Partially Supervised Learning of Morphology with Stochastic
Transducers

Alexander Clark
ISSCO / TIM,

University of Geneva,
UNI-MAIL, Boulevard du Pont-d’Arve,
CH-1211 Geneve 4,
Switzerland

Abstract

In this paper I present an algo-
rithm for the unsupervised learning
of morphology using stochastic finite
state transducers, in particular Pair
Hidden Markov Models. The task
is viewed as an alignment problem
between two sets of words. A super-
vised model of morphology acquisi-
tion is converted to an unsupervised
model by treating the alignment as a
further hidden variable. The use of
the Expectation-Maximisation algo-
rithm for this task is studied, which
leads to calculations involving the
permanent of a matrix of probabili-
ties. The calculation of the perma-
nent is discussed, and various tech-
nical difficulties are addressed. Re-
sults are presented on the English
past tense and the Arabic plural,
a highly complex system of non-
concatenative morphology.

1 Introduction

A number of different approaches to the un-
supervised learning of morphology have been
presented in the past few years (Goldsmith,
2001; Schone and Jurafsky, 2000). Though
they achieve impressive results, they share
a common failing: an a priori limitation
on the form of the morphological transduc-
tions that can be modelled, restricted to sim-
ple concatenation, and often only suffixation.
This is clearly undesirable, since many non-
Indo-European languages, and some Indo-
European ones as well, such as German, use

other inflectional processes, and it is precisely
these less well studied languages that actu-
ally need automatic morphological inducers.
A related limitation is that they can only
learn regular morphology. Though these sys-
tems perform well within their limitations,
a general language learning system cannot
make these sorts of assumptions. Supervised
learning algorithms on the other hand, are
capable of learning irregularities and non-
concatenative morphology (Rumelhart and
McLelland, 1986; Mooney and Califf, 1995;
Clark, 2001). What is desirable is to have
a means for turning a supervised acquisi-
tion model into an unsupervised acquisition
model.

This work is closely related to that of
(Yarowsky and Wicentowski, 2000). They are
concerned with integrating diverse sources of
information; here I am concerned with the
correct application of a single source of in-
formation, namely the surface forms of each
word. As they say:

But for many languages, and to
a quite practical degree, inflectional
morphological analysis and genera-
tion can be viewed primarily as an
alignment task on a broad coverage
word list.

The approach taken here is to use a stochas-
tic model of the joint probability of the pair
of strings — a supervised model, that can be
trained with the EM algorithm — and to treat
the alignment between the strings as a further
hidden variable which can be modelled again
with the EM algorithm. A clean and well-
motivated treatment of this will allow inte-

gration of this into more complex and broader
language acquisition systems.

Many other sources of information are
available to aid in this alignment. The fo-
cus of this paper is to demonstrate a more
rigorous method to apply one specific piece
of information: the surface forms of the
words to be aligned. In this paper I shall
use a particular form of trainable stochastic
finite-state transducer called the Pair Hid-
den Markov Model, but the approach could
be used with other more powerful types of
EM-trained transducers, such as context free
transducers (Wu, 1997).

I shall not present a solution to the gen-
eral problem of unsupervised learning of mor-
phology here: I shall consider a slightly eas-
ier task, that I shall call partially supervised
learning: this is where the learner is presented
with two sets of strings, and must work out
what the relationship is between them.

2 Pair Hidden Markov Models

Pair Hidden Markov Models (PHMMSs) were
introduced by Durbin et al. (1998) follow-
ing on from much prior work in bioinformat-
ics and used to learn morphology in (Clark,
2001). They are an extension of Hidden
Markov Models (HMMs), that model the joint
probability of a pair of strings, rather than
a single string. Historically they derived as
an extension of the Levenshtein edit distance,
and are related to various kernels used in Sup-
port Vector Machines (Cristianini and Shawe-
Taylor, 2000). They can be trained with
modifications of the EM algorithm (Demp-
ster et al., 1977), and are well suited to learn-
ing a range of transductions in natural lan-
guage, including grapheme-phoneme conver-
sion, but especially morphological transduc-
tions. A major advantage of them is that
they can also learn non-concatenative trans-
ductions, such as vowel changes in the stem,
a good example being the umlaut in German.

