
doi:10.1006/csla.2001.0174
Available online at http://www.idealibrary.com on

Computer Speech and Language(2001)15, 403–434

A bit of progress in language modeling

Joshua T. Goodman†

Machine Learning and Applied Statistics Group, Microsoft Research, One
Microsoft Way, Redmond, WA 98052, U.S.A.

Abstract

In the past several years, a number of different language modeling improvements
over simple trigram models have been found, including caching, higher-order
n-grams, skipping, interpolated Kneser–Ney smoothing, and clustering. We
present explorations of variations on, or of the limits of, each of these techniques,
including showing that sentence mixture models may have more potential. While
all of these techniques have been studied separately, they have rarely been studied
in combination. We compare a combination of all techniques together to a Katz
smoothed trigram model with no count cutoffs. We achieve perplexity reductions
between 38 and 50% (1 bit of entropy), depending on training data size, as well as
a word error rate reduction of 8.9%. Our perplexity reductions are perhaps the
highest reported compared to a fair baseline.

c© 2001 Academic Press

1. Introduction

1.1. Overview

Language modeling is the art of determining the probability of a sequence of words. This is
useful in a large variety of areas including speech recognition, optical character recognition,
handwriting recognition, machine translation, and spelling correction (Church, 1988; Brown
et al., 1990; Kernighan, Church & Gale, 1990; Hull, 1992; Srihari and Baltus, 1992). The
most commonly used language models are very simple (e.g. a Katz-smoothed trigram model).
There are many improvements over this simple model however, including caching, cluster-
ing, higher-ordern-grams, skipping models, and sentence-mixture models, all of which we
will describe. Unfortunately, these more complicated techniques have rarely been examined
in combination. It is entirely possible that two techniques that work well separately will not
work well together, and, as we will show, even possible that some techniques will work better
together than either one does by itself. In this paper, we will first examine each of the afore-
mentioned techniques separately, looking at variations on the technique, or its limits. Then
we will examine the techniques in various combinations, and compare to a Katz smoothed
trigram with no count cutoffs. On a small training data set, 100 000 words, we can obtain up
to a 50% perplexity reduction, which is 1 bit of entropy. On larger data sets, the improvement
declines, going down to 41% on our largest data set, 284 000 000 words. On a similar large
set without punctuation, the reduction is 38%. On that data set, we achieve an 8.9% word

†E-mail:joshuago@microsoft.com

0885–2308/01/040403 + 32 $35.00/0 c© 2001 Academic Press



404 J. T. Goodman

error rate reduction. These are perhaps the largest reported perplexity reductions for a lan-
guage model, vs. a fair baseline.

The paper is organized as follows. First, in this section, we will describe our terminology,
briefly introduce the various techniques we examined, and describe our evaluation method-
ology. In the following sections, we describe each technique in more detail, and give experi-
mental results with variations on the technique, determining for each the best variation, or its
limits. In particular, for caching, we show that trigram caches have nearly twice the potential
of unigram caches. For clustering, we find variations that work slightly better than traditional
clustering, and examine the limits. Forn-gram models, we examine up to 20-grams, but show
that even for the largest models, performance has plateaued by 5- to 7-grams. For skipping
models, we give the first detailed comparison of different skipping techniques, and the first
that we know of at the 5-gram level. For sentence mixture models, we show that mixtures of
up to 64 sentence types can lead to improvements. We then give experiments comparing all
techniques, and combining all techniques in various ways. All of our experiments are done
on three or four data sizes, showing which techniques improve with more data, and which
get worse. In the concluding section, we discuss our results.

There is also an extended version of this paper (Goodman, 2001a) that goes into much
more detail than this version. The extended version contains more tutorial information, more
details about the experiments presented here, interesting implementation details, and a few
additional experiments and proofs. It is meant to be a reasonable introduction to the field of
language modeling.

1.2. Technique introductions

The goal of a language model is to determine the probability of a word sequencew1 . . . wn,
P(w1 . . . wn). This probability is typically broken down into its component probabilities:

P(w1 . . . wi ) = P(w1) × P(w2|w1) × · · · × P(wi |w1 . . . wi −1).

Since it may be difficult to compute a probability of the formP(wi |w1 . . . wi −1) for largei ,
we typically assume that the probability of a word depends on only the two previous words,
thetrigram assumption:

P(wi |w1 . . . wi −1) ≈ P(wi |wi −2wi −1)

which has been shown to work well in practice. The trigram probabilities can then be esti-
mated from their counts in a training corpus. We letC(wi −2wi −1wi ) represent the number
of occurrences ofwi −2wi −1wi in our training corpus, and similarly forC(wi −2wi −1). Then,
we can approximate:

P(wi |wi −2wi −1) ≈
C(wi −2wi −1wi )

C(wi −2wi −1)
.

Unfortunately, in general this approximation will be very noisy, because there are many three
word sequences that never occur. Consider, for instance, the sequence“party on Tuesday”.
What is P(Tuesday|party on)? Our training corpus might not contain any instances of the
phrase, soC(party on Tuesday) would be 0, while there might still be 20 instances of the
phrase“party on” . Thus, we would predictP(Tuesday|party on) = 0, clearly an underesti-
mate. This kind of 0 probability can be very problematic in many applications of language
models. For instance, in a speech recognizer, words assigned 0 probability cannot be recog-
nized no matter how unambiguous the acoustics.



A bit of progress in language modeling 405

Smoothingtechniques take some probability away from some occurrences. Imagine that
we have in our training data a single example of the phrase“party on Stan Chen’s birthday”.
Typically, when something occurs only once, it is greatly overestimated. In particular,

P(Stan|party on) �
1

20
=

C(party on Stan)

C(party on)
.

By taking some probability away from some words, such as“Stan” and redistributing it
to other words, such as“Tuesday”, zero probabilities can be avoided. In a smoothed trigram
model, the extra probability is typically distributed according to a smoothed bigram model,
etc. While the most commonly used smoothing techniques, Katz smoothing (Katz, 1987)
and Jelinek–Mercer smoothing (Jelinek & Mercer, 1980) (sometimes called deleted interpo-
lation), work fine, even better smoothing techniques exist. In particular, we have previously
shown (Chen & Goodman, 1999) that versions of Kneser–Ney smoothing (Ney, Essen &
Kneser, 1994) outperform all other smoothing techniques. In the appendix of the extended
version of this paper, we give a proof partially explaining this optimality. In Kneser–Ney
smoothing, the backoff distribution is modified: rather than a normal bigram distribution, a
special distribution is used. Using Kneser–Ney smoothing instead of more traditional tech-
niques is the first improvement we used.

