexity versus the smoothed MTO accuracy for the

word-based and the instance-based POS induction system. To compose the plot, we find

the best mapping from the induced clusters to the gold-standard tags, then we compute

the MTO accuracy for each word using this mapping, and plot the MTO as a function of

130

GP(w) = 2
− Pr(t|w)log2 Pr(t|w)
i=1

N

∑
GP=1 when word is unambiguous
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Dictionary reduction on POS tagging

The first rule decreases the level of ambiguity by selecting only the unambiguous sub-

stitutes from the word-tag dictionary. The second rule makes sure that the unambiguous

substitutes do occur in the word-tag dictionary. The counts of substitute POS tags and the

deleted rare POS tags for two erroneous function words are shown in Table 5.4. The exper-

iments in this section focus on: (1) the analysis of dictionary reduction and (2) the number

of top substitutes used for each ambiguous word.

Word Tag Gold EM Substitutes

dictionary tagging tagging POS counts

of {RB, RP, IN} IN(632) IN(0) IN(2377)

RP(0) RP(632) RP(0)

RB(0) RB(0) RB(850)

a {LS, SYM, NNP, DT(458) DT(0) DT(513)

FW, JJ, IN, DT} IN(1) IN(0) IN(317)

JJ(2) JJ(0) JJ(1329)

SYM(1) SYM(258) SYM(0)

LS(0) LS(230) LS(0)

Table 5.4: Deleted POS tags of the given words are shown in bold.

The results obtained with the dictionary that is reduced by using the top 5 likely un-

ambiguous substitutes are presented in Table 5.5. Note that with the reduced dictionary

the uniformly initialized first-order HMM-EM achieves 91.85% accuracy. We execute 100

random restarts of the EM algorithm and select the model with the highest corpus likeli-

hood. Our model achieves 92.25% accuracy—so far the highest accuracy reported for the

PTB24K corpus.

As Table 5.5 shows, the effect of dictionary reduction is more noticeable on the content
61
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Inverse

  w = WS x t 

 t = inv(WS) x w

 This solution minimizes the distance |WS x t - w|

  might violate non-negativity

  add up to 1

  D(P||Q) = sum_i ln(P(i)/Q(i)) P(i) where P = WS x t , P = w
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Language Model Test Corpus

Language Source
Instance

Count

Word

Count

Instance

Count

Word

Count

Unknown

Word

Perplexity

(ppl)

W
SJ English ukWaC 2,303,225,131 4,254,946 1,173,766 49,206 0.0081 303.477

M
U

LT
EX

T-
Ea

st

Bulgarian TenTen 849,023,297 1,965,178 101,173 16,353 .0151 295.704

Czech TenTen 1,791,613,805 4,758,807 100,368 19,121 .0038 294.022

English ukWaC 2,303,225,131 4,254,946 118,424 9,774 .0046 143.451

Estonian TenTen 330,671,558 2,526,585 94,898 17,847 .0166 477.805

Hungarian Wikipedia 66,069,788 1,065,897 98,426 20,323 .0449 654.086

Romanian TenTen 53,456,650 310,366 118,328 15,192 .0070 126.596

Slovene Wikipedia 18,969,864 363,251 112,278 17,873 .0389 648.347

Serbian Wikipedia 17,129,679 368,778 108,809 18,113 .0580 804.962

C
oN

LL
-X

Sh
ar

ed
Ta

sk

Bulgarian TenTen 849,023,297 1,965,178 190,217 32,439 .0196 168.592

Czech TenTen 1,791,613,805 4,758,807 1,249,408 130,208 .0050 476.434

Danish TenTen 1,857,746,600 5,304,957 94,386 18356 .0218 185.325

Dutch WaC 127,580,512 774,965 195,069 28,493 .0465 261.709

German TenTen 1,810,802,875 6,513,804 699,610 72,326 .0227 417.676

Portuguese TenTen 3,267,166,367 3,434,834 206,678 28,932 .0493 364.92

Slovene Wikipedia 18,969,864 363,251 28,750 7,128 .0414 596.678

Spanish TenTen 2,445,878,830 3,067,682 89,334 16,458 .0343 193.94

Swedish TenTen 113,975,094 926,875 191,467 20,057 .0179 288.16

Turkish TenTen 1,804,606,896 5,308,241 47,605 17,563 .0550 600.632

Table 8.5: Language model corpos and test corpus statistics are presented.
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