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by

Deniz Yuret

Submitted to the Department of Electrical Engineering and Computer Science
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requirements for the degree of
Doctor of Philosophy

Abstract

This work has been motivated by two long term goals: to understand how humans
learn language and to build programs that can understand language. Using a rep-
resentation that makes the relevant features explicit is a prerequisite for successful
learning and understanding. Therefore, I chose to represent relations between indi-
vidual words explicitly in my model. Lexical attraction is defined as the likelihood of
such relations. I introduce a new class of probabilistic language models named lexical
attraction models which can represent long distance relations between words and I
formalize this new class of models using information theory.

Within the framework of lexical attraction, I developed an unsupervised language
acquisition program that learns to identify linguistic relations in a given sentence. The
only explicitly represented linguistic knowledge in the program is lexical attraction.
There is no initial grammar or lexicon built in and the only input is raw text. Learning
and processing are interdigitated. The processor uses the regularities detected by
the learner to impose structure on the input. This structure enables the learner to
detect higher level regularities. Using this bootstrapping procedure, the program was
trained on 100 million words of Associated Press material and was able to achieve 60%
precision and 50% recall in finding relations between content-words. Using knowledge
of lexical attraction, the program can identify the correct relations in syntactically
ambiguous sentences such as “I saw the Statue of Liberty flying over New York.”

Thesis Supervisor: Patrick H. Winston
Title: Ford Professor of Artificial Intelligence and Computer Science
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Chapter 1

Language Understanding and

Acquisition

This work has been motivated by a desire to explain language learning on one hand

and to build programs that can understand language on the other. I believe these

two goals are very much intertwined. As with many other areas of human intelli-

gence, language proved not to be amenable to small models and simple rule systems.

Unlocking the secrets of learning language from raw data will open up the path to

robust natural language understanding.

I believe what makes humans good learners is not sophisticated learning algo-

rithms but having the right representations. Evolution has provided us with cognitive

transducers that make the relevant features of the input explicit. The representa-

tional primitives for language seems to be the linguistic relations like subject-verb,

verb-object. The standard phrase-structure formalism only indirectly represents such

relations as side-effects of the constituent-grouping process. I adopted a formalism

which takes relations between individual words as basic primitives. Lexical attraction

gives the likelihood of such relations. I built a language program in which the only

explicitly represented linguistic knowledge is lexical attraction. It has no grammar or

a lexicon with parts of speech.

My program does not have different stages of learning and processing. It learns

while processing and gets better as it is presented with more input. This makes

7



it possible to have a feedback loop between the learner and the processor. The

regularities detected by the learner enable the processor to assign structure to the

input. The structure assigned to the input enables the learner to detect higher level

regularities. Starting with no initial knowledge, and seeing only raw text input, the

program is able to bootstrap its acquisition and show significant improvement in

identifying meaningful relations between words.

The first section presents lexical attraction knowledge as a solution to the problems

of language acquisition and syntactic disambiguation. The second section describes

the bootstrapping procedure in more detail. The third section presents snapshots

from the learning process. Chapter 2 gives more examples of learning. Chapter 3

explains the computational, mathematical and linguistic foundations of the lexical

attraction models. Chapter 4 describes the program and its results in more detail.

Chapter 5 summarizes the contributions of this work.

1.1 The case for lexical attraction

Lexical attraction is the measure of affinity between words, i.e. the likelihood that two

words will be related in a given sentence. Chapter 3 gives a more formal definition.

The main premise of this thesis is that knowledge of lexical attraction is central to

both language understanding and acquisition. The questions addressed in this thesis

are how to formalize, acquire and use the lexical attraction knowledge. This section

argues that language acquisition and syntactic disambiguation are similar problems,

and knowledge of lexical attraction is a powerful tool that can be used to solve both

of them.

Language understanding

Syntax and semantics play complementary roles in language understanding. In order

to understand language one needs to identify the relations between the words in a

given sentence. In some cases, these relations may be obvious from the meanings of

the words. In others, the syntactic markers and the relative positions of the words
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may provide the necessary information. Consider the following examples:

(1) I saw the Statue of Liberty flying over New York.

(2) I hit the boy with the girl with long hair with a hammer with

vengeance.

In sentence (1) either the subject or the object may be doing the flying. The

common interpretation is that I saw the Statue of Liberty while I was flying over New

York. If the sentence was “I saw the airplane flying over New York”, most people

would attribute flying to the airplane instead. The two sentences are syntactically

similar but the decision can be made based on which words are more likely to be

related.

Sentence (2) ends with four prepositional phrases. Each of these phrases can

potentially modify the subject, the verb, the object, or the noun of a previous prepo-

sitional phrase, subject to certain constraints discussed in Chapter 3. In other words,

syntax leaves the question of which words are related in this sentence mostly open.

The reader decides based on the likelihood of potential relations.

(3) Colorless green ideas sleep furiously.

In contrast, sentence (3) is a classical example used to illustrate the independence

of grammaticality from meaningfulness1. Even though none of the words in this

sentence go together in a meaningful way, we can nevertheless tell their relations

from syntactic clues.

These examples illustrate that syntax and semantics independently constrain the

possible interpretations of a sentence. Even though there are cases where either

syntax or semantics alone is enough to get a unique interpretation, in general we

need both. What we need from semantics in particular is the likelihood of various

relations between words.

1Sentence (3) is from Chomsky (Chomsky 1957). Sentence (1) is attributed to Lenat. Sentence
(2) is from Schank (Schank & Colby 1973).
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Language acquisition

Children start mapping words to concepts before they have a full grasp of syntax. At

that stage, the problem facing the child is not unlike the disambiguation problem in

sentences like (1) and (2). In both cases, the listener is trying to identify the relations

between the words in a sentence and syntax does not help. In the case of the child,

syntactic rules are not yet known. In the case of the ambiguous sentences, syntactic

rules cannot differentiate between various possible interpretations.

Similar problems call for similar solutions. Just as we are able to interpret ambigu-

ous sentences relying on the likelihood of potential relations, the child can interpret

a sentence with unknown syntax the same way.

John

ice−cream

eat

John eats ice−cream

S O

Figure 1-1: Semantic judgments help bootstrap syntax.

Figure 1-1 illustrates this language acquisition path. Exposure to language input

teaches the child which words map to which concepts. Experience with the world

teaches him the likelihood of certain relations between concepts. With this knowl-

edge, it becomes possible to identify certain linguistic relations in a sentence before

a complete syntactic analysis is possible.

With the pre-syntax identification of linguistic relations, syntactic acquisition can

be bootstrapped. In the sentence “John eats ice-cream”, John is the subject of

eating and ice-cream is the object. English relies on the SVO word order to identify

these roles. Other languages may have different word ordering or use other syntactic

markers. Once the child identifies the subject and the object semantically, he may
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be able to learn what syntactic rule his particular language uses. Later, using such

syntactic rules, the child can identify less obvious relations as in sentence (3) or guess

the meanings of unknown words based on their syntactic role.

In language acquisition, as in disambiguation, knowing how likely two words are

related is of central importance. This knowledge is formalized with the concept of

lexical attraction.

1.2 Bootstrapping acquisition

Learning and encoding world experience with computers has turned out to be a

challenging problem. Current common sense reasoning systems are still in primitive

stages. This suggests the alternative of using large corpora to gather information

about the likelihood of certain relations between words.