The most obvious extension to trigram models is to simply move tohigher-order n-grams,
such as 4-grams and 5-grams. We will show that, in fact, significant improvements can be
gained from moving to 5-grams. Furthermore, in the past, we have shown that there is a sig-
nificant interaction between smoothing andn-gram order (Chen & Goodman, 1999): higher-
ordern-grams work better with Kneser–Ney smoothing than with some other methods, es-
pecially Katz smoothing. We will also look at how much improvement can be gained from
higher ordern-grams, examining up to 20-grams.

Another simple extension ton-gram models isskippingmodels (Huanget al., 1993; Rosen-
feld, 1994; Ney et al., 1994), in which we condition on a different context than the previous
two words. For instance, instead of computingP(wi |wi −2wi −1), we could instead compute
P(wi |wi −3wi −2). This latter model is probably not as good, but can be combined with the
standard model to yield some improvements.

Clustering(also calledclassing) models attempt to make use of the similarities between
words. For instance, if we have seen occurrences of phrases like “party on Monday” and
“party on Wednesday”, then we might imagine that the word “Tuesday”, being similar to both
“Monday” and “Wednesday”, is also likely to follow the phrase “party on.” The majority of
the previous research on word clustering has focused on how to get the best clusters. We have
concentrated our research on the best way tousethe clusters, and will report results showing
some novel techniques that work slightly better than previous methods.

Cachingmodels (Kuhn, 1988; Kuhn & De Mori, 1990; Kuhn &De Mori, 1992) make use
of the observation that if you use a word, you are likely to use it again. They tend to be easy
to implement and to lead to relatively large perplexity improvements, but relatively small
word-error rate improvements. We show that by using a trigram cache, we can get almost
twice the improvement as from a unigram cache.

Sentence mixturemodels (Iyer & Ostendorf, 1999; Iyer, Ostendorf & Rohlicek, 1994)
make use of the observation that there are many different sentence types, and that making
models for each type of sentence may be better than using one global model. Traditionally,
only four to eight types of sentences are used, but we show that improvements can be obtained
by going to 64 mixtures, or perhaps more.



406 J. T. Goodman

1.3. Evaluation

In this section, we first describe and justify our use of perplexity or entropy as an evaluation
technique. We then describe the data and experimental techniques used in the experiments in
the following sections.

We will primarily measure our performance by the entropy of test data as given by the
model (which should be called cross-entropy):

1

N

N∑
i =1

− log2 P(wi |w1 . . . wi −1).

Entropy has several nice properties. First, it is the average number of bits that would be
required to encode the test data using an optimal coder. Also, assuming the test data is gen-
erated by some random process, a perfect model of this process would have the lowest pos-
sible entropy, so the lower the entropy, the closer we are, in some sense, to this true model.
Sometimes, we will also measure perplexity, which is simply 2entropy, and corresponds to
the weighted average number of choices for each word. Several alternatives to entropy have
been shown to correlate better with speech recognition performance, but they are typically
speech-recognizer-specific and much harder to compute in our framework.

All of our experiments were performed on the NAB (North American Business news)
corpus (Stern, 1996). We performed most experiments at four different training data sizes:
100 000 words, 1 000 000 words, 10 000 000 words, and the whole corpus—except 1994 Wall
Street Journal (WSJ) data—approximately 284 000 000 words. In all cases, we performed
parameter optimization on a separate set of heldout data, and then performed testing on a set
of test data. None of the three data sets overlapped. The heldout and test sets were always
every 50th sentence from two non-overlapping sets of 1 000 000 words, taken from the 1994
section. In the appendix, we describe implementation tricks we used; these tricks made it
possible to train very complex models on very large amounts of training data, but made it
hard to test on large test sets. For this reason, we used only 20 000 words total for testing or
heldout data. On the other hand, we did not simply want to use, say, a 20 000 word contigu-
ous test or heldout set, since this would only constitute a few articles, and thus risk problems
from too much homogeneity; thus we chose to use every 50th sentence from non-overlapping
1 000 000 word sets. All of our experiments were done using the same 58 546 word vocab-
ulary. End-of-sentence, end-of-paragraph, and end-of-article symbols were included in per-
plexity computations, but out-of-vocabulary words were not.

It would have been interesting to try our experiments on other corpora, as well as other data
sizes. In our previous work (Chen & Goodman, 1999), we compared both across corpora and
across data sizes. We found that different corpora were qualitatively similar, and that the most
important differences were across training data sizes. We therefore decided to concentrate our
experiments on different training data sizes, rather than on different corpora.

Our toolkit is unusual in that it allows all parameters to be jointly optimized. In particular,
when combining many techniques, there are many interpolation and smoothing parameters
that need to be optimized. We used Powell’s algorithm (Press, Flannery, Teukolsky & Vetter-
ling, 1988) over the heldout data to jointly optimize all of these parameters.

2. Smoothing

There are many different smoothing techniques that can be used, and the subject is a surpris-
ingly subtle and complicated one. Those interested in smoothing should consult our previous



A bit of progress in language modeling 407

work (Chen & Goodman, 1999), where detailed descriptions and detailed comparisons of al-
most all commonly used smoothing algorithms are done. We will limit our discussion here to
four main techniques: simple interpolation, Katz smoothing, Backoff Kneser–Ney smooth-
ing, and Interpolated Kneser–Ney smoothing. In this section, we describe those four tech-
niques, and recap previous results, including the important result that Interpolated Kneser–
Ney smoothing, or minor variations on it, outperforms all other smoothing techniques.

The simplest way to combine techniques in language modeling is to simply interpolate
them together. For instance, if one has a trigram model, a bigram model, and a unigram
model, one can use

Pinterpolate(w|wi −2wi −1) = λPtrigram(w|wi −2wi −1) + (1 − λ)[µPbigram(w|wi −1)

+(1 − µ)Punigram(w)]

whereλ andµ are constants such that 0≤ λ, µ ≤ 1. Given its simplicity, simple interpolation
works surprisingly well, but other techniques, such as Katz smoothing, work even better.

