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Abstract

In this paper I present a novel Ma-
chine Learning approach to the ac-
quisition of stochastic string trans-
ductions based on Pair Hidden
Markov Models (PHMMs), a model
used in computational biology. I
show how these models can be used
to learn morphological processes in
a variety of languages, including En-
glish, German and Arabic. Previous
techniques for learning morphology
have been restricted to languages
with essentially concatenative mor-
phology.

1 Introduction

As has been known for some time (Kaplan
and Kay, 1994), finite-state methods are in
large part adequate to model morphological
processes in many languages. In this pa-
per I present algorithms for learning sets of
finite-state transducers from pairs of unin-
flected and inflected words. This approach
differs from two-level morphology (Kosken-
niemi, 1983) in that it is concerned with trans-
ductions between surface strings rather than
between a deep lexical string and a surface
string. The techniques presented here are,
however, applicable to learning other types of
string transductions.

This paper is structured as follows: in the
first part, sections 2 and 3, I introduce PH-
MMs and briefly discuss the modifications
necessary to the standard HMM algorithms.
In the second part, sections 4, 5 and 6, I
present a model for morphology acquisition
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using PHMMs, and in the third part I present
three experiments on learning morphology in
English, German and Arabic. I conclude with
a brief discussion.

2 Pair Hidden Markov Models

The algorithm used in this paper is based
on Pair Hidden Markov Models (PHMMs).
These were were introduced by Durbin et
al.(1998) as a way of representing various
alignment algorithms in bioinformatics. They
are closely related to Hidden Markov Mod-
els (HMMs) as used in many NLP applica-
tions. Instead of outputting symbols in a sin-
gle stream, however, they output them on two
separate streams, the left and right streams.
At each transition the PHMM may output the
same symbol on both streams, a symbol on
the left stream only, or a symbol on the right
stream only. T call these ¢11, g9 and gg; out-
puts respectively. For each state s the sum of
all these output parameters over the alphabet
A must be one.

> qulcls) + qio(cls) + gor(cs) = 1
ceEA

Since we are concerned with finite strings
rather than indefinite streams of symbols, we
have in addition to the normal initial state
sp, an explicit end state si, such that the
PHMM terminates when it enters this state.
The PHMM then defines a joint probability
distribution on pairs of strings from the al-
phabet. Though we are more interested in
stochastic transductions, which are best rep-
resented by the conditional probability of one
string given the other, it is more convenient to
operate with models of the joint probability,
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Figure 1: Example of a PHMM that adds an
s to the end of any non-empty string.

and then to derive the conditional probability
as needed later on.

Figure 1 shows a simple PHMM that adds
an s onto the end of any string: more for-
mally the joint probability of a pair of strings
is greater than zero if and only if the second
string is the concatenation of the first string
with the string s. We can consider the model
as operating either from the left stream to the
right stream (adding an s) or from the right
to the left (removing an s).

Note that since the ¢;; output emits the
same symbol on each stream, a transduction
which changes a symbol (say a to b) must use
two transitions, first outputting a on the left
alone and then a b on the right, or alterna-
tively in the other order.

3 Parameter estimation

It is possible to modify the normal dynamic-
programming training algorithm for HMMs,
the Baum-Welch algorithm (Baum and
Petrie, 1966) to work with PHMMs as well.
This algorithm will maximise the joint prob-
ability of the training data.

We define the forward and backward proba-
bilities as follows. Given two strings u,...u;
and vy,...v,, we define the forward proba-
bilities a;(%,j) as the probability that it will
start from sg and output ui,...,u; on the left
stream, and vy, ..., v; on the right stream and
be in state s, and the backward probabilities
Bs(i,7) as the probability that starting from
state s it will output w;41,- .., u;, on the right
and vj41,...,vy, on the left and then termi-
nate, ie end in state s;.