The difference between PHMMs and
HMMs is that PHMMs can output symbols
on two streams or sequences, which we can
call the left and right streams. Thus instead
of having the normal state conditional output

functions, we have three sorts of outputs that
can output the same symbol on both streams,
a symbol on the left stream only or a symbol
on the right stream only, which are called ¢;1,
q10 and go1 transitions respectively. This is
similar to the copy, delete and insert opera-
tions of the Levenshtein distance. This results
in a model of the joint probability distribution
of a pair of strings, which may be of different
lengths. As discussed in (Ristad, 1997; Clark,
2001), the standard dynamic programming al-
gorithms for HMMs can be modified to deal
with PHMMs. In particular an EM based pa-
rameter estimation algorithm similar to the
forward-backward algorithm can be applied
to learn the transductions. A related but
more general algorithm has been presented in
(Eisner, 2001).

Because of the fact that the ¢;; transitions
output the same symbol on both streams, ran-
domly initialised models have a strong bias to
produce similar strings on both left and right
streams. We can use this bias to align similar
strings.

3 Perfect Situation

I will start with an artificially simple situ-
ation. Let us suppose we have two sets of
strings U and V of the same size. We wish
to align them, i.e. find a bijection between
them, and simultaneously train a model on
the aligned data. We can model this as a
stochastic process in two stages: first we gen-
erate n pairs of strings, and then we generate
a permutation of the second set that shuffles
them. We can model the permutation as a
hidden variable X, that takes one of the n!
permutations as its value. We can consider
this as an n X n permutation matrix such that
X;j = 1if the ith element of U is aligned with
the jth element of V' and is zero otherwise.

p(U, V) =Y p(X)p(U,VIX) (1)
X

Since we have no reasons to prefer one per-

mutation rather than another we set p(X) =
L. The probability given the alignment is

n!*

just the product of the probabilities of the
matching pairs,

p(U,V|X) = HP(Uz',UX(j)) (2)

If we consider the matrix P which has in
i,j the element p(u;,v;), the sum of the n!
permutations is called in linear algebra the
permanent of the matrix (Bhatia, 1996).

PaP) LY [[Powy O

where o ranges over all the permutations of n
elements.

It is similar to the more familiar determi-
nant but without the alternating signs. One
problem is that it is not possible to calcu-
late this efficiently (Barvinok, 1999). There
is a great deal of active research in this area
though as it is possible to encode various com-
binatorial problems into an appropriate ma-
trix. !

To train the model with the EM algorithm
we need to be able to calculate the poste-
rior expectation of X;; given the data and the
model. Since Xj; is one or zero, the expecta-
tion equals the probability that ¢ is aligned
with j.

2 x.x,;=1 P(U, V| X)
ZX p(U7 V‘X>

The denominator of this fraction is the per-
manent of the matrix P, i.e. the sum over all
n! permutations. The numerator is the sum
of the (n—1)! of those permutations that have
X;; = 1. This is the product of P;; with the
permanent of the ij-minor ? of P.

Thus we can write

p(X45|U, V) = (4)

P;jPerm(PY)

E[Xi;|U, V] = Perm(P) (5)

We can consider these posterior probabilities
as a matrix, that will be doubly stochas-
tic. This map from the matrix of proba-
bilities to the matrix of posteriors is some-
times called the Bregman map (Bregman,

'For example, finding the number of maximum
matchings in a bipartite graph.

2The ij-minor of a matrix is the matrix formed
by removing the row and column containing the ij
element, to form an n — 1 by n — 1 matrix.