Katz smoothing (Katz, 1987) is based on the Good–Turing formula (Good, 1953). Notice
that if a particular word sequence (i.e. “party on Stan”) occurs only once (out of perhaps
a billion words) it is probably significantly overestimated—it probably just showed up by
chance, and its true probability is much less than one billionth. It turns out that the same
thing is true to a lesser degree for sequences that occurred twice, and so on. Letnr represent
the number ofn-grams that occurr times, i.e.

nr = |{wi −n+1 . . . wi |C(wi −n+1 . . . wi ) = r }|.

Good proved that under some very weak assumptions that for anyn-gram that occursr times,
we shoulddiscountit, pretending that it occursdisc(r ) times where

disc(r ) = (r + 1)
nr +1

nr

[disc(r ) is more typically written asr ∗]. In language modeling, the estimatedisc(r ) will
almost always be less thanr . This will leave a certain amount of probability “left-over.” In
fact, letting N represent the total size of the training set, this left-over probability will be
equal to n1

N ; this represents the amount of probability to be allocated for events that were
never seen.

For a given context, Katz smoothing uses one of two formulae. If the word sequence
wi −n+1 . . . wi has been seen before, then Katz smoothing uses the discounted count of the
sequence, divided by the counts of the contextwi −n+1 . . . wi −1. On the other hand, if the
sequence has never been seen before, then we back off to the next lower distribution,wi −n+2
. . . wi . Basically, we use the following formula:

PKatz(wi |wi −n+1 . . . wi −1)

=

{
disc(C(wi −n+1...wi ))

C(wi −n+1...wi −1)
if C(wi −n+1 . . . wi ) > 0

α(wi −n+1 . . . wi −1) × PKatz(wi |wi −n+2 . . . wi −1) otherwise

whereα(wi −n+1 . . . wi −1) is a normalization constant chosen so that the probabilities sum
to 1.1

1Chen and Goodman(1999), as well as the appendix of the extended version of this paper, give the details of our
implementation of Katz smoothing. Briefly, we also smooth the unigram distribution using additive smoothing; we
discount counts only up tok, where we determinek to be as large as possible, while still giving reasonable discounts
according to the Good–Turing formula; we add pseudo-countsβ for any context with no discounted counts. Tricks
are used to estimatenr .



408 J. T. Goodman

Katz smoothing is one of the most commonly used smoothing techniques, but it turns
out that other techniques work even better.Chen and Goodman(1999) performed a detailed
comparison of many smoothing techniques and found that a modified interpolated form of
Kneser–Ney smoothing (Ney et al., 1994) consistently outperformed all other smoothing
techniques. The basic insight behind Kneser–Ney smoothing is the following. Consider a
conventional bigram model of a phrase such asPKatz(Francisco|on). Since the phraseSan
Franciscois fairly common, the conventional unigram probability (as used by Katz smooth-

ing or techniques like deleted interpolation)C(Francisco)∑
w C(w)

will also be fairly high. This means
that using, for instance, a model such as Katz smoothing, the probability

PKatz(on Francisco) =

{
disc(C(on Francisco))

C(on)
if C(on Francisco) > 0

α(on)×PKatz(Francisco) otherwise
= α(on) × PKatz(Francisco)

will also be fairly high. But, the wordFranciscooccurs in exceedingly few contexts, and its
probability of occurring in a new one is very low. Kneser–Ney smoothing uses a modified
backoff distribution based on the number of contexts each word occurs in, rather than the
number of occurrences of the word. Thus, a probability such asPKN(Francisco|on) would
be fairly low, while for a word likeTuesdaythat occurs in many contexts,PKN(Tuesday|on)
would be relatively high, even if the phraseon Tuesdaydid not occur in the training data.
Kneser–Ney smoothing also uses a simpler discounting scheme than Katz smoothing: rather
than computing the discounts using Good–Turing, a single discount,D, (optimized on held-
out data) is used. In particular, Backoff Kneser–Ney smoothing uses the following formula
(given here for a bigram) where|{v|C(vwi ) > 0}| is the number of wordsv thatwi can occur
in the context of

PBKN(wi |wi −1) =

{ C(wi −1wi )−D
C(wi −1)

if C(wi −1wi ) > 0

α(wi −1)
|{v|C(vwi )>0}|∑
w |{v|C(vw)>0}|

otherwise
.

Again, α is a normalization constant such that the probabilities sum to 1. The formula can
be easily extended to higher ordern-grams in general. For instance, for trigrams, both the
unigram and bigram distributions are modified.

Chen and Goodman(1999) showed that methods like Katz smoothing and Backoff Kneser–
Ney smoothing that backoff to lower order distributions only when the higher order count is
missing do not do well on low counts, such as one counts and two counts. This is because the
estimates of these low counts are fairly poor, and the estimates ignore useful information in
the lower order distribution.Interpolatedmodels always combine both the higher order and
the lower order distribution, and typically work better. In particular, the formula for Interpo-
lated Kneser–Ney smoothing is

PIKN(wi |wi −1) =
C(wi −1wi ) − D

C(wi −1)
+ λ(wi −1)

|{v|C(vwi ) > 0}|∑
w |{v|C(vw) > 0}|

whereλ(wi −1) is a normalization constant such that the probabilities sum to 1.Chen and
Goodman(1999) proposed one additional modification to Kneser–Ney smoothing, the use
of multiple discounts, one for one counts, another for two counts, and another for three or
more counts. This formulation, Modified Kneser–Ney smoothing, typically works slightly
better than Interpolated Kneser–Ney. However, in our experiments on combining techniques,
it would have nearly tripled the number of parameters our system needed to search, and in a
pilot study, when many techniques were combined, it did not work better than Interpolated



A bit of progress in language modeling 409

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

100 1000 10000 100000 1e+06 1e+07

di
ff

 in
 te

st
 c

ro
ss

-e
nt

ro
py

 f
ro

m
 b

as
el

in
e 

(b
its

/to
ke

n)

training set size (sentences)

relative performance of algorithms on WSJ/NAB corpus, 3-gram

jelinek-mercer-baseline

katzkneser-ney

kneser-ney-mod

abs-disc-interp

j-m

witten-bell-backoff

Figure 1. Smoothing results across data sizes.