However, using large corpora presents the following chicken-and-egg problem. In

order to gather information about the likelihood that two words will be related, one

first has to be able to detect that they are related. But this requires knowing syntax,

which is what we were trying to learn in the first place.

P

M

Figure 1-2: Interdigitating learning and processing to bootstrap acquisition.

To get out of this loop, the learning program needs a bootstrapping mechanism.

The key to bootstrapping lies in interdigitating learning and processing. Figure 1-2

illustrates this feedback loop. With no initial knowledge of syntax, the processor

P starts making inaccurate analyses and memory M starts building crude lexical
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attraction knowledge based on them. This knowledge eventually helps the processor

detect relations more accurately, which results in better quality lexical attraction

knowledge in the memory.

Based on this idea, I built a language learning program that bootstraps with

no initial knowledge, reads examples of free text, and learns to discover linguistic

relations that can form a basis for language understanding.

The program was evaluated using its accuracy in relations between content-words,

e.g. nouns, verbs, adjectives and adverbs. The accuracy was measured using precision

and recall. The precision is defined as the percentage of relations found by the

program that were correct. The recall is defined as the percentage of correct relations

that were found by the program. The program was able to achieve 60% precision

and 50% recall. Previous work in unsupervised language acquisition showed little

improvement when started with zero knowledge. Figure 1-3 shows the improvement

my program shows. Detailed results are given in Chapter 4.
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Procedure 3: Recording pairs selected by processor

Precision
Recall

Figure 1-3: Accuracy in relations between content-words

1.3 Learning to process a simple sentence

Figure 1-4 shows how the program gradually discovers the correct relations in a

simple sentence. N denotes the number of words used for training. All words are
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N = 0
* these people also want more government money for education  .  * 

N = 1, 000

* these people also want more government money for education  .  * 

N = 10, 000

* these people also want more government money for education  .  * 

N = 100, 000

* these people also want more government money for education  .  * 

N = 1, 000, 000

* these people also want more government money for education  .  * 

Figure 1-4: Discovering relations in a simple sentence.

lowercased. The symbol * marks the beginning and the end of the sentence. The links

are undirected. In Chapter 3, I show that the directions of the links are immaterial

for the training process.

Before training (N = 0) the program has no information and no links are found.

At 1,000 words the program has discovered that a period usually ends the sentence

and the word these frequently starts one. At 10,000 words, not much has changed.

The frequent collocation money for is discovered. More words link to the left * marker.

Notice that want, for example, almost never starts a sentence. It is linked to the left

* marker because as more links are formed, the program is able to see longer distance

correlations.

The lack of meaningful links up to this point can be explained by the nature of

word frequencies. A typical word in English has a frequency in the range of 1/10, 000

to 1/50, 000. A good word frequency formula based on Zipf’s law is 1
10n

where n

is the rank of the word (Zipf 1949; Shannon 1951). This means that after 10,000
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words of training, the program has seen most words only once or twice, not enough

to determine their correlations.

At 100,000 words, the program discovers more interesting links. The word people

is related to want, these modifies people, and also modifies want. The link between

more and for is a result of having seen many instances of more X for Y.

The reason for many links to the word for at N = 100, 000 deserves some explana-

tion. We can separate all English words into two rough classes called function words

and content words. Function words include closed class words, usually of grammati-

cal function, such as prepositions, conjunctions, and auxiliary verbs. Content words

include words bearing actual semantic content, such as nouns, verbs, adjectives, and

adverbs. Function words are typically much more frequent. The most frequent func-

tion word the is seen 5% of the time, others typically are in the 1/100 to 1/1, 000

range. This means that the program first discovers function-word-function-word links,

like the one between period and *. Next, the function-word-content-word links are

discovered, like the ones connecting for. The content-word-content-word links are

discovered much later.

After 1,000,000 words of training, the program is able to discover the correct

links for this sentence. The verb is connected to the subject and the object. The

modifiers are connected to their heads. The words money and education related by

the preposition for are linked together.
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Chapter 2

Discovery of Linguistic Relations:

A Demonstration

This chapter presents snapshots from the learning process. The underlying theory

and the algorithm follows in the next chapters. The examples in this chapter were

chosen to illustrate the handling of various linguistic phenomena. Formal performance

results and a critical evaluation of the program’s shortcomings are given in Chapter 4.

The syntax is represented in a dependency formalism. Figure 2-1 contrasts the

phrase structure and the dependency representations of a sentence. The phrase struc-

ture representation is based on forming higher order units by combining words or

phrases. The dependency representation is based on explicit representation of the

relationships between individual words. Chapter 3 gives a more formal definition.

N Dt N

NP

John ate the cake

V

S

NP VP

John ate the cake

S O

Figure 2-1: Phrase structure versus dependency structure.

For the examples in this chapter, the program was trained on a corpus of Associ-
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ated Press Newswire material1. It was stopped at various points during training and

given the example sentences for processing.

2.1 Long-distance links

N = 1, 000

* the cause of his death friday was not given  .  * 

N = 100, 000

* the cause of his death friday was not given  .  * 

N = 10, 000, 000

* the cause of his death friday was not given  .  * 

Figure 2-2: Discovering long distance relations.

Most of the links in Figure 1-4 spanned a few words. Figure 2-2 shows that the

program is also capable of handling longer distance relations. The sentence has a long

noun phrase headed by the noun cause. It is this cause which is not given, a link that

spans the length of the sentence.

At 1,000 words, you see again that nothing much interesting is discovered. At

100,000 words, the program is able to relate the cause to the death but longer distance

relations are still missing. After ten million words of training, the attraction between

the word cause and the word given is discovered and the correct link is created.

1AP Newswire 1988-1990 data from the TIPSTER Information Retrieval Text Research
Collection.
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2.2 Complex noun phrase

N = 10, 000

* the new york stock exchange composite index fell  .  * 

N = 100, 000

* the new york stock exchange composite index fell  .  * 

N = 1, 000, 000

* the new york stock exchange composite index fell  .  * 

N = 10, 000, 000

* the new york stock exchange composite index fell  .  * 

Figure 2-3: Structure of a complex noun phrase.

One of the most difficult problems for non-lexicalized language systems is to ana-

lyze the structure of a complex noun phrase. The noun phrase “the New York Stock

Exchange Composite Index” in Figure 2-3 turns into “determiner adjective noun noun

noun adjective noun” when seen as just parts of speech. The parts of speech do not

give enough information to assign a meaningful structure to the phrase.

My program collects information about individual words but it has no concept of

parts of speech. It is able to discover the structure of the complex noun phrase in

Figure 2-3 because pieces of that noun phrase are repetitively used elsewhere.

At 10,000 words, it discovers the group “new york”. At 100,000 words, it discovers

“stock exchange”. At a million words it discovers “composite index”. And finally at

ten million words it figures out the correct relations between these pieces.

17



2.3 Syntactic ambiguity

I have argued in Chapter 1 that we need semantic judgments to interpret syntactically

ambiguous sentences. Specifically what we need is information about the likelihood

of various relations between words, i.e. lexical attraction information. This section

presents several examples of syntactic ambiguity and demonstrate how lexical attrac-

tion information helps to resolve the ambiguity.