1967). Though intractable to compute ex-
actly, we can approximate it under certain cir-
cumstances using the technique of Sinkhorn
balancing (Sinkhorn, 1964), as advocated by
(Beichl and Sullivan, 1999). This converges
rapidly (Soules, 1991) giving a overall com-
plexity of O(n?), which is tractable for matri-
ces with dimensions =~ 1000, such as we use
here. The method of Sinkhorn balancing is
intuitively quite straightforward; we want to
scale a positive matrix so it is doubly stochas-
tic. If we normalise the row sums, we will
have a matrix that is row-stochastic, i.e. has
its row sums equal to unity, but not necessar-
ily column-stochastic. If we then normalise
the column sums, we will have a matrix that
is column-stochastic but probably not row-
stochastic. If we continue in this way, alter-
nating normalising the rows and normalising
the columns, we converge to a doubly stochas-
tic matrix which under certain circumstances
is an approximation to the Bregman map. We
now have the basis for an algorithm.

1 Choose a random model.
2 Calculate the matrix of p(u;, v;)

3 Estimate the matrix of the posteriors, using
Sinkhorn balancing.

4 Train the model on every pair (u;,v;)
weighting by the value of the posterior
probability.

5 Repeat from step 2, until the posterior
probability matrix is (very close to) a
permutation matrix.

Theoretically we know this will converge
by the EM algorithm and initial experiments
with this framework showed that the matrix
of posteriors rapidly converges to a permuta-
tion matrix.

4 Imperfection

This is obviously a highly artificial situation.
More interesting cases are where we have two
sets that are not the same size, with two sub-
sets that we want to align. More formally we
have two sets of strings U and V of size m

and n respectively with subsets U’ C U and
V! C V both of size k. We then have three
models. A model for U and a model for V' and
a model for a joint distribution over U’ x V.
We then have a hidden variable which cor-
responds to the selection of the sets and the
bijection between U’ and V'. Given a value of
X we can write the total likelihood function
as:

pUVIX)=] pow)][pv(
ueU-U' veV -V’
* (6)
H pM(u7v)
ueU'’ veVv!

We now have a certain degree of flexibility
in how we define p(X); we can make it depend
on the size of the sets that are selected. We
can use this to make some of the calculations
more tractable.

This algorithm allows one to trade off the
gain from aligning them against not aligning
them, by including models for the informa-
tion in the individual sequences (Allison et
al., 1999). We can tweak it if need be by
raising the joint model probability to a power
a € [1,2]. This will have the effect of making
it less likely to align words; if « is 1, then it
is likely to align words even when they have
little relation since pps(u,v) can in general be
at least py (u)py (v) for related u and v. Con-
versely, values of « close to 2, will mean that
the model will only align the words if there is
a very strong link between them. Thus « is
a tunable parameter that allows us to adjust
the recall/precision trade-off.

Suppose U has m elements, and V has n
elements, then we have an m X n matrix of
the joint probabilities, which we can call Py
We can also define a m x m diagonal matrix,
corresponding to the probabilities according
to the model of U, which we can call Py, and
a n x n diagonal matrix for the probabilities
of V, Py. If we also create a matrix of size
n X m with every element 1, P; then we can
form an (m + n) square matrix thus:

Mz(ijl\]/[?V) (7

Then every permutation of this matrix cor-
responds to a particular choice of the align-
ment, and we can use exactly the same tech-
niques for estimating the posterior probabili-
ties on this matrix, as we did before. There
is one substantive difference which is that be-
cause of the block of ones in the top right,
alignments that align k of U and V together
will have a “bonus” factor of k!, correspond-
ing to the k! paths through the k& x k& subma-
trix of P;. This is generally good, since we
want to encourage the algorithm to align as
much as possible. We can accomodate this
formally by making p(X) in our generative
model be proportional to k!. We then train
all three models, weighting the probabailities
by the appropriate values from the posterior
matrix.