Kneser–Ney. Thus, in the rest of this paper, we use Interpolated Kneser–Ney instead of Modi-
fied Kneser–Ney. In the appendix of the long version of this paper, we give a few more details
about our implementation of our smoothing techniques, including standard refinements used
for Katz smoothing. We also give arguments justifying Kneser–Ney smoothing, and example
code, showing that interpolated Kneser–Ney smoothing is easy to implement.

In Figure1, we repeat results fromChen and Goodman(1999). These are the only results
in this paper not run on exactly the same sections of the corpus for heldout, training, and test
as the rest of the paper, but we expect them to be very comparable. The baseline used for
these experiments was a simple version of Jelinek–Mercer smoothing, using a single bucket;
that version is identical to the first smoothing technique we described, simple interpolation.
Kneser–Ney smoothing is the interpolated version of Kneser–Ney smoothing used through-
out this paper, and Kneser–Ney mod is the version with three discounts instead of a single
discount. Katz smoothing is essentially the same as the version in this paper. j-m is short
for Jelinek–Mercer smoothing, sometimes called deleted interpolation elsewhere; abs-disc-
interp is the interpolated version of absolute discounting. Training set size was measured
in sentences, rather than in words, with about 20 words per sentence. Notice that Jelinek–
Mercer smoothing and Katz smoothing cross, one being better at lower data sizes, the other
at higher sizes. This was part of our motivation for running all experiments in this paper on
multiple data sizes. On the other hand, in those experiments, which were done on multiple
corpora, we did not find any techniques where one technique worked better on one corpus,
and another worked better on another one. Thus, we feel reasonably confident in our deci-
sion not to run on multiple corpora.Chen and Goodman(1999) give a much more complete
comparison of these techniques, as well as much more in depth analysis.Chen and Goodman
(1998) gives a superset that also serves as a tutorial introduction.



410 J. T. Goodman

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

1 2 3 4 5 6 7 8 9 10 20
n-gram order

E
nt

ro
py

100,000 KN

1,000,000 Katz

1,000,000 KN

10,000,000 Katz

10,000,000 KN

all Katz

all KN

100,000 Katz

Figure 2. n-Gram order vs. entropy.

3. Higher-order n-grams

While the trigram assumption has proven, in practice, to be reasonable, there are many
cases in which even longer contexts can be helpful. It is thus natural to relax the trigram
assumption, and, rather than computingP(wi |wi −2wi −1), use a longer context, such as
P(wi |wi −4wi −3wi −2wi −1), a 5-gram model. In many cases, no sequence of the form
wi −4wi −3wi −2wi −1 will have been seen in the training data, and the system will need to
backoff to or interpolate with four grams, trigrams, bigrams, or even unigrams, but in those
cases where such a long sequence has been seen, it may be a good predictor ofwi .

Some earlier experiments with longer contexts showed little benefit from them. This turns
out to be partially due to smoothing. As shown byChen and Goodman(1999), some smooth-
ing methods work significantly better with higher-ordern-grams than others do. In particu-
lar, the advantage of Interpolated Kneser–Ney smoothing is much larger with higher-order
n-grams than with lower-order ones.

We performed a variety of experiments on the relationship betweenn-gram order and per-
plexity. In particular, we tried both Katz smoothing and Interpolated Kneser–Ney smoothing
onn-gram orders from one to 10, as well as 20, and over our standard data sizes. The results
are shown in Figure2.

As can be seen, and has been previously observed (Chen & Goodman, 1999), the behavior
for Katz smoothing is very different from the behavior for Kneser–Ney smoothing. Chen
and Goodman determined that the main cause of this difference was that backoff smoothing
techniques, such as Katz smoothing, or even the backoff version of Kneser–Ney smoothing
(we use only interpolated Kneser–Ney smoothing in this work), work poorly on low counts,
especially one counts, and that as then-gram order increases, the number of one counts
increases. In particular, Katz smoothing has its best performance around the trigram level,
and actually gets worse as this level is exceeded. Kneser–Ney smoothing, on the other hand,
is essentially monotonic even through 20-grams.

The plateau point for Kneser–Ney smoothing depends on the amount of training data avail-
able. For small amounts, 100 000 words, the plateau point is at the trigram level, whereas
when using the full training data, 280 million words, small improvements occur even into



A bit of progress in language modeling 411

the 6-gram (0.02 bits better than 5-gram) and 7-gram (0.01 bits better than 6-gram). Dif-
ferences of this size are interesting, but not of practical importance. The difference between
4-grams and 5-grams, 0.06 bits, is perhaps important, and so, for the rest of our experiments,
we often use models built on 5-gram data, which appears to give a good tradeoff between
computational resources and performance.

Note that, in practice, going beyond trigrams is often impractical. The tradeoff between
memory and performance typically requires heavy pruning of 4-grams and 5-grams, re-
ducing the potential improvement from them. Throughout this paper, we ignore memory-
performance tradeoffs, since this would overly complicate already difficult comparisons. We
seek instead to build the single best system possible, ignoring memory issues, and leaving the
more practical, more interesting, and very much more complicated issue of finding the best
system at a given memory size, for future research [and a bit of past research, too (Goodman
& Gao, 2000)]. Note that many of the experiments done in this section could not be done at
all without the special tool described briefly at the end of this paper, and in more detail in the
appendix of the extended version of this paper.

4. Skipping

As one moves to larger and largern-grams, there is less and less chance of having seen the
exact context before; but the chance of having seen a similar context, one with most of the
words in it, increases. Skipping models (Huanget al., 1993; Ney et al., 1994; Rosenfeld,
1994; Martin, Hamacher, Liermann, Wessel & Ney, 1999; Siu & Ostendorf, 2000) make use
of this observation. There are also variations on this technique, such as techniques using
lattices (Saul & Pereira, 1997; Dupont & Rosenfeld, 1997), or models combining classes and
words (Blasig, 1999).

