
Knet: beginning deep learning with 100 lines of Julia

Deniz Yuret
Department of Computer Engineering

Koç University, İstanbul
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Abstract

Knet (pronounced "kay-net") is the Koç University machine learning framework
implemented in Julia, a high-level, high-performance, dynamic programming
language. Unlike gradient generating compilers like Theano and TensorFlow which
restrict users into a modeling mini-language, Knet allows models to be defined by
just describing their forward computation in plain Julia, allowing the use of loops,
conditionals, recursion, closures, tuples, dictionaries, array indexing, concatenation
and other high level language features. High performance is achieved by combining
automatic differentiation of most of Julia with efficient GPU kernels and memory
management. Several examples and benchmarks are provided to demonstrate that
GPU support and automatic differentiation of a high level language are sufficient
for concise definition and efficient training of sophisticated models.

1 Introduction

Knet [1] is a machine learning framework that allows users to define and train their models in plain
Julia. Specifically, only the forward computation, i.e. calculation of a loss value for a given set of
parameters and data, needs to be implemented by the user. Computation of gradients required for
training is handled automatically. GPU operations are automatically triggered when the inputs are
constructed as device arrays. Most of Julia can be used in model implementations, including all
control statements, array operations, high level data types, helper functions and closures. This gives
users great flexibility in defining compound models where multiple parts can pass information to
each other, and the exact sequence of operations may depend on the data.

Julia [2] is an open source, high-level programming language that often matches the performance of
C with its high performance LLVM-based just-in-time (JIT) compiler. It comes with an extensive
array and mathematical function library with support for parallel and GPU computation. Julia is easy
to extend using its dynamic type system, multiple dispatch support, C function calls and Lisp-like
macro and metaprogramming facilities. Knet uses each of these features to implement a practical and
high-performance machine learning framework.

The next section gives the Julia/Knet implementations of five example models and timing comparisons
with other frameworks. Section 3 describes the implementation of Knet.

2 Examples and Benchmarks

In Knet, a machine learning model is defined using plain Julia code. A typical model consists of
a prediction and a loss function. The prediction function takes model parameters and some input,
returns the prediction of the model for that input. The loss function measures how bad the prediction
is with respect to some desired output. We train a model by adjusting its parameters to reduce the
loss. In this section we will see the prediction, loss, and training functions for five models: linear
regression, softmax classification, fully-connected, convolutional and recurrent neural networks. Note
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that each example below comes from the actual code from a working demo in the Knet repository
used in the benchmarking experiments in this paper.

2.1 Linear Regression

Here is the prediction and the quadratic loss function for a simple linear regression model:

function predict(w,x)
return w[1]*x .+ w[2]

end

function loss(w,x,y)
return sumabs2(y-predict(w,x))/size(y,2)

end

Both predict and loss are regular Julia functions: we could have used loops, conditionals, recursion
etc. in their definition. The variable w is a list of parameters, x is the input and y is the desired output.
By providing different types of inputs x, y, and w[i], the user can control where the code is run.
If the inputs are regular Julia arrays, the code will run on the CPU using operators from the Julia
standard library. If they are device arrays (see KnetArray in Section 3.2), the same code will run on
the GPU using equivalent operators provided by Knet.

To train this model, we want to adjust its parameters to reduce the loss on given training examples.
The direction in the parameter space in which the loss reduction is maximum is given by the negative
gradient of the loss. Knet provides the grad function (see Section 3.1) to compute the gradient:

using Knet
lossgradient = grad(loss)

grad is a higher-order function that takes the loss function as input and returns a
lossgradient function as output. lossgradient takes the same arguments as loss, e.g.
dw = lossgradient(w,x,y). Instead of returning a loss value however, lossgradient returns
dw, the gradient of loss with respect to its first argument w. The type and size of dw is identical to
w, which could be a Tuple, Array, or Dict. Each entry in dw gives the derivative of the loss with
respect to the corresponding entry in w.

Given some training data [(x1,y1),(x2,y2),...], we can train this model using Stochastic
Gradient Descent (SGD) [3]. We simply iterate over the input-output pairs in data, calculate the
lossgradient for each pair, and move the parameters in the negative gradient direction with a step
size determined by the learning rate lr:

function train(w, data; lr=0.1)
for (x,y) in data

dw = lossgradient(w, x, y)
for i in 1:length(w)

w[i] -= lr * dw[i]
end

end
return w

end

This is the full implementation. All the user has to do at this point is to load the data into an data
array, initialize the weights w, and use the train function to get an optimized model.