We can calculate these using the following

recurrence relations:
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where, in these models, gi11(u;,v;) is zero
unless u; is equal to v;. Instead of the nor-
mal two-dimensional trellis discussed in stan-
dard works on HMMs, which has one dimen-
sion corresponding to the current state and
one corresponding to the position, we have
a three-dimensional trellis, with a dimension
for the position in each string. With these
modifications, we can use all of the standard
HMM algorithms. In particular, we can use
this as the basis of a parameter estimation al-
gorithm using the expectation-maximisation
theorem. We use the forward and backward
probabilities to calculate the expected num-
ber of times each transition will be taken; at
each iteration we set the new values of the pa-
rameters to be the appropriately normalised
sums of these expectations.

Given a PHMM, and a string u, we of-
ten need to find the string v that maximises
p(u,v). This is equivalent to the task of
finding the most likely string generated by a
HMM, which is NP-hard (Casacuberta and
de la Higuera, 2000), but it is possible to sam-
ple from the conditional distribution p(v|u),
which allows an efficient stochastic computa-
tion. If we consider only what is output on
the left stream, the PHMM is equivalent to
a HMM with null transitions corresponding
to the gp1 transitions of the PHMM. We can
remove these using standard techniques and
then use this to calculate the left backward
probabilities for a particular string u: BF(4)



defined as the probability that starting from
state s the PHMM generates w;y1,...,u; on
the left and terminates. Then if one samples
from the PHMM, but weights each transition
by the appropriate left backward probability,
it will be equivalent to sampling from the con-
ditional distribution of P(v|u). We can then
find the string v that is most likely given u,
by generating randomly from p(v|u). After we
have generated a number of strings, we can
sum p(v|u) for all the observed strings; if the
difference between this sum and 1 is less than
the maximum value of p(v|u) we know we have
found the most likely v. In practice, the dis-
tributions we are interested in often have a v
with p(v|u) > 0.5; in this case we immediately
know that we have found the maximum.

4 Paradigms in Morphology

Natural language morphology cannot and
should not be represented as a simple string
transduction from uninflected to inflected
form. Which morphological processes a word
undergoes are in general specified lexically
not phonologically; different words with stems
that are homophonous may take different in-
flections. Even English, with its rather im-
poverished morphology provides various illus-
trations of this — there are three verbs in En-
glish that are homophonous with ring: ring
which takes the past tense rang, wring which
takes the past tense wrung and the denom-
inal ring, meaning put a ring around which
forms the regular past tense ringed. That is,
the choice of inflection must depend not just
on the stem, but also on the particular lexical
item concerned. Moreover, for computational
reasons it is not possible to compute a sin-
gle enormous PHMM with a thousand states
that completely represents a particular mor-
phological process.

It is therefore natural to decompose the
problem into a mixture of separate PHMMs,
where each PHMM will represent the trans-
duction associated with a particular morpho-
logical class. A mixture of PHMMs

k
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where p(i) is the prior probability of the class
i, and p;(u,v) is the joint probability of the
pair u,v with respect to the ¢th model, is
mathematically equivalent to a larger PHMM
with a block diagonal transition matrix.

We consider the model then to be made up
of k separate PHMMs, and all of the stems
to be divided into k£ morphological classes
or paradigms that correspond to the declen-
sions or conjugations of the words. The trans-
duction then applies the appropriate PHMM
to each lexical item. We represent this in
the model by having parameters for each
paradigm and word p(uli) representing the
probability of the word given the paradigm.

The overall joint distribution defined by the
model will then be

Zp

5 Smoothing

p(uli)pi(viu)

A problem with the approach described above
is that it would leave no probability mass for
words not in the training data. We therefore
smooth this model, using a simple weight for
each class, changing the formula to:

Zp

We can estimate the values of the );
smoothing parameters by using the EM al-
gorithm on held-out data in the normal way.
Intuitively, what these parameters tell us is
how productive each paradigm is. If the );
is 1 this will mean that the paradigm is not
productive, whereas values less than one will
mean that unseen words using this paradigm
were found in the held out data, and thus the
paradigm is productive.