When considering a 5-gram context, there are many subsets of the 5-gram we could con-
sider, such asP(wi |wi −4wi −3wi −1) or P(wi |wi −4wi −2wi −1). Perhaps we have never seen
the phrase “Show John a good time” but we have seen the phrase “Show Stan a good time.”
A normal 5-gram predictingP(time|show John a good) would back off toP(time | John a
good)and from there toP(time|a good), which would have a relatively low probability. On
the other hand, a skipping model of the formP(wi |wi −4wi −2wi −1) would assign high prob-
ability to P(time|show a good).

These skipping 5-grams are then interpolated with a normal 5-gram, forming models such
as

λP(wi |wi−4wi−3wi−2wi−1) + µP(wi |wi−4wi−3wi−1) + (1−λ−µ)P(wi |wi−4wi−2wi−1)

where, as usual, 0≤ λ ≤ 1 and 0≤ µ ≤ 1 and 0≤ (1 − λ − µ) ≤ 1.
Another (and more traditional) use for skipping is as a sort of poor man’s higher order

n-gram. One can, for instance, create a model of the form

λP(wi |wi −2wi −1) + µP(wi |wi −3wi −1) + (1 − λ − µ)P(wi |wi −3wi −2).

In a model of this form, no component probability depends on more than two previous words,
like a trigram, but the overall probability is 4-gram-like, since it depends onwi −3, wi −2, and
wi −1. We can extend this idea even further, combining in all pairs of contexts in a 5-gram-
like, 6-gram-like, or even 7-gram-like way, with each component probability never depending
on more than the previous two words.

We performed two sets of experiments, one on 5-grams and one on trigrams. For the
5-gram skipping experiments, all contexts depended on at most the previous four words,



412 J. T. Goodman

Figure 3. 5-Gram skipping techniques vs. 5-gram baseline.

wi −4, wi −3, wi −2, wi −1, but used the four words in a variety of ways. We tried six models,
all of which were interpolated with a baseline 5-gram model. For readability and conciseness,
we define a new notation, lettingv = wi −4, w = wi −3, x = wi −2 andy = wi −1, allowing
us to avoid numerous subscripts in what follows. The results are shown in Figure3.

The first model interpolated dependencies onvw y andv xy. This simple model does not
work well on the smallest training data sizes, but is competitive for larger ones. Next, we tried
a simple variation on this model, which also interpolated invwx . Making that simple addi-
tion leads to a good-sized improvement at all levels, roughly 0.02 to 0.04 bits over the simpler
skipping model. Our next variation was analogous, but adding back in the dependencies on
the missing words. In particular, we interpolated togetherxvwy, wvxy, andyvwx; that is,
all models depended on the same variables, but with the interpolation order modified. For
instance, byxvwy, we refer to a model of the formP(z|vwxy) interpolated withP(z|vw y)
interpolated withP(z|w y) interpolated withP(z|y) interpolated withP(z|y) interpolated
with P(z). All of these experiments were done with Interpolated Kneser–Ney smoothing, so
all but the first probability use the modified backoff distribution. This model is just like the
previous one, but for each component starts the interpolation with the full 5-gram. We had
hoped that in the case where the full 5-gram had occurred in the training data, this would
make the skipping model more accurate, but it did not help at all.2

We also wanted to try more radical approaches. For instance, we tried interpolating to-
gethervwyx with vxyw andwxyv (along with the baselinevwxy). This model puts each of
the four preceding words in the last (most important) position for one component. This model
does not work as well as the previous two, leading us to conclude that they word is by far the
most important. We also tried a model withvwyx, vywx, yvwx, which puts they word in
each possible position in the backoff model. This was overall the worst model, reconfirming
the intuition that they word is critical. However, as we saw by addingvwx to vw y and

2In fact, it hurt a tiny bit, 0.005 bits at the 10 000 000 word training level. This turned out to be due to technical
smoothing issues.



A bit of progress in language modeling 413

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

100,000 1,000,000 10,000,000 all

Training Data Size

R
el

at
iv

e
E

nt
ro

py

pairs using 1-back

pairs to 4-gram

pairs to 5-gram

pairs to 6-gram

pairs to 7-gram

5-gram

skip 5-gram

Figure 4. Trigram skipping techniques vs. trigram baseline.

v xy, having a component with thex position final is also important. This will also be the
case for trigrams.

Finally, we wanted to get a sort of upper bound on how well 5-gram models could work.
For this, we interpolated togethervwyx, vxyw, wxyv, vywx, yvwx, xvwy andwvxy. This
model was chosen as one that would include as many pairs and triples of combinations of
words as possible. The result is a marginal gain—less than 0.01 bits—over the best previous
model.

We do not find these results particularly encouraging. In particular, when compared to the
sentence mixture results that will be presented later, there seems to be less potential to be
gained from skipping models. Also, while sentence mixture models appear to lead to larger
gains the more data that is used, skipping models appear to get their maximal gain around
10 000 000 words. Presumably, at the largest data sizes, the 5-gram model is becoming well
trained, and there are fewer instances where a skipping model is useful but the 5-gram is not.

We also examined trigram-like models. These results are shown in Figure4. The baseline
for comparison was a trigram model. For comparison, we also show the relative improvement
of a 5-gram model over the trigram, and the relative improvement of the skipping 5-gram with
vw y, v xy andvwx . For the trigram skipping models, each component never depended on
more than two of the previous words. We tried five experiments of this form. First, based on
the intuition that pairs using the 1-back word (y) are most useful, we interpolatedxy, wy, vy,
uy andty models. This did not work particularly well, except at the largest sizes. Presumably
at those sizes, a few appropriate instances of the 1-back word had always been seen. Next,
we tried using all pairs of words through the 4-gram level:xy, wy andwx. Considering
its simplicity, this worked very well. We tried similar models using all 5-gram pairs, all
6-gram pairs and all 7-gram pairs; this last model contained 15 different pairs. However, the
improvement over 4-gram pairs was still marginal, especially considering the large number
of increased parameters.



414 J. T. Goodman

The trigram skipping results are, relative to their baseline, much better than the 5-gram
skipping results. They do not appear to have plateaued when more data is used and they are
much more comparable to sentence mixture models in terms of the improvement they get.
Furthermore, they lead to more improvement than a 5-gram alone does when used on small
amounts of data (although, of course, the best 5-gram skipping model is always better than
the best trigram skipping model). This makes them a reasonable technique to use with small
and intermediate amounts of training data, especially if 5-grams cannot be used.