2.2 Softmax classification

Classification models handle discrete outputs as opposed to regression models for continuous outputs.
We typically use the cross entropy loss function in classification models:

function loss(w,x,ygold)
ypred = predict(w,x)
ynorm = ypred .- log(sum(exp(ypred),1))
-sum(ygold .* ynorm) / size(ygold,2)

end

Other than the change in the loss function the softmax model is identical to the linear regression
model. We use the same predict, same train and set lossgradient=grad(loss) as before.
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2.3 Multi-layer perceptrons

A multi-layer perceptron (MLP), i.e. a fully connected feed-forward neural network, is basically
several linear regression models stuck together with non-linearities in between. We can define an
MLP by slightly modifying the predict function from the softmax example:

function predict(w,x)
for i=1:2:length(w)-2

x = max(0, w[i]*x .+ w[i+1])
end
return w[end-1]*x .+ w[end]

end

Here w[2k-1] is the weight matrix and w[2k] is the bias vector for the k’th layer. max(0,a)
implements the popular rectifier function as a non-linearity. Note that if w only has two entries, this is
equivalent to the predict in linear and softmax models. By adding more entries to w, we can define
multi-layer perceptrons of arbitrary depth. The rest of the code for training an MLP is identical to the
softmax model. We can use the same cross-entropy loss function and the same SGD training loop.

2.4 Convolutional neural networks

Convolutional neural networks (CNN) are similar to MLPs except they use two extra operations: (i)
convolutions, which implement sparsely connected layers with tied weights, and (ii) pooling, which
subsample and reduce the input size. Knet provides the conv4(w,x) and pool(x) functions that
implement these operations. A typical CNN consists of a number of convolutional layers followed by
one or more fully connected layers. Here is an implementation of the LeNet [4] CNN model in Knet:

function predict(w,x,n)
for i=1:2:n

x = pool(max(0, conv4(w[i],x) .+ w[i+1]))
end
x = mat(x)
for i=n+1:2:length(w)-2

x = max(0, w[i]*x .+ w[i+1])
end
return w[end-1]*x .+ w[end]

end

Here n determines the index of the last convolution weight and mat reshapes a multidimensional array
into a matrix. Other than the first few lines in the predict function the rest of the code, including
loss, train etc., is identical to the MLP example. A similar implementation for a deep network like
the 19 layer VGG model [5] takes about a dozen lines of code. For comparison, the original Caffe
model specification for LeNet is 130 lines long and VGG is 396 lines long.

2.5 Recurrent neural networks

A recurrent neural network (RNN) is a model where connections between units form a directed cycle,
which allows it to keep a persistent state over time. Here is one possible Knet implementation of an
LSTM unit [6] commonly used as a building block in RNN models:

function lstm(weight,bias,hidden,cell,input)
gates = hcat(hidden,input) * weight .+ bias
hsize = size(hidden,2)
forget = sigm(gates[:,1:hsize])
ingate = sigm(gates[:,1+hsize:2hsize])
outgate = sigm(gates[:,1+2hsize:3hsize])
change = tanh(gates[:,1+3hsize:end])
cell = cell .* forget + ingate .* change
hidden = outgate .* tanh(cell)
return (hidden,cell)

end
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The first two arguments are the parameters: the weight matrix and the bias vector. The next two
arguments hold the internal state of the LSTM: the hidden and cell arrays. The last argument is the
input. Note that for performance reasons we lump all the parameters of the LSTM into one matrix-
vector pair instead of using separate parameters for each gate. This way we can perform a single
matrix multiplication, and recover the gates using array indexing. We represent input, hidden and
cell as row vectors rather than column vectors for more efficient concatenation and indexing (Julia
is column-major). sigm and tanh are the sigmoid and the hyperbolic tangent activation functions.
The LSTM returns the updated state variables hidden and cell.