I will take a simple example: suppose U =
{cat, dog, fox} and V = {cats, dogs}. Table 1
shows the resulting composite matrix.

Now each permutation of this matrix will
correspond to a particular alignment, and the
probability given that alignment will be the
product of the appropriate elements of the
matrix. The identity matrix will correspond
to none being aligned, and will have probabil-
ity equal to the product of the elements along
the diagonal of the matrix in Table 1, i.e.

p(U,V|X) = py(cat)py (dog)py (fox)
pv (cats)py (dogs)
If cat and dog are aligned correctly then

(k=2) there are 2!, matrices which are shown
here

0 00 1O
0 0 0 01
0 01 00 (9)
100 00
01 00O
and also
0 00 01
0 00 10O
0 01 00 (10)
100 00
010000

each of which will have probability

pu(cat) 0 0 1 1

0 pu(dog) 0 1 1

0 0 pu (fox) 1 1

pu(cat,cats) par(dog,cats) par(fox,cats) py(cats) 0
pum(cat,dogs) pu(dog,dogs) pu(fox,dogs) 0 pv(dogs)

Table 1: Matrix of probabilities for U = {cat, dog,fox} and V' = {cats, dogs}.

p(U,V|X) = pa(cat,cats)ps(dog,dogs)py (fox)

(11)
5 Experiments with English

In all of the experiments that follow I used a
PHMM to model the joint probability and two
HMDMs to model each of the two left-over sets.
All three have the same number of states. I
ran the models for 5-10 iterations after which
the models has effectively converged, and con-
sidered two words to be aligned if the poste-
rior probability was greater than 0.1, though
in fact the values of aligned pairs were invari-
ably very close to 1.

To experiment with this approach I chose
two contrasting morphological processes.
First, I chose the English past tense, which
has been studied extensively. This has sev-
eral advantages: first, it is very well known
and understood, and the correct analyses are
not in dispute; secondly, though it is rather
simple, it is by no means trivial; and thirdly,
there are standard test sets available which
facilitate comparison with other techniques.

The data set I used here (Ling, 1994) con-
sisted of a set of 2163 base forms with 1394
past forms, in the UNIBET phonetic alpha-
bet. Table 2 summarizes the results of the
algorithm on the various data sets. When
trained with a very small 5 state transducer,
the algorithm produced a highly accurate
alignment. Analysis of the resulting trans-
ducer showed that it was not correctly select-
ing the suffix to be applied, but nonetheless
was modelling the process in a crude way. Ta-
ble 3 shows the behaviour of the model when
applied to the (unseen) nonce word gagaga.
The model is not sensitive to the phonology
of the stem.

| Past form | p(v[u) p(ulv) |
gagagad 0.50 0.82
gagagat 0.15 0.78
gagagald | 0.023 0.72

Table 3: The three regular suffixes in the En-
glish past tense, with both conditional proba-
bilities for the nonce word gagaga. Note that
though it cannot select the correct suffix given
the base form, given the inflected form, it can
recover the base form. This is with a 5-state
model.

The second experiment on English was with
a noisier data set derived using an unsuper-
vised technique. A slightly simplified version
of the Wall Street Journal corpus was used,
which had been ’speechified’ as in (Char-
niak, 2001). An unsupervised clustering tech-
nique described in (Ney et al., 1994) was used
to cluster the words into 64 classes. Two
classes that corresponded to singular and plu-
ral nouns were manually selected producing a
test set with 680 words in the singular noun
class, and 1151 words in the plural class. In
this data set there were 314 matching pairs
of nouns in singular and plural form, together
with substantial amounts of noise. The per-
formance of the algorithm on this data set,
denoted by Ney, is summarised in Table 2.