5. Clustering

5.1. Using clusters

Next, we describe our clustering techniques, which are a bit different (and, as we will show,
slightly more effective) than traditional clustering (Brown, DellaPietra, deSouza, Lai & Mer-
cer, 1992; Neyet al., 1994). Consider a probability such asP(Tuesday|party on). Perhaps the
training data contains no instances of the phrase“party on Tuesday”, although other phrases
such as“party on Wednesday”and “party on Friday” do appear. We can put words into
classes, such as the word“Tuesday” into the classWEEKDAY. Now, we can consider the
probability of the word“Tuesday” given the phrase“party on” , and also given that the next
word is aWEEKDAY. We will denote this probability byP(Tuesday|party on WEEKDAY).
We can then decompose the probability

P(Tuesday|party on)

= P(WEEKDAY|party on) × P(Tuesday|party on WEEKDAY).

When each word belongs to only one class, which is called hard clustering, this decompostion
is a strict equality. Notice that, because we are using hard clusters, if we knowwi , we also
know Wi , meaning thatP(wi −2wi −1Wi wi ) = P(wi −2wi −1wi ). With this fact,

P(Wi |wi−2wi−1)×P(wi |wi−2wi−1Wi )=
P(wi −2wi −1Wi )

P(wi −2wi −1)
×

P(wi −2wi −1Wi wi )

P(wi −2wi −1Wi )

=
P(wi −2wi −1Wi wi )

P(wi −2wi −1)

=
P(wi −2wi −1wi )

P(wi −2wi −1)

= P(wi |wi −2wi −1). (1)

The extended version of the paper gives a slightly more detailed derivation.
Now, although Equation (1) is a strict equality, when smoothing is taken into consideration,

using the clustered probability will be more accurate than the non-clustered probability. For
instance, even if we have never seen an example of“party on Tuesday”, perhaps we have
seen examples of other phrases, such as“party on Wednesday”and thus, the probability
P(WEEKDAY|party on) will be relatively high. And although we may never have seen an
example of“party on WEEKDAY Tuesday”, after we backoff or interpolate with a lower
order model, we may be able to accurately estimateP(Tuesday|on WEEKDAY). Thus, our
smoothed clustered estimate may be a good one. We call this particular kind of clustering
predictive clustering. (On the other hand, we will show that if the clusters are poor, predictive
clustering can also lead to degradation.)



A bit of progress in language modeling 415

Note that predictive clustering has other uses as well as for improving perplexity. Predictive
clustering can be used to significantly speed up maximum entropy training (Goodman, 2001b),
by up to a factor of 35, as well as to compress language models (Goodman & Gao, 2000).

Another type of clustering we can do is to cluster the words in the contexts. For instance, if
“party” is in the classEVENTand“on” is in the classPREPOSITION, then we could write

P(Tuesday|party on) ≈ P(Tuesday|EVENT PREPOSITION)

or more generally

P(w|wi −2wi −1) ≈ P(w|Wi −2Wi −1). (2)

Combining Equation (2) with Equation (1) we get

P(w|wi −2wi −1) ≈ P(W|Wi −2Wi −1) × P(w|Wi −2Wi −1W). (3)

Since Equation (3) does not take into account the exact values of the previous words, we
always (in this work) interpolate it with a normal trigram model. We call the interpolation
of Equation (3) with a trigramfullibm clustering. We call it fullibm because it is a general-
ization of a technique invented at IBM (Brown et al., 1992), which uses the approximation
P(w|Wi −2Wi −1W) ≈ P(w|W) to get

P(w|wi −2wi −1) ≈ P(W|Wi −2Wi −1) × P(w|W) (4)

which, when interpolated with a normal trigram, we refer to asibm clustering. Given that
fullibm clustering uses more information than regular ibm clustering, we assumed that it
would lead to improvements. As will be shown, it works about the same, at least when inter-
polated with a normal trigram model.

Alternatively, rather than always discarding information, we could simply change the back-
off order, calledindexclustering:

Pindex(Tuesday|party on) = P(Tuesday|party EVENT on PREPOSITION). (5)

Here, we abuse notation slightly to use the order of the words on the right side of the| to
indicate the backoff/interpolation order. Thus, Equation (5) implies that we would go from
P(Tuesday|party EVENT on PREPOSITION) to P(Tuesday|EVENT on PREPOSITION) to
P(Tuesday|on PREPOSITION) to P(Tuesday|PREPOSITION) to P(Tuesday). Notice that
since each word belongs to a single cluster, some of these variables are redundant. For in-
stance, in our notation

C(party EVENT on PREPOSITION) = C(party on)

and

C(EVENT on PREPOSITION) = C(EVENT on).

We generally write an index clustered model asP(wi |wi −2Wi −2wi −1Wi −1).
There is one especially noteworthy technique,fullibmpredict. This is the best performing

technique we have found (other than combination techniques.) This technique makes use of
the intuition behind predictive clustering, factoring the problem into prediction of the cluster,
followed by prediction of the word given the cluster. In addition, at each level, it smoothes
this prediction by combining a word-based and a cluster-based estimate. It is not interpolated
with a normal trigram model. It is of the form

Pfullibmpredict(w|wi −2wi −1) = (λP(W|wi −2wi −1) + (1−λ)P(W|Wi −2Wi −1))×

(µP(w|wi −2wi −1W) + (1−µ)P(w|Wi −2Wi −1W).



416 J. T. Goodman

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

100,000 1,000,000 10,000,000 all
Training Data Size

R
el

at
iv

e
E

nt
ro

py

nocluster

predict

index

combinepredict

indexpredict

fullibm

ibm

fullibmpredict

allcombinenotop

allcombine

Figure 5. Comparison of nine different clustering techniques, Kneser–Ney smoothing.

There are many variations on these themes. As it happens, none of the others works much
better than ibm clustering, so we describe them only very briefly. One isindexpredict, com-
bining index and predictive clustering:

Pindexpredict(wi |wi −2wi −1)

= P(Wi |wi −2Wi −2wi −1Wi −1) × P(wi |wi −2Wi −2wi −1Wi −1Wi ).