For a previously unseen word u,, the
probability p(u,|7) will be zero. Therefore
the paradigm used will be the productive
paradigm which is most likely to generate w,,
on the left. Because the models define joint
probabilities, when we sum the distributions,
the one that applies will be the one that gives
the highest probability to the stem.

Aip(uli)p; (v]w) + (1 = Ai)pi(u, v))



In addition to smoothing the parameters
that combine the models, it is also necessary
to smooth the PHMMs themselves. This is
done using standard interpolation techniques.
We smooth only the output functions. We
define three output functions, g3, ¢7o,97; by
tying all transitions of the three types : and
for each state 7 in each model we define four
parameters , and define the new output func-
tion ¢; for each state to be:

Gi = N'qi + \o1qg1 + Modto + MNidh
where for each state \! + )\fn + )\Zio + )\Zil 1.

6 Description of the Algorithm

The algorithm proceeds incrementally.
Rather than trying to model all of the data
at once, we add PHMMs one at a time.
At each iteration, we have a set of lexical
items that we have not modelled. During the
training of the model, we weight each pair by
the conditional probability with respect to
the current model. This allows the PHMM
to select which pairs it will model. Once
the PHMM has converged on a subset of the
data, we then train a larger model (with five
more states) on this subset. This is necessary
because the minimal model that performs a
particular transduction may be too small to
correctly capture the phonological context
that determines whether that transduction
applies or not. If no data is modelled cor-
rectly , we increase the number of states by
one. The algorithm starts with the minimal
number of states which is three: an initial
state, a final state and a single internal state.
The only transduction that a model with this
number of states can model is the identity
transduction. This process is repeated, until
all of the training data has been modelled.
This produces a series of models, starting
with large regular classes containing many
data points, and ending with irregular classes
modelling a single pair. Finally, calculate the
smoothing parameters on held out data.

7 Experiments on the English past
tense

The English past tense in spite of its simplic-
ity has become something of a test case for the
modelling of the acquisition of morphology. 1
used a standard data set,(Ling, 1994) which
consisted of 1834 pairs of uninflected and in-
flected verb forms in the UNIBET phonemic
transcription !. I used the associated Kucera-
Francis frequency information to define a sim-
ple distribution, and sampled 20,000 tokens
each for the training, held-out and test data.
This evaluation corresponds to the situation
the language learner is in — the training data is
likely to have nearly all the irregular verbs in,
and thus the generalisation ability of the algo-
rithm is measured mostly on regulars. When
testing, I considered a pair to be correct if the
conditional probability of the inflected form
given the uninflected form was greater than
0.5 — in this case it is clear that it is also the
most likely inflected form to be produced by
the transduction.

The algorithm produced 28 classes. Ta-
ble 1 shows some of the classes obtained.
Note that the three regular suffixes are as-
signed to different classes. The remaining
classes correspond in general to the tradi-
tional classes of irregular verbs, though in
some cases more than one class is modelled
by the same PHMM, and some members of
classes end up in a different class. The first
cluster consists of all and only the verbs where
the past is the same as the base form.

Results on test data were out of 20000 to-
kens, 19991 correct which is (99.96%), and
out of 1571 types, 1567 correct (99.74%). 123
of these types were not in the training data.
The four errors were withhold, thrust, bind,
and ring. The first three were over-regularised
and the last one was given the irregular plu-
ral “rang”. The correct answer was stored in
the model, but not accessed because of the
homophony of the stem. These results are
probably as good as can be expected with
this methodology, and only possible because

T use normal orthography for the examples in this
paper to improve readability.



Table 1: Classes derived from the English
past tense. Some have been removed for rea-
sons of space. Note that the only productive
paradigms are the three regular suffixes.

Table 2: The largest seven models from the
German plural data set. Models 4 and 7 rep-
resent the same transduction, namely +en

of the extreme regularity and predictability
of the English past tense. The model shows
excellent generalisation, together with correct
memorisation of the irregular exceptions.