Figure 2-4 shows a prepositional phrase attachment problem. The sentence ends

with three prepositional phrases, each starting with the word “in”. Syntax does not

uniquely determine where they should be attached. At 100,000 words, the program

still has not decided on the final attachment. Somewhere between 100,000 words

and 1,000,000 words, it learns enough to relate died to clashes, clashes to west, and

september to died. Note that “died in the west” and “clashes in september” are

also meaningful phrases. However the links discovered by the program had stronger

attraction.

N = 100, 000

* many people died in the clashes in the west in september  .  * 

N = 1, 000, 000

* many people died in the clashes in the west in september  .  * 

Figure 2-4: Prepositional phrase attachment.

Figure 2-5 illustrates a common type of ambiguity related to the of-phrase. The

English preposition of is particularly ambiguous in its semantic function (Quirk et

al. 1985). It can be used in a function similar to that of the genitive (the gravity of

the earth ∼ the earth’s gravity), or in partitive constructions (bottle of wine) among

others.

18



The two sentences in Figure 2-5 are syntactically identical. They both have the

same phrase “number of people” as subject. In the first one it is the people who are

doing the protesting, whereas in the second one, it is the number which is increas-

ing. After five million words of training, the lexical attraction information becomes

sufficient to find the correct subject.

N = 5, 000, 000

* a number of people protested  .  * 

* the number of people increased  .  * 

Figure 2-5: Distinguishing syntactically identical sentences.

Figure 2-6 presents our final example, which is analogous to Sentence (1) from

the previous chapter. I replaced some words with ones that were more frequent in

the corpus. The sentence is ambiguous as to who is doing the flying. The program is

able to link pilot with flying in the first case and airplane with flying in the second

case based on lexical attraction.

N = 10, 000, 000

* the pilot saw the train flying over washington  .  * 

* the driver saw the airplane flying over washington  .  * 

Figure 2-6: Who is flying?
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Chapter 3

Lexical Attraction Models

A probabilistic language model is a representation of linguistic knowledge which as-

signs a probability distribution over the possible strings of the language. This chapter

presents a new class of language models called lexical attraction models. Within the

framework of lexical attraction models it is possible to represent syntactic relations

which form the basis for extraction of meaning. Syntactic relations are defined as pair-

wise relations between words identifiable in the surface form of the sentence. Lexical

attraction is formalized as the mutual information captured in a syntactic relation.

The set of syntactic relations in a sentence is represented as an undirected, acyclic,

and planar graph1. I show that the entropy of a lexical attraction model is determined

by the mutual information captured in the syntactic relations given by the model.

This is a prelude to the central idea of the next chapter: The search for a low entropy

language model leads to the unsupervised discovery of syntactic relations.

3.1 Syntactic relations are primitives of language

A defining property of human language is compositionality, i.e. the ability to construct

compound meanings by combining simpler ones. The meaning of the sentence “John

kissed Mary” is more than just a list of the three concepts John, kiss, and Mary. Part

of the meaning is captured in the way these concepts are brought together, as can

1Syntactic relation links drawn over words do not cross
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be seen by combining them in a different way: “Mary kissed John” has a different

meaning.

Language gives us the ability to describe concepts in certain semantic relations by

placing the corresponding words in certain syntactic positions. However, all languages

are restricted to using a small number of function words, affixes, and word order for

the expression of different relations because of the one dimensional nature of language.

Therefore, the number of different syntactic arrangements is limited. I define the set

of relations between words identifiable in the syntactic domain as syntactic relations.

Examples of syntactic relations are the subject-verb relation, the verb-object relation

and prepositional attachments.

Because of the limited number of possible syntactic relations there is a many to

one mapping from conceptual relations to syntactic relations. Compare the sentences

“I saw the book” and “I burnt the book”. The conceptual relation between see and

book is very different from the one between burn and book. For the verb see, the

action has no effect on the object, whereas for burn it does. Nevertheless they have

to be expressed using the same verb-object relation. The different types of syntactic

relations constrain what can be expressed and distinguished in language. Therefore,

I take syntactic relations as the representational primitives of language.

A phrase-structure representation of a sentence reveals which words or phrases

combine to form higher order units. The actual syntactic relations between words

are only implicit in these groupings. In a phrase-structure formalism, the fact that

John is the subject of kissed can only be expressed by saying something like “John

is the head of a noun-phrase which is a direct constituent of a sentence which has a

verb-phrase headed by the verb kissed.”

I chose to use syntactic relations as representational primitives for two reasons.

First, the indirect representation of phrase-structure makes unsupervised language

acquisition very difficult. Second, if the eventual goal is to extract meaning, then

syntactic relations are what we need, and phrase-structure only indirectly helps us

retrieve them. Instead of assuming that syntactic relations are an indirect by-product

of phrase-structure, I chose to take syntactic relations as the basic primitives, and
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treat phrase-structure as an epiphenomenon caused by trying to express syntactic

relations within the one dimensional nature of language.

The linguistic formalism that takes syntactic relations between words as basic

primitives is known as the dependency formalism. Mel’čuk discusses important prop-

erties of syntactic relations in his book on dependency formalism (Mel’čuk 1988). A

large scale implementation of English syntax based on a similar formalism by Sleator

and Temperley uses 107 different types of syntactic relations such as subject-verb,

verb-object, and determiner-noun (Sleator & Temperley 1991).

I did not differentiate between different types of syntactic relations in this work.

The goal of the learning program described in Chapter 4 is to correctly determine

whether or not two words in a sentence are syntactically related. Learning to differ-

entiate between different types of syntactic relations in an unsupervised manner is

discussed in that chapter.

3.2 Lexical attraction is the likelihood of a syntac-

tic relation

In order to understand a sentence, one needs to identify which words in the sentence

are syntactically related. Lexical attraction is the likelihood of a syntactic relation. In

this section I formalize lexical attraction within the framework of information theory.

Shannon defines the entropy of a discrete random variable as H = −
∑

pi log pi

where i ranges over the possible values of the random variable and pi is the probability

of value i (Shannon 1948; Cover & Thomas 1991). Consider a sequence of tokens

drawn independently from a discrete distribution. In order to construct the shortest

description of this sequence, each token i must be encoded using − log2 pi bits on

average. − log2 pi can be defined as the information content of token i. Entropy can

then be interpreted as the average information per token. Following is an English

sentence with the information content of each word2 given below, assuming words

2The word probabilities were estimated using a 227 million word corpus dominated by news
material.

22



are independently selected. Note that the information content is lower for the more

frequently occurring words.

(4) The IRA is fighting British rule in Northern Ireland
4.20 15.85 7.33 13.27 12.38 13.20 5.80 12.60 14.65

Why do we care about encoding or compression? The total information in sentence

(4) is the sum of the information of each word, which is 99.28 bits. This is mathe-

matically equivalent to the statement that the probability of seeing this sentence is

the product of the probabilities of seeing each word, which is 2−99.28. Therefore there

is an equivalence between the entropy and the probability assigned to the input. A

probabilistic language model assigns a probability distribution over all possible sen-

tences of the language. The maximum likelihood principle states that the parameters

of a model should be estimated so as to maximize the probability assigned to the

observed data. This means that the most likely language model is also the one that

achieves the lowest entropy.