6 Experiments with Arabic

Arabic is a language with a complex system of
non-concatenative morphology, with the Ara-
bic broken plural being of particular complex-
ity and interest (McCarthy and Prince, 1990).
Space does not permit more than a brief sum-
mary: Arabic is based in general around lex-
ical roots with three or four consonants, with
the pattern of vowels providing morphosyn-

‘ Data ‘ States « U v Pairs ‘ Correct Incorrect Precision Recall ‘
Ling 5 1.0 2163 1394 1394 | 1324 33 97.6 95.3
McCarthy | 10 1.0 2450 3101 2450 | 1654 795 67.5 67.5
Plunkettl | 10 1.0 859 859 839 820 27 96.8 95.5
Plunkett2 | 10 1.0 443 430 215 157 405 38.8 73.8
Plunkett2 | 10 1.5 443 430 215 140 25 84.8 65.1
Plunkett2 | 10 1.75 443 430 215 78 2 97.5 36.2
Plunkett2 | 10 20 443 430 215 2 0 100.0 0.9
Ney 5 1.0 680 1151 316 310 369 45.7 98.1
Ney 5 1.5 680 1151 316 306 52 85.5 96.8
Ney 5 1.75 680 1151 316 284 7 97.6 89.9
Ney 5 20 680 1151 316 276 2 99.2 87.3
Ney 10 1.75 680 1151 316 286 12 96.0 90.5

Table 2: Comparison of results on the various test sets. The second set of results on the

Plunkett2 data set show the effect the exponent

tactic information. The singular is changed
to the plural by changes to the vowels and
ingertions of other consonants, that are sensi-
tive to the overall prosodic outline of the root.
There is also a sound plural that is formed
by a more conventional process of suffixation.
The first data set (MCCARTHY) was used
in (McCarthy and Prince, 1990), and consists
of 2450 singular nouns and 3101 plurals, in a
fully vocalised phonemic transcription taken
from the Wehr dictionary of Modern Stan-
dard Arabic. In this case the difference in
numbers arises because many of the singu-
lar forms have multiple possible plurals. The
data set is quite noisy as well, and in addition
has a number of cases like this:

Singular Plural
7azabb zubb
zubb 7azbaab

Clearly, algorithms of the sort I use here
will tend to align zubb with zubb. More-
over there are other complex morphological
processes at work (one can form the plural
of a plural). I trained a 10-state model on
this data set (McCarthy). The overall results
were quite poor. Error analysis revealed that
the alignment had correctly identified that the
consonant root system was the defining char-
acteristics, but this was not enough to allow
the alignment to proceed accurately.

I then experimented with a slightly sim-
plified data set prepared for (Plunkett and

has on the precision and recall.

Nakisa, 1997); this is substantially smaller
— consisting of 859 pairs, drawn from the
same dictionary but consisting of a mixture
of sound and broken plurals, with only one
plural form for each singular form. I per-
formed two experiments: one with the data
set as it was (Plunkettl), and one where I ran-
domly removed half of the singulars and half
of the plurals, to see whether the algorithm
could correctly match up in the presence of
the missing data. This produced a data set
(Plunkett2) of size 443/430, with 215 possi-
ble pairs to be aligned. The results of these
three tests are summarised in Table 2. This
second data set, I ran with various values of
the exponent a to see what effect it has on
precision and recall. As expected, the algo-
rithm performed well on the initial data set,
aligning with high accuracy and precision. On
the imperfect data set, Plunkett2, the effect
of the exponent is quite marked. With the
exponent at 1.0, the precision is very poor,
but as the exponent is increased the precision
increases rapidly. Note that it would be pos-
sible to repeatedly apply the algorithm to the
same data, removing at each time the pairs
already aligned, thus combining a number of
high precision models into a high recall one.
The small number of states employed are for
efficiency purposes, they are clearly too small
to allow correct modelling of these processes.

There is very little work that is directly

comparable: there has been no prior work on
the unsupervised learning of Arabic. How-
ever we can compare the results in English
to (Yarowsky and Wicentowski, 2000). They
use a number of different sources of informa-
tion, and have results ranging from 31.3% us-
ing only Levenshtein distance after 1 itera-
tion to 99.2 % for the final model combining
all sources of information including frequency
and semantic information.