As an example application, let’s build a character based language model inspired by [7] using the
LSTM as the basic building block. Here is the predict function for a multi-layer LSTM model:

function predict(w, s, x)
x = x * w[end-2]
for i = 1:2:length(s)

(s[i],s[i+1]) = lstm(w[i],w[i+1],s[i],s[i+1],x)
x = s[i]

end
return x * w[end-1] .+ w[end]

end

A language model predicts the next token in a sequence given the current token and the recent history
as encoded in its internal state. predict takes the current token encoded in x as a one-hot row vector.
s[2k-1:2k] hold the hidden and cell arrays and w[2k-1:2k] hold the weight and bias parameters
for the k’th LSTM layer. The last three elements of w are the embedding matrix and the weight/bias
for the final prediction. predict multiplies the input x with the embedding matrix, passes it through
a number of LSTM layers, and converts the output of the final layer to the same number of dimensions
as the input using a linear transformation. The state variable s is modified in-place.

To train the RNN model we use Backpropagation Through Time (BPTT) [8] which basically means
running the network on a given sequence and updating the parameters based on the total loss. Here is
a function that calculates the total cross-entropy loss for a given (sub)sequence:

function loss(param,state,sequence,range)
total = 0.0; count = 0
atype = typeof(getval(param[1]))
input = convert(atype,sequence[first(range)])
for t in range

ypred = predict(param,state,input)
ynorm = ypred .- log(sum(exp(ypred),2))
ygold = convert(atype,sequence[t+1])
total += sum(ygold .* ynorm)
count += size(ygold,1)
input = ygold

end
return -total / count

end

Here param and state hold the parameters and the state of the model, sequence and range give us
the input sequence and a range over it to process. We convert the entries in the sequence to inputs
that have the same type as the parameters one at a time (to conserve GPU memory if one is using
device arrays). We use each token in the given range as an input to predict the next token. The
average cross-entropy loss per token is returned. At this point we can train our RNN model on any
given piece of text (or other discrete sequence) by using lossgradient=grad(loss) and writing a
training script that initializes parameters and state, and processes the data. For efficiency it is best
to minibatch the training data and run BPTT on small subsequences. The complete character-level
language model example with weight and state initialization, data loading and minibatching, model
training and text generation takes about 200 lines of Julia code and is available in the Knet repository
along with the rest of the examples in this section.

The clarity and economy of defining and training machine learning models using a high level language
like Julia become more evident with more complex models like RNNs, bidirectional LSTMs and
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attention models. I hope the examples in this section provide some evidence that GPU support and
differentiation for a high level language are sufficient to construct sophisticated models and once this
support is fully realized, specialized modules and layers are largely unnecessary. Nevertheless, Knet
provides a few additional optimization methods and utility functions documented in [1].

2.6 Benchmarks

Each of the examples in this section was used as a benchmark to compare the performance of Knet
with other frameworks. The table below shows the number of seconds it takes to train a given
model for a particular dataset using a GPU with number of epochs and minibatch size for Knet [1],
Theano [9], Torch [10], Caffe [11] and TensorFlow [12]. Knet has comparable performance to other
commonly used frameworks.1

model dataset epochs batch Knet Theano Torch Caffe TFlow
LinReg Housing 10K 506 2.84 1.88 2.66 2.35 5.92
Softmax MNIST 10 100 2.35 1.40 2.88 2.45 5.57
MLP MNIST 10 100 3.68 2.31 4.03 3.69 6.94
LeNet MNIST 1 100 3.59 3.03 1.69 3.54 8.77
CharLM Hiawatha 1 128 2.25 2.42 2.23 1.43 2.86

3 Implementation

Knet implements an AutoGrad package and a KnetArray data type for its functionality and per-
formance. AutoGrad computes the gradient of Julia functions and KnetArray implements high
performance GPU arrays with custom memory management. This section briefly describes them.

3.1 AutoGrad

As we have seen, many common machine learning models can be expressed as differentiable programs
that input parameters and data and output a scalar loss value. The loss value measures how close the
model predictions are to desired values with the given parameters. Training a model can then be seen
as an optimization problem: find the parameters that minimize the loss. Typically, a gradient based
optimization algorithm is used for computational efficiency: the direction in the parameter space in
which the loss reduction is maximum is given by the negative gradient of the loss with respect to the
parameters. Thus gradient computations take a central stage in software frameworks for machine
learning. In this section I will briefly outline existing gradient computation techniques and motivate
the particular approach taken by Knet.