A model can achieve lower entropy only by taking into account the relations

between the words in the sentence. Consider the phrase Northern Ireland. Even

though the independent probability of Northern is 2−12.6, it is seen before Ireland

36% of the time. Another way of saying this is that although Northern carries 12.6

bits of information by itself, it adds only 1.48 bits of new information to Ireland.

With this dependency, Northern and Ireland can be encoded using 1.48+14.65 =

16.13 bits instead of 12.60+14.65 = 27.25 bits. The 11.12 bit gain from the correlation

of these two words is called mutual information. Lexical attraction is measured with

mutual information. The basic assumption of this work is that words with high lexical

attraction are likely to be syntactically related.
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3.3 The context of a word is given by its syntactic

relations

The Northern Ireland example shows that the information content of a word depends

on other related words, i.e. its context. The context of a word in turn is determined

by the language model used. In this section, I describe a new class of language models

called lexical attraction models. Within the lexical attraction framework, it is possible

to represent a linguistically plausible context for a word.

The choice of context by a language model implies certain probabilistic indepen-

dence assumptions. For example, an n-gram model defines the context of a word as

the n− 1 words immediately preceding it. Diagram (5) gives the information content

of the words in (4) according to a bigram model. The arrows show the dependencies.

The information content of Northern and Ireland is different from the previous section

because of the different dependencies. The assumption is that each word is condition-

ally independent of everything but the adjacent words. The information content of

each word is computed based on its conditional probability given the previous word.

As a result, the encoding of the sentence is reduced from 99.28 bits to 62.34 bits.

(5) The IRA is fighting British rule in Northern Ireland
4.20 12.90 3.73 10.54 8.66 5.96 3.57 9.25 3.53

> > > > > > > >

Two words in a sentence are almost never completely independent. In fact, Beefer-

man et al. report that words can continue to show selectional influence for a window

of several hundred words (Beeferman, Berger, & Lafferty 1997). However, the degree

of the dependency falls exponentially with distance. That justifies the choice of the

n-gram models to relate dependency to proximity.

Nevertheless, using the previous n − 1 words as context is against our linguistic

intuition. In a sentence like “The man with the dog spoke”, the selection of spoke is

influenced by man and is independent of the previous word dog. It follows that the

context of a word would be better determined by its linguistic relations rather than

according to a fixed pattern.
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Words in direct syntactic relation have strong dependencies. Chomsky defines

such dependencies as selectional relations (Chomsky 1965). Subject and verb, for

example, have a selectional relation, and so do verb and object. Subject and object,

on the other hand, are assumed to be chosen independently of one another. It should

be noted that this independence is only an approximation. The sentences “The doctor

examined the patient” and “The lawyer examined the witness” show that the subject

can have a strong influence on the choice of the object. Such second degree effects

are discussed in Chapter 4.

The following diagram gives the information content of the words in sentence (4)

based on direct syntactic relations:

(6) The IRA is fighting British rule in Northern Ireland
1.25 6.60 4.60 13.27 5.13 8.13 2.69 1.48 6.70

<
<

<
>

<

>
<

<

The arrows represent the head-modifier relations between words. The information

content of each word is computed based on its conditional probability given its head.

I marked the verb as governing the auxiliary and the noun governing the preposition

which may look controversial to linguists. From an information theory perspective,

the mutual information between content words is higher than that of function words.

Therefore my model does not favor function word heads.

The probabilities were estimated by counting the occurrences of each pair in the

same relative position. The linguistic dependencies reduce the encoding of the words

in this sentence to 49.85 bits compared to the 62.34 bits of the bigram model3.

Every model has to make certain independence assumptions, otherwise the number

of parameters would be prohibitively large to learn. The choice of the independence

assumptions determine the context of a word. The assumption in (6) is that each

word depends on one other word in the sentence, but not necessarily an adjacent word

as in n-gram models. I define the class of language models that are based on this

assumption as lexical attraction models. Lexical attraction models make it possible

to define the context of the word in terms of its syntactic relations.

3These numbers do not take into account the encoding of the dependency structure.
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3.4 Entropy is determined by syntactic relations

I define the set of probabilistic dependencies imposed by syntactic relations in a

sentence as the dependency structure of the sentence. The strength of the links in a

dependency structure is determined by lexical attraction. In this section I formalize

dependency structures as Markov networks and show that the entropy of a language

model is determined by the mutual information captured in syntactic relations.

A Markov network is an undirected graph representing the joint probability dis-

tribution for a set of variables4 (Pearl 1988). Each vertex corresponds to a random

variable, a word in our case. The structure of the graph represents a set of condi-

tional independence properties of the distribution: each variable is probabilistically

independent of its non-neighbors in the graph given the state of its neighbors.

You can see two interesting properties of the dependency structure in diagram (6):

The graph formed by the syntactic relations is acyclic and the links connecting the

words do not cross. In this section you will also see that the directions of the links

do not effect the joint probability of the sentence, thus the links can be undirected.

I discuss these three properties below and derive a formula for the entropy of the

model.

Dependency structure is acyclic

The syntactic relations in a sentence form a tree. Trees are acyclic. Linguistically,

each word in a sentence has a unique governor, except for the head word, which

governs the whole sentence5. If you assume that each word probabilistically depends

on its governor, the resulting dependency structure will be a rooted tree as in dia-

gram (6).

4As opposed to Bayesian networks which are directed.
5See (Mel’čuk 1988, p. 25) for a discussion.
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Dependency structure is planar

Most sentences in natural languages have the property that syntactic relation links

drawn over words do not cross. This property is called planarity (Sleator & Temperley

1993), projectivity (Mel’čuk 1988), or adjacency (Hudson 1984) by various researchers.

The examples below illustrate the planarity of English. In sentence (7), it is easily

seen that the woman was in the red dress and the meeting was in the afternoon.

However, in sentence (8) the same interpretation is not possible. In fact, it seems

more plausible for John to be in the red dress.

(7) John met the woman in the red dress in the afternoon

(8) John met the woman in the afternoon in the red dress

?

Gaifman gave the first formal analysis of dependency structures that satisfy the

planarity condition(Gaifman 1965). His paper gives a natural correspondence be-

tween dependency systems and phrase-structure systems and shows that the depen-

dency model characterized by planarity is context-free. Sleator and Temperley show

that their planar model is also context-free even though it allows cycles (Sleator &

Temperley 1991).

Lexical attraction is symmetric

Lexical attraction between two words is symmetric. The mutual information is the

same no matter which direction the dependency goes. This directly follows from

Bayes’ rule. What is less obvious is that the choice of the head word and the corre-

sponding dependency directions it imposes do not effect the joint probability of the

sentence. The joint probability is determined only by the choice of the pairs of words

to be linked. Therefore dependency structures can be formalized as Markov networks,

i.e. they are undirected.

Consider the Northern Ireland example:
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(9) Northern Ireland
1.48 14.65

<

Northern Ireland
12.60 3.53

>

In the first case, I used the conditional probability of Northern given that the next

word is Ireland. In the second case, I used the conditional probability of Ireland given

that the previous word is Northern. In both cases the encoding of the two words is

16.13 bits, which is in fact − log2 p of the joint probability of Northern Ireland. Thus

a more natural representation would be (10), where the link has no direction and its

label shows the number of bits gained, mutual information:

(10) Northern Ireland
12.60 14.65

11.12

I generalize this result below and use the same representation for the whole sen-

tence:

(11) The IRA is fighting British rule in Northern Ireland
4.20 15.85 7.33 13.27 12.38 13.20 5.80 12.60 14.65

2.95
9.25

2.73
5.07

7.25

7.95
3.11

11.12

Theorem 1 The probability of a sentence with a given dependency structure does not

depend on the choice of the head word.

