Discovery of Linguistic Relations Using Lexical Attraction

Deniz Yuret

Overview

- Motivation
- Demonstration
- Theory, Learning, Algorithm
- Evaluation
- Contributions

Syntax and Semantics independently constrain linguistic relations

• I saw the Statue of Liberty flying over New York.

- Lenat, 1984

• I hit the boy with the girl with long hair with a hammer with vengeance.

- Schank, 1973

• Colorless green ideas sleep furiously.

- Chomsky, 1956

Contributions of this thesis

- Opening a door for the use of common sense knowledge in language processing and acquisition.
- A learning paradigm that bootstraps by interdigitating learning with processing.

Bringing common sense into language

Bootstrapping by interdigitating learning and processing

Phrase structure versus dependency structure

Discovery of Linguistic Relations An Example

Simple Sentence 1/5 (Before training)

 * these people also want more government money for education . *

Simple Sentence 2/5 (After 1000 words of training)

Simple Sentence 3/5 (After 10,000 words of training)

Simple Sentence 4/5 (After 100,000 words of training)

* these people also want more government money for education . *

Simple Sentence 5/5 (After 1,000,000 words of training)

* these people also want more government money for education . *

Bringing common sense into language The theory

A Theory of Syntactic Relations

- Lexical attraction is the likelihood of a syntactic relation
- The context of a word is given by its syntactic relations
- Syntactic relations can be formalized as a graph
- Entropy is determined by syntactic relations

$$H = -\sum p_i \log p_i$$

The information content of a word:

The IRA is fighting British rule in Northern Ireland 4.20 15.85 7.33 13.27 12.38 13.20 5.80 12.60 14.65

Total: 99.28 bits

The word pair and relative information:

The lexical attraction link:

Language Model Determines the Context

Total: $99.28 \rightarrow 62.34$ bits

Context should be determined by syntactic relations:

The man with the dog spoke

The man with the dog spoke

Context should be determined by syntactic relations:

Total: $62.34 \rightarrow 49.85$ bits

Dependency structure is acyclic:

- Mathematically: cannot use all the lexical attraction links in a cycle.
- Linguistically: cannot construct a consistent head-modifier structure.

Syntactic relations form a planar tree: (Links do not cross)

met the woman in the red dress in the afternoon

met the woman in the afternoon in the red dress

Syntactic relations form a planar tree: (Links do not cross)

- Hays and Lecerf (1960) discovered that (almost) all sentences in a language are planar.
- Gaifman (1965) proved that a planar dependency grammar can generate the same set of languages as a context free grammar.
- Planar trees can be encoded with constant number of bits per word.

Cayley's formula for counting trees:

$$T(n) = n^{n-2}$$

Planar trees are polynomial in n:

The IRA is fighting British rule in Northern Ireland

Encoding: LPLLPPRLPRLPLPPP

L:10 R:11 P:0

Upper bound: 3 bits per word

Lexical attraction is symmetric

Lexical attraction is symmetric

$$S = (W, L, w_0)$$

$$W = \{ w_i \}$$

$$L = \{ (w_i, w_j) \}$$

$$P(S) = P(L)P(w_0) \prod_{(w_i, w_j) \in L} P(w_j | w_i)$$

$$= P(L)P(w_0) \prod_{(w_i, w_j) \in L} \frac{P(w_i, w_j)}{P(w_i)}$$

$$= P(L) \prod_{w_i \in W} P(w_i) \prod_{(w_i, w_j) \in L} \frac{P(w_i, w_j)}{P(w_i)P(w_j)}$$

Dependency structure is an undirected, acyclic, planar graph:

Information in a Sentence =

Information in Words

- + Information in the Tree
- Mutual Information in Syntactic Relations

The Memory

The memory observes the processor

Learning simple structures

Simple structures help see complex structures

Learning complex structures

The Processor

* these people also want more government money for education . *

• Words are read in left to right order.

 New word considers links with previous words.

```
* these people
```

• Cycles are not allowed.

• Link with minimum score gets rejected.