Computation of gradients in computer models is performed by four main methods [13]:

1. manual differentiation (programming the derivatives)
2. numerical differentiation (using finite difference approximations)
3. symbolic differentiation (using expression manipulation)
4. automatic differentiation (detailed below)

Manually taking derivatives and coding the result is labor intensive, error-prone, and all but
impossible with complex deep learning models. Numerical differentiation is simple: f ′(x) =
(f(x+ ε)− f(x− ε))/(2ε) but impractical: the finite difference equation needs to be evaluated for
each individual parameter, of which there are typically many. Pure symbolic differentiation using
expression manipulation, as implemented in software such as Maxima, Maple, and Mathematica

1 The benchmarking was done on g2.2xlarge GPU instances on Amazon AWS: Intel Xeon E5-2670 CPU
at 2.6GHz with 15GB RAM, NVIDIA GRID K520 GPU with 1536 CUDA cores and 4GB RAM. The code
to run all benchmarks is available as machine image deep_AMI at AWS N.California or at https://github.
com/ozanarkancan/Knet8-Benchmarks. The datasets are available online; Housing: https://archive.
ics.uci.edu/ml/datasets/Housing, MNIST: http://yann.lecun.com/exdb/mnist, Hiawatha: http:
//www.gutenberg.org/files/19/19.txt. The MLP uses a single hidden layer of 64 units. CharLM uses a
single layer LSTM language model with embedding and hidden layer sizes set to 256 and trained using BPTT
with a sequence length of 100. Each dataset was minibatched and transferred to GPU prior to benchmarking
when possible.
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is impractical for different reasons: (i) it may not be feasible to express a machine learning model
as a closed form mathematical expression, and (ii) the symbolic derivative can be exponentially
larger than the model itself leading to inefficient run-time calculation. This leaves us with automatic
differentiation.

Automatic differentiation is the idea of using symbolic derivatives only at the level of elementary
operations, and computing the gradient of a compound function by applying the chain rule to
intermediate numerical results. For example, pure symbolic differentiation of sin2(x) could give
us 2 sin(x) cos(x) directly. Automatic differentiation would use the intermediate numerical values
x1 = sin(x), x2 = x21 and the elementary derivatives dx2/dx1 = 2x1, dx1/dx = cos(x) to compute
the same answer without ever building a full gradient expression.

To implement automatic differentiation the target function needs to be decomposed into its elementary
operations, a process similar to compilation. Most machine learning frameworks 2 compile models
expressed in a restricted mini-language into a computational graph of elementary operations that have
pre-defined derivatives. There are two drawbacks with this approach: (i) the restricted mini-languages
tend to have limited support for high-level language features such as conditionals, loops, helper
functions, array indexing, etc. (e.g. the infamous scan operation in Theano) (ii) the sequence of
elementary operations that unfold at run-time needs to be known in advance, and cases where the
sequence of operations is data dependent are non-trivial to handle.

op secs
a1=w1*x 0.67
a2=w2.+a1 0.71
a3=max(0,a2) 0.75
a4=w3*a3 0.81
a5=w4.+a4 0.85
a6=a5-y 0.89
a7=sumabs2(a6) 1.18
+recording 1.33
+backprop 2.79

There is an alternative: high-level languages, like Julia and Python,
already know how to decompose functions into their elementary oper-
ations. If we let the users define their models directly in a high-level
language, then record the elementary operations during loss calcula-
tion at run-time, the computational graph can be constructed from the
recorded operations dynamically. The cost of recording is not pro-
hibitive: The table on the right gives cumulative times for elementary
operations of an MLP with quadratic loss. Recording only adds 15%
to the raw cost of the forward computation. Backpropagation roughly
doubles the total time as expected.

This is the approach taken by the popular autograd Python package [14] and the AutoGrad Julia
package [15] implemented for Knet. In these implementations g=grad(f) generates a gradient
function g, which takes the same inputs as the function f but returns the gradient. The gradient
function g triggers recording by boxing the parameters in a special data type and calls f. The
elementary operations in f are overloaded to record their actions and output boxed answers when
their inputs are boxed. The sequence of recorded operations is then used to compute gradients. In
the Julia AutoGrad package, derivatives can be defined independently for each method of a function
(determined by argument types) making full use of Julia’s multiple dispatch. New elementary
operations and derivatives can be defined concisely using Julia’s macro and meta-programming
facilities. See [15] for details.