Proof: Consider a sentence S where:

W = {w0, w1, . . . , wn}

L = {(wi1, wj1), (wi2, wj2), . . .}

denote words and links respectively. Let P (L) denote the probability of a sentence

having the dependency structure given by L. Assume that w0 is the head word and

every word probabilistically depends only on its governor. Then the joint probability

of the sentence is given by the following expression:
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(12)

P (S) = P (L)P (w0)
∏

(wi,wj)∈L

P (wj | wi)

= P (L)P (w0)
∏

(wi,wj)∈L

P (wi, wj)

P (wi)

= P (L)
∏

wi∈W

P (wi)
∏

(wi,wj)∈L

P (wi, wj)

P (wi)P (wj)

In the final expression P (w0) plays no special role, i.e. starting from any other

head word, I would have arrived at the same result. Therefore the choice of the

head and the corresponding directions imposed on the links are immaterial for the

probability of the sentence.

Encoding of dependency structure is linear

The P (L) factor in (12) represents the prior probability that the language model

assigns to a dependency structure. In n-gram models P (L) is always 1, because there

is only one possible dependency structure. In probabilistic context free grammars,

the probabilities assigned to grammar rules impose a probability distribution over

possible parse trees. In my model, I assume a uniform distribution over all possi-

ble dependency structures, i.e. P (L) = 1/|L|, where |L| is the number of possible

dependency structures.

Without the planarity condition, the number of possible dependency structures

for an n word sentence would be given by Cayley’s formula: nn−2 (Harary 1969). The

encoding of the dependency structure would then take O(n log n) bits. However, the

encoding of planar dependency structures is linear in the number of words as the

following theorem shows.

Theorem 2 Let f(n) be the number of possible dependency structures for an n + 1

word sentence. We have:

f(n) =
1

2n + 1

(

3n

n

)
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Proof: Consider a sentence with n + 1 words as in (13). The leftmost word w0 must

be connected to the rest of the sentence via one or more links. Even though the links

are undirected, I will impose a direction taking w0 as the head to make the argument

simpler. Let wi be the leftmost child of w0. We can split the rest of the sentence into

three groups: Left descendants of wi span wi−1
1 , right descendants of wi span wj

i+1,

and the rest of the sentence spans wn
j+1. Each of these three groups can be empty.

The notation wj
i denotes the span of words wi . . . wj.

(13) w0 w1 . . . wi−1 wi wi+1 . . . wj wj+1 . . . wn

�
�

�
�

�
�

�
�

�
�

�
�

� �� �' $' $

The problem of counting the number of dependency structures for the n words

headed by w0 can be split into three smaller versions of the same problem: count the

number of structures for wi−1
1 headed by wi, wj

i+1 headed by wi, and wn
j+1 headed by

w0. Therefore f(n) can be decomposed with the following recurrence relation:

f(n) =
∑

p+q+r=n−1

f(p)f(q)f(r) p, q, r ≥ 0

Here the numbers p, q, and r represent the number of words in wi−1
1 , wj

i+1, and

wn
j+1 respectively. This is a recurrence with 3-fold convolution. The general expression

for a recurrence with m-fold convolution is C(mn, n)/(mn − n + 1) where C is the

binomial coefficient (Graham, Knuth, & Patashnik 1994, p. 361). Therefore f(n) =

C(3n, n)/(2n + 1).

The first few values of f(n) are: 1, 1, 3, 12, 55, 273, 1428. Figure 3-1 shows the

possible dependency structures with up to four words.

An upper bound on the number of dependency structures can be obtained using

the following inequality given in (Cormen, Leiserson, & Rivest 1990, p. 102):

(

n

k

)

≤
nn

kk(n− k)n−k
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Figure 3-1: Possible dependency structures with up to four words

(

3n

n

)

≤
(3n)3n

(n)n(2n)2n

=
33n

22n

Taking the logarithm of this value and dividing it by n, you can see that the

encoding of a planar dependency structure takes less than 3 log2 3− 2 ≈ 2.75 bits per

word.

Entropy is determined by syntactic relations

With these results at hand, it is revealing to look at (12) from an information theory

perspective. The final expression of (12) can be rewritten as:

− log2 P (S) = −
∑

wi∈W

log2 P (wi)− log2 P (L)−
∑

(wi,wj)∈L

P (wi, wj)

P (wi)P (wj)

This can be interpreted as:

(14) information in a sentence = information in the words

+ information in the dependency structure

– mutual information captured in syntactic relations.

The average information of an isolated word is independent of the language model.

I also showed that the encoding of the dependency structure is linear in the number

of words for lexical attraction models. Therefore the first two terms in (14) have a
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constant contribution per word and the entropy of the model is completely determined

by the mutual information captured in syntactic relations.

3.5 Summary

Part of the meaning in language is captured in the way words are arranged in a

sentence. This arrangement implies certain syntactic relations between words. With

a view towards extraction of meaning, I adopted a linguistic representation that takes

syntactic relations as its basic primitives.

I defined lexical attraction as the likelihood of two words being related. The

language model determines which words are related in a sentence. For example, n-

gram models assume that each word depends on the previous n-1 words. I defined a

new class of language models called lexical attraction models where each word depends

on one other word in the sentence which is not necessarily adjacent, provided that link

crossing and cycles are not allowed. It is possible to represent linguistically plausible

head modifier relationships within this framework. I showed that the entropy of such

a model is determined by the lexical attraction between related words.

The examples in this chapter showed that using linguistic relations between words

can lead to lower entropy. Conversely, the search for a low entropy language model

can lead to the unsupervised discovery of linguistic relations, as I will show in the

next chapter.
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Chapter 4

Bootstrapping Acquisition

P

M

Figure 4-1: Interdigitating learning and processing to bootstrap acquisition.

This chapter presents a bootstrapping mechanism for learning to identify linguistic

relations. The key to the mechanism is to interdigitate learning and processing. That

way the structures built by the processor can help the learner detect higher level

regularities. Figure 4-1 depicts this feedback loop between the memory and the

processor.

In the beginning of the training process, the processor cannot build any structure

and the memory is presented with the raw input. As the memory detects low level

correlations in the raw input, the processor uses this information to assign simple

structure. The simple structure enables the memory to detect higher level correla-

tions, which in turn enables the processor to assign more complex structure. Using

this bootstrapping mechanism, the program starts reading raw text with no initial
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knowledge and reaches 60% precision and 50% recall in content word links after train-

ing.

I describe the implementation of the processor in the first section and the memory

in the second section. This is followed by quantitative results of the learning process

and a critical evaluation of its shortcomings. The final section discusses related work.

The key insights that differentiate my approach from others are:

• Training with words instead of parts of speech enables the program to learn

common but idiosyncratic usages of words.

• Not committing to early generalizations prevent the program from making ir-

recoverable mistakes.

• Using a representation that makes the relevant features explicit simplifies learn-

ing. I believe what makes humans good learners is not sophisticated learning

algorithms but having the right representations.