7 Discussion

The motivation for this work is two-fold: first,
it is clearly desirable for engineering reasons
to be able to extract the morphology of a lan-
guage automatically from a language rather
than having to manually construct it. Sec-
ondly, a key area of cognitive science is the
modelling of language acquisition. In many
languages it may be possible to learn the
alignments between words based on seman-
tic information, in languages which are highly
inflected the individual token frequencies may
be too low to allow this to work. In these cases
some sort of aligment operation must be per-
formed. Completely unsupervised algorithms
seem unnecessary: it is possible to extract
sets of syntactically similar words from cor-
pora using unsupervised clustering algorithms
(Brown et al., 1992), and then to apply algo-
rithms of this type to the result.

Better understanding of the correct appli-
cation of these techniques is necessary to al-
low the correct treatment of morphologically
rich languages such as Hungarian or Finnish.

(De Roeck and Al-Fares, 2000) presents an
algorithm for identifying Arabic roots, that
uses a language specific distance function;
similarly (Yarowsky and Wicentowski, 2000)
use a weighted edit distance as one compo-
nent of their model, also performing a Viterbi
approximation to the EM reestimation; for
particular languages it will always be able to
perform well with a simpler algorithm using
prior knowledge about the language in ques-
tion. This is clearly not an option in cog-
nitive modelling, since it must work with all
languages without language-specific informa-

tion. These techniques could also be used as
a fairly general algorithm for satisfying com-
binatorial constraints, related to other work
in QAP-optimisation (Gold and Rangarajan,
1996).

The algorithms presented here are compar-
atively slow in their naive form since we have
to compute all the elements of the matrix, so
it is O(JU||V]). A simple optimisation could
be used to avoid having to compute pairs
that are obviously not related. Of course,
went is obviously not the past tense of go, so
this approach will introduce errors. The next
step is to move this to a completely unsuper-
vised algorithm, and to integrate it with other
components of a complete language acquisi-
tion system. In particular, in order to handle
complete stem suppletion it seems likely that
other sorts of information will be required:
frequency and semantic information are the
obvious candidates. Since suppletion tends
to occur infrequently and with very frequent
words, these should suffice. This may allow
an understanding of the prevalence of phono-
logical transparency in natural languages.

Acknowledgements

I am grateful to Alexander Barvinok for
pointing out to me the work of Beichl et
al. I am also grateful to John McCarthy
and Ramin Nakisa for allowing me to use
their data. Thanks also to Bill Keller, Eric
Gaussier and others for helpful comments.
Part of this work was done as part of the TMR
network Learning Computational Grammars.

References

L. Allison, D. Powell, and T. I. Dix. 1999. Com-
pression and approximate matching. The Com-
puter Journal, 42(1):1-10.

A. 1. Barvinok. 1999. Polynomial time algorithms
to approximate permanents and mixed discrim-
inants within a simple exponential factor. Ran-
dom Structures and Algorithms, 14:29-61.

Isabel Beichl and Francis Sullivan. 1999. Approxi-
mating the permanent via importance sampling

3Though nativists might wish to provide informa-
tion about Universal Grammar.

with application to the dimer covering problem.
Journal of Computational Physics, 149(1):128—
147.

Rajendra Bhatia. 1996. Matriz analysis.
Springer.
L. M. Bregman. 1967. Proof of convergence

of Sheleikhovskii’s method for a problem with
transportation constraints. Zh. wychsl. Mat.
mat. Fiz., 147(7).

Peter F. Brown, Vincent J. Della Pietra, Peter V.
de Souza, Jenifer C. Lai, and Robert Mercer.

1992. Class-based n-gram models of natural
language. Computational Linguistics, 18:467—
479.

Eugene Charniak. 2001. Immediate head pars-
ing for language models. In Proceedings of the
39th annual meeting of the ACL, pages 116—
123, Toulouse, France.