3.2 KnetArray

GPUs have become indispensable for training large deep learning models. Even the small examples
implemented in this paper run up to 17x faster on the GPU compared to the CPU on the architecture
described in Footnote 1. However GPU implementations have a few potential pitfalls: (i) GPU
memory allocation is slow, (ii) GPU-RAM memory transfer is slow, (iii) reduction operations (like
sum) can be very slow unless implemented properly [16].

Knet implements KnetArray as a Julia data type that wraps GPU array pointers. KnetArray is based
on the more standard CudaArray [17] with a few important differences: (i) KnetArrays have a custom
memory manager, similar to ArrayFire [18], which reuse pointers garbage collected by Julia to reduce
the number of GPU memory allocations, (ii) array ranges (e.g. a[:,3:5]) are handled as views with
shared pointers instead of copies when possible, and (iii) a number of custom CUDA kernels written
for KnetArrays implement element-wise, broadcasting, and scalar and vector reduction operations
efficiently. As a result Knet allows users to implement their models using high-level code, yet be
competitive in performance with other frameworks as demonstrated in the benchmarks section.

2Theano, Torch, Caffe, Tensorflow and older versions of Knet prior to v0.8 are some examples with such
gradient generating compilers.
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Dayanık, İlker Kesen, and Ömer Kırnap for their help with running the benchmark tests for this paper
and their feedback and contributions to Knet development.

References
[1] Deniz Yuret. Knet: Koç University deep learning framework. https://github.com/

denizyuret/Knet.jl, 2016.

[2] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia: A fresh approach to
numerical computing. arXiv preprint arXiv:1411.1607, 2014.

[3] Léon Bottou. Online learning and stochastic approximations. On-line learning in neural
networks, 17(9):142, 1998.

[4] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[5] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[6] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[7] Andrej Karpathy. The unreasonable effectiveness of recurrent neural networks. http://
karpathy.github.io/2015/05/21/rnn-effectiveness, 2015.

[8] Paul J Werbos. Backpropagation through time: what it does and how to do it. Proceedings of
the IEEE, 78(10):1550–1560, 1990.

[9] Theano Development Team. Theano: A Python framework for fast computation of mathematical
expressions. arXiv e-prints, abs/1605.02688, May 2016.

[10] Ronan Collobert, Koray Kavukcuoglu, and Clément Farabet. Torch7: A MATLAB-like envi-
ronment for machine learning. In BigLearn, NIPS Workshop, number EPFL-CONF-192376,
2011.

[11] Yangqing Jia et al. Caffe: Convolutional architecture for fast feature embedding. In Proceedings
of the 22nd ACM international conference on Multimedia, pages 675–678. ACM, 2014.

[12] Martín Abadi et al. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015.
Software available from tensorflow.org.

[13] Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark
Siskind. Automatic differentiation in machine learning: a survey. arXiv preprint
arXiv:1502.05767, 2015.

[14] Dougal Maclaurin, David Duvenaud, and Ryan P Adams. Autograd: Effortless gradients in
numpy. In ICML 2015 AutoML Workshop, 2015.

[15] Deniz Yuret. Autograd: an automatic differentiation package for Julia. https://github.com/
denizyuret/AutoGrad.jl, 2016.

[16] Mark Harris et al. Optimizing parallel reduction in CUDA. NVIDIA Developer Technology,
2(4), 2007.

[17] Tim Holy. CUDArt Julia package for the CUDA runtime API, 2014.

[18] Pavan Yalamanchili, Umar Arshad, Zakiuddin Mohammed, Pradeep Garigipati, Peter Entschev,
Brian Kloppenborg, James Malcolm, and John Melonakos. ArrayFire - A high performance
software library for parallel computing with an easy-to-use API, 2015.

7

https://github.com/denizyuret/Knet.jl
https://github.com/denizyuret/Knet.jl
http://karpathy.github.io/2015/05/21/rnn-effectiveness
http://karpathy.github.io/2015/05/21/rnn-effectiveness
https://github.com/denizyuret/AutoGrad.jl
https://github.com/denizyuret/AutoGrad.jl

	Introduction
	Examples and Benchmarks
	Linear Regression
	Softmax classification
	Multi-layer perceptrons
	Convolutional neural networks
	Recurrent neural networks
	Benchmarks

	Implementation
	AutoGrad
	KnetArray