4.1 Processor

The goal of the processor is to find the dependency structure that assigns a given

sentence a high probability. In Chapter 3, I showed that the probability of a sentence

is determined by the mutual information captured in syntactic relations. Thus, the

problem is to find the dependency structure with the highest total mutual information.

The optimum solution can be found in time O(n5). I use an approximation algorithm

that is O(n2). The main reason for this choice was the simplicity of the resulting

processor as well as its speed. The simplicity is important because in the architecture

of Figure 4-1, the input to the memory consists of the states and the actions of

the processor, rather than the raw input signal. In order to make learning easy, the

processor should be simple, i.e. it should have a small number of possible states and a

small number of possible actions. Below, I present both the approximation algorithm

and the optimum algorithm.
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Approximation algorithm

There are two possible actions of the simple processor: given two words, they can be

linked or not linked. The two words under consideration constitute the state of the

processor visible to the memory. The order in which words come under the processor’s

attention is determined by a simple control system.

The control system reads the words from left to right. After reading each new

word, the processor tries to link it to each of the previous words. When a link

crossing or a cycle is detected, the weakest links in conflict is eliminated. Following

is the pseudo-code for this n2 algorithm:

Link-Sentence(S)

1 for j ← 1 to Length(S)

2 for i← j − 1 downto 1

3 last ← Pop(Right-Links(i), stack)

4 minlink[i]←Min(last ,minlink[Right-Word(last)])

5 if MI(S[i], S[j]) > 0

6 and MI(S[i], S[j]) > MI(minlink[i])

7 and ∀s : MI(S[i], S[j]) > MI(stack[s])

8 then ∀s : Unlink(stack[s])

9 Reset(stack)

10 Unlink(minlink[i])

11 minlink[i]← Link(S[i], S[j])

12 Push(Left-Links(i), stack)

The input S to the procedure Link-Sentence is the sentence as an array of

words. The links are created and deleted using Link and Unlink. The function

MI gets the mutual information value for a link from the memory. The minlink

array and the stack are used to detect cycles and link crossings. The i th element

of minlink contains the minimum valued link on the path from S[i] to S[j] if there

exists one. As i moves leftward in the sentence, the right links of S[i] are popped
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and the left links of S[i] are pushed to the stack. The last right link popped or the

minlink on its right side becomes the new minlink[i]. A link crossing is detected

when a new link is created with a nonempty stack. A cycle is detected when a new

link is created when minlink[i] is nonempty.

Note that when a strong new link crosses multiple weak links, it is accepted

and the weak links are deleted even if the new link is weaker than the sum of the

old links. Although this action results in lower total mutual information, it was

implemented because multiple weak links connected to the beginning of the sentence

often prevented a strong meaningful link from being created. This way the directional

bias of the approximation algorithm was partly compensated for.

To get a sense of how the link crossing and cycle constraints, combined with

the knowledge of lexical attraction, lead to the identification of linguistic relations,

a sequence of snapshots of the processor running on a simple sentence is presented

below. Note that one or more steps may be skipped between two snapshots:

• Words are read from left to right:

* these
[1.18]

• Each word checks the words to its left for possible links. The link under con-

sideration is marked with its value in square brackets. The accepted links have

no square brackets:

* these people
1.18 [3.48]

• The algorithm detects cycles and eliminates the weakest link in the cycle:

* these people
1.18 3.48

[0.55]
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• Negative links are not accepted:

* these people also
1.18 3.48 [-1.64]

• The algorithm detects crossing links:

* these people also want
1.18 3.48 1.43

1.78
[3.15]

• The weaker conflicting link gets eliminated:

* these people also want
1.18 3.48

3.15
1.43

• The combination of the link crossing and cycle constraints and the knowledge

of lexical attraction help eliminate links that do not correspond to syntactic

relations. In this diagram more strongly attracts money, which will result in

the elimination of the meaningless link between * and government:

* these people also want more government money
1.18 3.48

3.15
1.26

1.43

0.53

0.43

[4.01]

• Want and money are also strongly attracted and their link replaces the one

between people and more:

* these people also want more government money
1.18 3.48

3.15
1.26

1.43 0.43
4.01

[2.09]
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• The bad links have been eliminated.

* these people also want more government money
1.18 3.48

3.15
1.43 0.43

4.01
2.09

• In the first cycle example, the new link was rejected because it was weak. In

this example the new link is strong and it eliminates one of the old links in the

cycle.

* these people also want more government money for education
1.18 3.48

3.15
1.43 0.43

4.01
2.09

2.61 2.58
[3.92]

• This is the final result:

* these people also want more government money for education . *
1.18 3.48

3.15
1.43 0.43

4.01
2.09

2.61
3.92

1.07 4.51

This algorithm is not guaranteed to find the most likely linkage. Also it can leave

some words disconnected. Section 4.4 argues that the limiting factor for the perfor-

mance of the program is the accuracy of the learning process due to representational

limitations. Thus the marginal gain from an optimal algorithm would not be signifi-

cant. The algorithm presented in this section performs reasonably well on the average

and its speed and simplicity make it a good candidate for training.

Optimal algorithm

A Viterbi style algorithm (Viterbi 1967) that finds the dependency structure with the

highest mutual information can be designed based on the decomposition given in the

proof of Theorem 2. The relevant figure is reproduced below for convenience:

w0 w1 . . . wi−1 wi wi+1 . . . wj wj+1 . . . wn

�
�

�
�

�
�

�
�

�
�

�
�

� �� �' $' $
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Let σ(h, a, b) be the dependency structure that gives the highest mutual informa-

tion for the span wb
a dominated by a word wh outside this span. For convenience, I

assume that the leftmost word dominates the whole sentence as in Theorem 2. Thus,

the optimal algorithm must find σ(0, 1, n). Let α(wb
a|wh) be the probability σ(h, a, b)

assigns to the span wb
a dominated by wh. For spans of length 1 and 0, α is given by:

α(wa
a|wh) = P (wa|wh) h 6= a

α(wb
a|wh) = 1 b < a

Given the α values for spans of length up to l − 1, the algorithm can compute it

for spans of length l as follows:

α(wb
a|wh) = max

i,j
P (wi|wh)α(wi−1

a |wi)α(wj
i+1|wi)α(wb

j+1|wh) h < a ≤ i ≤ j ≤ b

= max
i,j

P (wi|wh)α(wb
i+1|wi)α(wi−1

j |wi)α(wj−1
a |wh) a ≤ j ≤ i ≤ b < h

Thus, the algorithm can compute the α values bottom up, starting with shorter

spans and computing the longer spans using the previous α values. For each α value,

the corresponding σ structure can be recorded. At the end the structure σ(0, 1, n)

gives the answer.

The recursive computation for α(wb
a|wh) takes O(n2) steps. For each length l from

1 to n, α must be computed for every span of length l and every possible head for

each span, which means O(n3) α computations. Thus the total computation is O(n5).

4.2 Memory

The memory is a store of lexical attraction information. The lexical attraction of

a word pair is computed based on the frequency with which the pair comes to the
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processor’s attention. This information is then used by the processor when deciding

whether to link two words. In this section I describe three different procedures for

updating the memory. In the next section, I present the performance results of these

three procedures.

The memory may record pairs when the processor is in a certain state and ignore

pairs that appear in different states. Different memory updating procedures can be

created by choosing different states in which to record. Diagram (15) illustrates the

first procedure. The memory records only pairs that are adjacent in the input. The

three lines show three different time steps and the two windows show the words that

the processor is trying to link.