Alexander Clark. 2001. Learning morphology
with Pair Hidden Markov Models. In Pro-
ceedings of the Student Workshop at the 39th
Annual Meeting of the Association for Com-
putational Linguistics, pages 55—60, Toulouse,
France, July.

Nello Cristianini and John Shawe-Taylor. 2000.
Support Vector Machines. Cambridge Univer-
sity Press.

Anne N. De Roeck and Waleed Al-Fares. 2000. A
morphologically sensitive clustering algorithm
for identifying Arabic roots. In COLING-2000.

A. P. Dempster, N. M. Laird, and D. B. Ru-
bin. 1977. Maximum likelihood from incom-
plete data via the EM algorithm. Journal of
the Royal Statistical Society Series B, 39:1-38.

R. Durbin, S. Eddy, A. Krogh, and G. Mitchison.
1998. Biological Sequence Analysis: Probabilis-
tic Models of proteins and nucleic acids. Cam-
bridge University Press.

Jason Eisner. 2001. Expectation semi-rings:
Flexible EM for learning finite-state transduc-
ers. In Proceedings of the ESSLLI Workshop on
Finite-State Methods in NLP, Helsinki, August.

Steven Gold and Anand Rangarajan. 1996. Soft-
max to softassign: Neural network algorithms
for combinatorial optimization. Journal of Ar-
tificial Neural Networks, 2(4):381-399, Aug.

John A. Goldsmith. 2001. Unsupervised learn-
ing of the morphology of a natural language.
Computational Linguistics, 27(2):153-198.

Charles X. Ling. 1994. Learning the past tense of
English verbs: The symbolic pattern associator
vs. connectionist models. Journal of Artifical
Intelligence Research, 1:209-229.

J. McCarthy and A. Prince. 1990. Foot and word
in prosodic morphology: The Arabic broken
plural. Natural Language and Linguistic The-
ory, 8:209-284.

Raymond J. Mooney and Mary Elaine Califf.
1995. Induction of first-order decision lists: Re-
sults on learning the past tense of English verbs.
Journal of Artificial Intelligence Research, 3:1—
24.

Hermann Ney, Ute Essen, and Reinhard Kneser.
1994. On structuring probabilistic dependen-
cies in stochastic language modelling. Com-
puter Speech and Language, 8:1-38.

Kim Plunkett and Ramin Charles Nakisa. 1997.
A connectionist model of the Arabic plural
system. Language and Cognitive Processes,

12(5/6):807-836.

Eric Sven Ristad. 1997. Finite growth models.
Technical Report CS-TR-533-96, Department,
of Computer Science, Princeton University. re-
vised in 1997.

D. E. Rumelhart and J. L. McLelland. 1986. On
learning past tenses of English verbs. In D. E.
Rumelhart and J. L McLelland, editors, Paral-
lel Distributed Processing, volume 2, pages 216—
271. MIT Press, Cambridge, MA.

Patrick Schone and Daniel Jurafsky. 2000.
Knowledge-free induction of morphology using
latent semantic analysis. In Proceedings of
CoNLL-2000 and LLL-2000, pages 67-72, Lis-
bon, Portugal.

R. Sinkhorn. 1964. A relation between arbitrary
positive matrices and doubly stochastic matri-
ces. Annals of Mathematical Statistics, 35(2).

G. W. Soules. 1991. The rate of convergence of
Sinkhorn balancing. Linear Algebra and Its Ap-
plications, 150(3).

Dekai Wu. 1997. Stochastic inversion transduc-
tion grammars and bilingual parsing of parallel
corpora. Computational Linguistics, 23(3):377—
403, September.

David Yarowsky and Richard Wicentowski. 2000.
Minimally supervised morphological analysis
by multimodal alignment. In Proceedings of
ACL 2000, pages 207-216, Hong Kong.