Another iscombinepredict, interpolating a normal trigram with a predictive clustered trigram:

Pcombinepredict(wi |wi −2wi −1)

= λP(wi |wi −1wi −2) + (1 − λ)P(Wi |wi −2wi −1) × P(wi |wi −2wi −1Wi ).

Finally, we wanted to get some sort of upper bound on how much could be gained by clus-
tering, so we tried combining all these clustering techniques together, to get what we call
allcombinenotop, which is an interpolation of a normal trigram, a fullibm-like model, an in-
dex model, a predictive model, a true fullibm model, and an indexpredict model. A variation,
allcombine, interpolates the predict-type models first at the cluster level, before interpolating
with the word level models. Exact formulae are given in the extended version of this paper.

In Figure 5, we show a comparison of nine different clustering techniques, all using
Kneser–Ney smoothing. The clusters were built separately for each training size. Notice
that the value of clustering decreases with training data; at small data sizes, it is about 0.2
bits for the best clustered model; at the largest sizes, it is only about 0.1 bits. Since clustering
is a technique for dealing with data sparseness, this is unsurprising. Next, notice that ibm
clustering consistently works very well. Of all the other techniques we tried, only four oth-
ers worked as well or better: fullibm clustering, which is a simple variation; allcombine and
allcombinenotop, which interpolate in a fullibm; and fullibmpredict. Fullibmpredict works



A bit of progress in language modeling 417

very well—as much as 0.05 bits better than ibm clustering. However, it has a problem at the
smallest training size, in which case it is worse. We believe that the clusters at the smallest
training size are very poor, and that predictive style clustering gets into trouble when this
happens, since it smoothes across words that may be unrelated, while ibm clustering inter-
polates in a normal trigram model, making it more robust to poor clusters. All of the models
that use predict clustering and do not interpolate an unclustered trigram are actually worse
than the baseline at the smallest training size.

In the extended version of this paper, we also show results compared to a Katz smoothed
model. The results are similar, with some interesting exceptions: in particular, indexpredict
works well for the Kneser–Ney smoothed model, but very poorly for the Katz smoothed
model. This shows that smoothing can have a significant effect on other techniques, such
as clustering. The other result is that across all nine clustering techniques, at every size, the
Kneser–Ney version always outperforms the Katz smoothed version. In fact, the Kneser–
Ney smoothed version also outperformed both interpolated and backoff absolute discounting
versions of each technique at every size.

There are two other ways to perform clustering, which we will not explore here. First, one
can cluster groups of words—complete contexts—instead of individual words. That is, to
change notation for a moment, instead of computing

P(w|word-cluster(wi −2)word-cluster(wi −1))

one could compute

P(w|context-cluster(wi −2wi −1)).

For instance, in a trigram model, one could cluster contexts like“New York” and“Los An-
geles” as“CITY” , and“on Wednesday”and“late tomorrow” as“TIME” . There are many
difficult issues to solve for this kind of clustering. Another kind of conditional clustering one
could do is to empirically determine, for a given context, the best combination of clusters and
words to use, thevarigramapproach (Blasig, 1999).

5.2. Finding clusters

A large amount of previous research has focused on how best to find the clusters (Brown
et al., 1992; Kneser & Ney, 1993; Pereira, Tishby & Lee, 1993; Ueberla, 1995; Bellegarda,
Butzberger, Chow, Coccaro & Naik, 1996; Yamamoto & Sagisaka, 1999). Most previous
research has found only small differences between different techniques for finding clusters.
One result, however, is that automatically derived clusters outperform part-of-speech tags
(Niesler, Whittaker & Woodland, 1998), at least when there is enough training data (Ney et
al., 1994). We did not explore different techniques for finding clusters, but simply picked one
we thought would be good, based on previous research.

There is no need for the clusters used for different positions to be the same. In particular,
for a model like ibm clustering, withP(wi |Wi ) × P(Wi |Wi −2Wi −1), we will call the Wi

cluster apredictivecluster, and the clusters forWi −1 andWi −2 conditionalclusters. The pre-
dictive and conditional clusters can be different (Yamamoto & Sagisaka, 1999). For instance,
consider a pair of words likea andan. In general,a andan can follow the same words, and
so, for predictive clustering, belong in the same cluster. But, there are very few words that
can follow botha andan—so for conditional clustering, they belong in different clusters. We
have also found in pilot experiments that the optimal number of clusters used for predictive
and conditional clustering are different; in this paper, we always optimize both the number
of conditional and predictive clusters separately, and reoptimize for each technique at each



418 J. T. Goodman

training data size. This is a particularly time consuming experiment, since each time the num-
ber of clusters is changed, the models must be rebuilt from scratch. We always try numbers
of clusters that are powers of 2, e.g. 1, 2, 4, etc., since this allows us to try a wide range of
numbers of clusters, while never being more than a factor of 2 away from the optimal number.
Examining charts of performance on heldout data, this seems to produce numbers of clusters
that are close enough to optimal.

The clusters are found automatically using a tool that attempts to minimize perplexity. In
particular, for the conditional clusters we try to minimize the perplexity of training data for a
bigram of the formP(wi |Wi −1), which is equivalent to maximizing

N∏
i =1

P(wi |Wi −1).

For the predictive clusters, we try to minimize the perplexity of training data ofP(Wi |wi −1)×

P(wi |Wi ). In the full version of this paper, we show that this is equivalent to maximizing the
perplexity of P(wi −1|Wi ),3 which is very convenient, since it means we can use the same
tool to get both conditional and predictive clusters, simply switching the order of the input
pairs. We give more details about the clustering algorithm used in Section9.

6. Caching

If a speaker uses a word, it is likely that he will use the same word again in the near future.
This observation is the basis of caching (Kuhn, 1988; Kupiec, 1989; Kuhn & De Mori, 1990;
Kuhn &De Mori, 1992; Jelinek, Merialdo, Roukos & Strauss, 1991). In particular, in a uni-
gram cache, we form a unigram model from the most recently spoken words (all those in the
same article if article markers are available, or a fixed number of previous words if not.) This
unigram cache can then be linearly interpolated with a conventionaln-gram.

Another type of cache model depends on the context. For instance, we could form a
smoothed bigram or trigram from the previous words, and interpolate this with the standard
trigram. In particular, we use

Ptrigram-cache(w|w1 . . . wi −2wi −1) =

λPSmooth(w|wi −2wi −1) + (1 − λ)Ptricache(w|w1 . . . wi −1)

wherePtricache(w|w1 . . . wi −1) is a simple interpolated trigram model, using counts from
the preceding words in the same document.