(15)

kick ball now
kick ball now

the
the
ball nowthekick

The basic data structures in the memory are words and word pairs with their

counts. The same word may appear in the same window more than once as the

processor tries to link it with different words. To keep a consistent count, each word

keeps track of how many times it was seen in the left window and how many times it

was seen in the right window, in addition to how many times it actually appeared in

the text. Then the lexical attraction of two words can be estimated as:

MI(x, y) = log2

P (x, y)

P (x, ∗)P (∗, y)

= log2

n(x, y)/N

(n(x, ∗)/N)(n(∗, y)/N)

= log2

n(x, y)N

n(x, ∗)n(∗, y)

where MI is mutual information, ∗ is a wild-card matching every word, P (x, y) is the

probability of seeing x on the left window and seeing y on the right window, n(x, y)

is the count of (x, y), N is the total number of observations made in both windows.

A significant percentage of syntactic relations are between adjacent words. Using

the first procedure, the program can discover the syntactic relations that are generally
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seen between adjacent words. For example, it can relate determiners and adjectives to

nouns and learn collocations such as “The New York Times”. Diagram (16) illustrates

how the program learns to relate a determiner to its noun.

(16)

kick ball now
ball

the
the

ballthe
throw at

with in

kick the ball now

However, using this technique the program will never learn the relationship be-

tween kick and ball. A determiner almost always intervenes. There are other relations

between words which are practically never seen next to one another. For example a

prepositional phrase modifying a transitive verb is always hidden behind an object.

The second procedure for memory updating is to record all word pairs encountered,

no matter how far apart in each sentence. Although this procedure is guaranteed to

see every related word pair at some point, it also records a lot of unrelated pairs.

The next section shows that even though this improves recall, the precision drops as

expected.

Neither of the two procedures make use of the actual structure identified by the

processor. In fact there is no feedback loop between the processor and the mem-

ory, thus no real interdigitation of learning and processing. The memory gathers its

information looking at raw data and feeds it one way to the processor.

The third procedure is based on the feedback idea. The memory only records

a subset of the pairs selected according to the structure identified by the processor.

Before there is any structure, the memory behaves as in the first procedure, recording

only adjacent pairs. If AXB is a sequence of three words, then the pairs A-X and X-B

are recorded. When two words are linked, they form a group. In a sense, they act like

a single word. If AX. . .YB is a sequence of words and X is linked to Y, the processor

tries linking words in this group to both A and B. Because of the link crossing rule,

words between X and Y cannot be linked1. So, in addition to the adjacent pairs A-X

1Unless they are attracted very strongly and are able to break the X-Y link.
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and Y-B, the processor attempts to link A-Y and X-B. The memory records these

pairs.

(17)

kick the ball now

kick ball now

the

the now

ball

kick

kick ball now

kick ball now

the

the

nowballkick

the

ball nowthekick

Diagram (17) shows how the third procedure leads to the discovery of the relation

between kick and ball. In the left figure, the program uses the rule given in the previous

paragraph and updates the pairs kick-ball and the-now. The kick-ball pair will be

frequently reinforced and its high mutual information will be detected. The the-now

pair will not be seen together much more than expected, so its mutual information

will stay low. The right figure illustrates how the long distance link is formed once

the correlation is identified. The next section shows that interdigitating learning and

processing improves both precision and recall.

4.3 Results

This section presents results on the accuracy of the program in finding relations

between content-words. I chose to base my evaluation on content-word links because

they are essential in the extraction of meaning. Content words are words that convey

meaning such as nouns, verbs, adjectives, and adverbs, as opposed to function words,

which convey syntactic structure, like prepositions and conjunctions. The mistakes

in content-word links are significantly more important than the mistakes in function-

word links. The two sentences in (18) illustrate the difference. In the first sentence, a

mistake would result in choosing the wrong subject for flying. In the second sentence,

once the program has detected the relation between money and education, which way
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the word for links is less important.

(18) I saw the mountains flying over New York
?

?

People want more money for education
? ?

Figure 4-2 shows the results of the three procedures described in the previous

section. All three programs were trained using up to 100 million words of Associated

Press material. After training they were presented with 200 sentences of out-of-

sample test data and precision and recall were measured. The 200 out of sample

sentences were hand parsed. There were a total of 3152 words, averaging 15.76 words

per sentence, and 1287 content-word links in the test set. The choice of content-word

links as an evaluation metric is also significant here. Most people agree on which

content words are related in a sentence, whereas even professional linguists argue

about how to link the function words.

There are two sources of mistakes for the program. It can miss some links because

there is an unknown word in the sentence. Or it can make mistakes because of the

failure of the processor or the learning paradigm. In order to isolate the two, the

test sentences were restricted to a vocabulary of 5,000 most frequent words, which

account for about 90% of all the words seen in the corpus.

Accuracy is measured with precision and recall. Recall is defined as the percentage

of content-word links present in the human parsed test set that were recovered by the

program. Precision is defined as the percentage of content-word links given by the

program which were also in the human parsed test set.

To help the reader judge the quality of these results, I will give some numbers for

comparison. In the algorithm described above, the processor consults the memory for

the lexical attraction of two words every time it is considering a new link. When the

program is modified such that these numbers are supplied randomly, the precision is

8.9% and the recall is 5.4%, which gives a lower bound.
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Figure 4-2: Content-word link accuracy results

The program relies on the assumption that syntactically related words are also

statistically correlated. Of the 1287 pairs of words linked by humans in the test set,

85.7% of them actually had positive lexical attraction, which gives an upper bound

on recall.

4.4 A critical evaluation

In this section I present a qualitative analysis of the program’s shortcomings and

suggest future work. The mistakes of the program can be traced back to three main

reasons:

• There is no differentiation between different types of syntactic relations.

• The program does not represent or learn argument structures for words.

• There is no mechanism for categorization and generalization.
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Link types and second degree models

Consider the following sentences:

(19) The architect worked on the building.

(20) The architect worked in the building.

The relation between work and building in the two sentences are different. This

is marked by using different prepositions. In general, language can use word order,

function words, or morphology to represent different relations.

My program cannot represent this difference because it does not have different

link types and its independence assumptions do not permit the representation of

relations involving more than two words. In the examples above, the relation between

two words is mediated by a third word, the preposition. The distribution of in the

building, is different from just the building. A natural extension of my approach

would be to relax the independence assumptions one step and to look at second-

degree relationships, i.e. the modifiers of two words should influence their lexical

attraction and should be used to mark the type of link between them.

Argument structure and using history

Another related source of mistakes for the program is to link strongly attracted words

no matter how many other links they already have. Because there is no representa-

tion of different link types, the program cannot distinguish complements (mandatory

arguments), from adjuncts (optional arguments). It can link four direct objects to

a verb, or have a determiner modify three nouns simultaneously. After it learns to

represent different link types, the solution would be to use the usage history of a word

to learn its argument structure, and use this information to constrain its relations.

This solution could also help the opposite problem. The program cannot link the

words it has never seen together before. Chomsky’s sentence is the ultimate example:

“Colorless green ideas sleep furiously.” The program would not be able to find any

relations in this sentence no matter how much training it goes through (unless it
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comes across some linguistics textbooks). Although in real data no sentence is quite

that bad, 15% of the relations are between words that do not have positive lexical

attraction as pointed out in Section 4.3. Learning from the usage history of words

and using this knowledge in less familiar situations is one solution to this problem.