8 German and Arabic plurals

I will discuss briefly some experiments on the
learning of the plural in German and Arabic.
German has a much more complex system
of noun inflection(Cahill and Gazdar, 1999).
The data for this experiment was taken from
the CELEX lexical database. I extracted
all pairs of singular and plural nouns in the
CELEX phonetic alphabet, together with fre-
quency information, creating a data set with
17076 pairs. I sampled 20,000 tokens to cre-
ate a training set with 4709 pairs. Given that
the declension of German nouns is not pre-
dictable from the phonology, it is inappropri-
ate to evaluate it on the basis of its perfor-
mance on unseen data.

The final model divided the data into 73

classes. Table 2 shows the seven largest
classes created by the algorithm. Note
that the model for class 5 is a non-

concatenative transduction mapping includ-
ing kraft— krdfte, and kampf— kdmpfe.
The smallest classes were singletons, with
highly irregular plurals: atlas/atlanten and
opus/opera being good examples. These re-

1 States Words Stem Plural
1 States Words A 0 8 699 Winter Winter
0 6 22 bet, shed 1.0 1 9 736 Wille Willen
1 8 727 +d 0.90 2 9 715 Werk Werke
2 8 281 +t 0.89 3 9 199 Papa Papas
3 10 434 +ed 0.92 4 11 1285 Welt Welten
4 10 1 fly 1.0 5 12 128 Nacht Nachte
5 12 26 break, draw 1.0 7 12 85 Pfau Pfauen
24 20 2 sell, tell 1.0
25 20 9 g0, undergo 1.0 sults are not perfect; some Word§ thaitt take
2% 929 1 leave 1.0 the same type of plural end up in different
27 22 1 lose 1.0 classes.

One of the forms of the Arabic plu-
ral(McCarthy and Prince, 1990), the broken
plural is a highly nonconcatenative process
that maps for example bank to bunuuk. There
are various forms of this that are sensitive
to the prosodic outline of the stem. Pre-
liminary experiments with PHMMs confirmed
that they were capable of learning the indi-
vidual transductions involved and to a more
limited extent modelling the prosodic features
that determine their applicability. Train-
ing on a data set prepared by Nakisa and
Plunkett(1997) produced 55 separate models
which in general corresponded to various spe-
cific forms of the plural. However this data is
rather sparse, and overly simplified.

9 Discussion

There is a large amount of literature on learn-
ing the English past tense, (Rumelhart and
McLelland, 1986; Ling, 1994; Mooney and
Califf, 1995). There is much less work on more
morphologically complex languages (Plunkett
and Nakisa, 1997). PHMMs are close to the
Stochastic Inversion Transduction Grammars
of Wu (Wu, 1997), and also to Ristad’s mem-
oryless string transducers(Ristad and Yian-
ilos, 1998). They are also related to the
asynchronous IOHMMs of (Bengio and Fras-
coni, 1996). They can be thought of as non-
deterministic stochastic finite-state transduc-
ers.



Though PHMMSs can model a wide range
of morphophonological phenomena, they can-
not model reduplication, a phenomenon found
in many languages such as Malay and Taga-
log. If however, we considered a slightly richer
model which outputs 3 streams of symbols,
where two of the streams are copies, it should
be possible to cover these languages as well.

German nouns have eight possible mor-
phosyntactic forms — singular and plural with
four cases each, though there are at most four
distinct forms. It would be interesting to
model the full inflectional system simultane-
ously using a set of seven or eight PHMMs for
each class. This would allow a more thorough
evaluation of the generalisation properties of
the algorithm.

It is possible to use these models for the
unsupervised acquisition of morphology, using
the EM algorithm again to model the align-
ments between words.

In this paper I have presented a novel algo-
rithm for learning non-deterministic stochas-
tic transductions, together with an applica-
tion to the acquisition of morphology. This al-
gorithm can learn various morphological pro-
cesses from a range of languages with a high
degree of accuracy. It does this without using
any specifically linguistic knowledge. It does
not suffer from the limitations of previous ap-
proaches such as ad hoc coding schemes, lim-
itations on the length of input and output
strings, or hard-coded preferences for partic-
ular transductions.
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