• Link with negative value not accepted.

- Link crossing not allowed.
- Link with minimum score gets eliminated.

• The two constraints straighten out previous mistakes by eliminating bad links.

• Eliminating bad links 2/3

• Eliminating bad links 3/3

• New link can knock off old link in cycle.

• The final result.

Discovery of Linguistic Relations Using Lexical Attraction

A demonstration

- Long distance link
- Complex noun phrase
- Syntactic ambiguity

Long Distance Link 1/3 (After 1,000 words of training)

* the cause of his death friday was not given . * \bigcup

Long Distance Link 2/3 (After 100,000 words of training)

* the cause of his death friday was not given . *

Long Distance Link 3/3 (After 10,000,000 words of training)

* the cause of his death friday was not given . *

Complex Noun Phrase 1/4 (After 10,000 words of training)

Complex Noun Phrase 2/4 (After 100,000 words of training)

Complex Noun Phrase 3/4 (After 1,000,000 words of training)

Complex Noun Phrase 4/4 (After 10,000,000 words of training)

Syntactic Ambiguity 1/3 (After 1,000,000 words of training)

* many people died in the clashes in the west in september . *

Syntactic Ambiguity 1/3 (After 10,000,000 words of training)

* many people died in the clashes in the west in september . *

Syntactic Ambiguity 2/3 (After 500,000 words of training)

Syntactic Ambiguity 2/3 (After 5,000,000 words of training)

Syntactic Ambiguity 3/3 (After 1,000,000 words of training)

Syntactic Ambiguity 3/3 (After 10,000,000 words of training)

Results

- Evaluation criteria
- Upper and lower bounds
- Link accuracy
- Related work

Evaluation criteria: Content-word links

People want more money for education

Training

• Up to 100 million words of Associated Press material.

Testing

- 200 out-of-sample sentences.
- Selected from 5000 word vocabulary (90% of all the words seen in the corpus).
- 3152 words (15.76 words per sentence).
- Hand parsed with 1287 content-word links.

Accuracy:

n1 = human linksn2 = program linksn12 = common links

- Precision = n12 / n2
- Recall = n12 / n1

Lower bound:

Random lexical attraction \rightarrow 8.9% precision, 5.4% recall

Linking every adjacent word \rightarrow 41% recall

Upper bound:

85% of syntactically related pairs have positive lexical attraction

Recording adjacent pairs

Precision =
$$67\%$$

Recall = 41%

Recording all pairs

Precision = 55%Recall = 48%

Using feedback from processor

Procedure 3: Recording pairs selected by processor 8.0 Precision Recall 0.7 0.6 Percentage 0.5 0.4 0.3 0.2 0.1 0 10 100 1000 10000 100000 1e+06 1e+07 1e+08 Number of words trained

Precision = 62%Recall = 52%

Related work

- Magerman and Marcus, 1990
- Lari and Young, 1990
- Pereira and Schabes, 1992
- Briscoe and Waegner, 1992
- Carroll and Charniak, 1992
- Stolcke, 1994
- Chen, 1996
- de Marcken, 1996

de Marcken, 1995

$$\begin{array}{ccc} \mathsf{AP} => \mathsf{A} \; \mathsf{BP} & & \mathsf{AP} => \mathsf{A} \\ \mathsf{BP} => \mathsf{B} & & \mathsf{BP} => \mathsf{AP} \; \mathsf{B} \\ \mathsf{CP} => \mathsf{AP} \; \mathsf{C} & & \mathsf{CP} => \mathsf{BP} \; \mathsf{C} \end{array}$$

Lessons learned

- Training with words instead of parts of speech enable the program to learn common but idiosyncratic usages of words.
- Not committing to early generalizations prevent the program from making irrecoverable mistakes early.
- Using a representation that makes the relevant features (such as syntactic relations)
 explicit simplifies learning.

Contributions

- Opening a door for common sense in language
- Bootstrapping from zero by interdigitating learning and processing

Future Work

- Second degree models
- History mechanism
- Categorization and generalization