Categorization and generalization

I stayed away from word categories in this work, partly because I think they have

done more harm than good in the past. However, the existence of word categories and

their regulatory role in syntactic constructions cannot be denied, although I believe

we need a much finer system of type hierarchy than the current subcategorization

frames and dictionary features allow.

Learning about each word individually has many advantages. However, no matter

how much data is used, some words will be seen few times. One way to estimate

the argument structure or the lexical attraction information for rare words is to

identify their category from the few examples seen, and generalize the properties of

this category to the rare word.

In addition to providing a solution to low sample problem, categorization of words

is interesting in its own right. A lot of useful semantic information can be gathered

by reading free text. For example, after reading ten years of Wall Street Journal,

a program could discover that there is a category corresponding to our concept of

politician, its members include the president, the prime-minister, the governor, their

frequent actions include visiting, meeting, giving press releases etc.

There have been attempts to cluster words according to their usage, see for exam-

ple (Pereira & Tishby 1992; Brown & others 1992; Lee 1997). However their success

has been limited partly due to the lack of a good model to identify syntactic relations

in free text. My approach is particularly suitable for this line of work.

46



4.5 Related work

Most work on unsupervised language acquisition to date has used a framework orig-

inally developed for finite state systems, i.e. (hidden) Markov models and used in

speech recognition. The pillars of this approach are two algorithms for training and

processing with probabilistic language models. The Viterbi algorithm selects the

most probable analysis of a sentence given a model (Viterbi 1967). The Baum-Welch

algorithm estimates the parameters of the model given a sequence of training data

(Baum 1972). These algorithms are generalized to work with probabilistic context

free grammars in addition to HMM’s (Baker 1979). The Baum-Welch is sometimes

called the forward-backward algorithm in the context of HMM’s and the inside-outside

algorithm in the context of PCFG’s. For a detailed description of these algorithms,

see (Rabiner & Juang 1986; Lari & Young 1990; Charniak 1993).

The general approach is to define a space of context-free grammars and improve

the rule probabilities by training on a part-of-speech tagged and sometimes brack-

eted corpus. Different search spaces, starting points, and training methods have

been investigated by various researchers. Early work focused on optimizing the pa-

rameters for hand-built grammars (Jelinek 1985; Fujisaki, Jelinek, & others 1989;

Sharman, Jelinek, & Mercer 1990). Lari and Young used the inside-outside algorithm

for grammar induction using an artificially generated language (Lari & Young 1990).

Their algorithm is only practical for small category sets and does not scale up to

a realistic grammar of natural language. Carroll and Charniak used an incremental

approach where new rules are generated when existing rules fail to parse a sentence

(Carroll & Charniak 1992a; 1992b). Their method was tested on small artificial lan-

guages and only worked when the grammar space was fairly restricted. Briscoe and

Waegner started with a partial initial grammar and achieved good results training on

a corpus of unbracketed text (Briscoe & Waegner 1992). Pereira and Schabes started

with all possible Chomsky normal form rules with a restricted number of nonterminals

and trained on the Air Travel Information System spoken language corpus (Pereira

& Schabes 1992). They achieved good results training with the bracketed corpus but

47



the program showed no improvement in accuracy when trained with raw text. Even

though the entropy improved, the bracketing accuracy stayed around 37% for raw

text. Figure 4-3 gives the accuracy and entropy results from this work.

Figure 4-3: No improvement in accuracy when trained with raw text.

In general these approaches fail on unsupervised acquisition because of the large

size of the search space, the complexity of the estimation algorithm and the problem

of local maxima. Charniak provides a detailed review of this work (Charniak 1993).

More recent work has focused on improving the efficiency of the training methods

(Stolcke 1994; Chen 1996; de Marcken 1996).
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CP
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A

BAP

BP

AP => A BP
BP => B
CP => AP C

AP => A
BP => AP B
CP => BP C

Figure 4-4: Phrase structure representation makes it difficult to get out of local
maxima.

de Marcken (de Marcken 1995) has an excellent critique on why the current ap-

proaches to unsupervised language learning fail. His main observation is that the

phrase structure representation makes it difficult to get out of local maxima. His
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other observation is that early generalizations commit the learning programs to ir-

recoverable mistakes. Figure 4-4 illustrates the impact of the representation on the

learning process. Two different structures for the string ABC are presented. A mod-

ifies B in one of them and B modifies A in the other. If the learner has chosen the

wrong one, three nonterminals must have their most probable rules simultaneously

switched to fix the mistake.

My work contrasts with these approaches in two important respects. First, most

previous work uses part of speech information rather than words themselves. Recent

work on high performance probabilistic parsers confirm that detailed lexical infor-

mation is needed for high coverage accurate parsing (Magerman 1995; Collins 1996;

Charniak 1997). Second, the standard formalism is focused on learning a probability

distribution over the possible tree structures. My work simply assumes a uniform dis-

tribution over all admissible trees and concentrates on learning relationships between

words instead.
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Chapter 5

Contributions

This work has been motivated by my desire to understand human language learning

ability and to build programs that can understand language. Therefore the design

decisions were given with a view towards extraction of meaning. Representing syn-

tactic relations between words directly is a consequence of having this goal. The

primitive operation in the standard phrase-structure formalism is to group words or

phrases to form higher order constituents. Meaningful relations between words is an

indirect outcome of the grouping process. The primitive operation in my work is

finding meaningful relations between words:

The pilot saw the train flying over washington

The driver saw the airplane flying over washington

The likelihood of two words being related is defined as lexical attraction. Knowl-

edge of lexical attraction between words play an important role in both language

processing and acquisition. I developed a language program in which lexical attrac-

tion is the only explicitly represented linguistic knowledge. In contrast to other work

in language processing or acquisition, my program does not have a grammar or a lex-
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icon with word categories. Chapter 3 formalizes lexical attraction within the context

of information theory:

Northern Ireland
1.48 14.65

<

Northern Ireland
12.60 3.53

>

Northern Ireland
12.60 14.65

11.12

The program starts processing raw language input with no initial knowledge. It

is able to discover more meaningful relations between words as it processes more lan-

guage. The bootstrapping is achieved by the interdigitation of learning and process-

ing. The processor uses the regularities detected by the learner to impose structure on

the input. This structure enables the learner to detect higher level regularities which

are difficult to see in raw input. Chapter 4 discusses the bootstrapping process:

P

M

Starting with no knowledge and training on raw data, the program was able to

achieve 60% precision and 50% recall in finding relations between content-words.

This is a significant result as previous work in unsupervised language acquisition

demonstrated little improvement when started with zero knowledge.
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The key insights that differentiate my approach from others are:

• Training with words instead of parts of speech enables the program to learn

common but idiosyncratic usages of words.

• Not committing to early generalizations prevent the program from making ir-

recoverable mistakes.

• Using a representation that makes the relevant features explicit simplifies learn-

ing. I believe what makes humans good learners is not sophisticated learning

algorithms but having the right representations.

This work has potential applications in semantic categorization and information

extraction. More importantly it may shed light on how humans are able to learn

language from raw data and easily understand syntactically ambiguous sentences.
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