Yet another technique is to use conditional caching. In this technique, we weight the tri-
gram cache differently depending on whether or not we have previously seen the context
or not. The exact formulae are given in the extended version of the paper, but basically, we
only interpolate the trigram cachePtricache(w|wi −2wi −1) if we have at least seenwi −1 in
the cache. Alternatively, we can interpolate a unigram, bigram, and trigram cache, and use
the bigram cache only if we have seenwi −1 and the trigram only if we have seen the pair
wi −2wi −1. In addition, the actual formulae we used allowed the caches to have a variable
weight, depending on the amount of context, but the optimal parameters found set the vari-
able factor very near zero.

Figure6 gives results of running each of these five cache models. All were interpolated
with a Kneser–Ney smoothed trigram. Each of then-gram cache models was smoothed using
simple interpolation, for technical reasons. As can be seen, caching is potentially one of the
3As suggested to us by Lillian Lee.



A bit of progress in language modeling 419

-0.6

-0.55

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

100,000 1,000,000 10,000,000 all

Training Data Size

R
el

at
iv

e
E

nt
ro

py

unigram

bigram

trigram

unigram + cond
trigram

unigram + cond
bigram + cond
trigram

Figure 6. Five different cache models interpolated with trigram compared to trigram
baseline.

most powerful techniques we can apply, leading to performance improvements of up to 0.6
bits on small data. Even on large data, the improvement is still substantial, up to 0.23 bits.
On all data sizes, then-gram caches perform substantially better than the unigram cache, but
which version of then-gram cache is used appears to make only a small difference.

It should be noted that all of these results assume that the previous words are known ex-
actly. In a speech recognition system, however, many product scenarios do not include user
correction. It is then possible for a cache to “lock-in” errors. For instance, if the user says
“recognize speech” and the system hears “wreck a nice beach” then, later, when the user
says “speech recognition” the system may hear “beach wreck ignition”, since the probability
of “beach” will be significantly raised. Thus, getting improvements from caching in a real
product is potentially a much harder problem.

7. Sentence mixture models

Iyer and Ostendorf(1999) andIyer et al. (1994) observed that within a corpus, there may
be several different sentence types; these sentence types could be grouped by topic, or style,
or some other criterion. No matter how they are grouped, by modeling each sentence type
separately, improved performance can be achieved. For instance, in WSJ data, we might
assume that there are three different sentence types: financial market sentences (with a great
deal of numbers and stock names), business sentences (promotions, demotions, mergers), and
general news stories. We can compute the probability of a sentence once for each sentence
type, then take a weighted sum of the probabilities across sentence types. Because long-
distance correlations within a sentence (lots of numbers, or lots of promotions) are captured
by such a model, the overall model is better. Of course, in general, we do not know the



420 J. T. Goodman

sentence type until we have heard the sentence. Therefore, instead, we treat the sentence type
as a hidden variable.

Let sj denote the condition that the sentence under consideration is a sentence of typej .
Then the probability of the sentence, given that it is of typej can be written as

N∏
i =1

P(wi |wi −2wi −1sj ).

Sometimes, the global model (across all sentence types) will be better than any individual
sentence type. Lets0 be a special context that is always true:

P(wi |wi −2wi −1s0) = P(wi |wi −2wi −1).

Let there beS different sentence types (4≤ S ≤ 8 is typical); letσ0 . . . σS be sentence
interpolation parameters optimized on heldout data subject to the constraint

∑S
j =0 σ j = 1.

The overall probability of a sentencew1 . . . wn is equal to

S∑
j =0

σ j

N∏
i =1

P(wi |wi −2wi −1sj ). (6)

Equation (6) can be read as saying that there is a hidden variable, the sentence type; the prior
probability for each sentence type isσ j . We compute the probability of a test sentence once
for each sentence type, and then sum these probabilities according to the prior probability of
that sentence type.

The probabilitiesP(wi |wi −2wi −1sj ) may suffer from data sparsity, so they are linearly
interpolated with the global modelP(wi |wi −2wi −1), using interpolation weights optimized
on heldout data.

Sentence types for the training data were found by using the same clustering program
used for clustering words; in this case, we tried to minimize the sentence-cluster unigram
perplexities. That is, lets(i ) represent the sentence type assigned to the sentence that wordi
is part of. (All words in a given sentence are assigned to the same sentence type.) We tried
to put sentences into clusters in such a way that

∏N
i =1 P(wi |s(i )) was maximized. This is a

much simpler technique than that used byIyer and Ostendorf(1999). We assume that their
technique results in better models than ours.

We performed a fairly large number of experiments on sentence mixture models. We
sought to study the relationship between training data size,n-gram order, and number of
sentence types. We therefore ran a number of experiments using both trigrams and 5-grams,
at our standard data sizes, varying the number of sentence types from one (a normal model
without sentence mixtures) to 128. All experiments were done with Kneser–Ney smoothing.
The results are shown in Figure7. Note, however, that we do not trust results for 128 mixtures
because there may not have been enough heldout data to correctly estimate the parameters;
see the extended version of this paper for details.

The results are very interesting for a number of reasons. First, we suspected that sentence
mixture models would be more useful on larger training data sizes, and indeed they are; with
100 000 words, the most improvement from a sentence mixture model is only about 0.1 bits,
while with 284 000 000 words, it is nearly 0.3 bits. This bodes well for the future of sentence
mixture models: as computers get faster and larger, training data sizes should also increase.
Second, we had suspected that because both 5-grams and sentence mixture models attempt
to model long distance dependencies, the improvement from their combination would be less
than the sum of the individual improvements. As can be seen in Figure7, for 100 000 and



A bit of progress in language modeling 421

Figure 7. Number of sentence types vs. entropy.

1 000 000 words of training data, the difference between trigrams and 5-grams is very small
anyway, so the question is not very important. For 10 000 000 words and all training data,
there is some negative interaction. For instance, with four sentence types on all training data,
the improvement is 0.12 bits for the trigram, and 0.08 bits for the 5-gram. Similarly, with 32
mixtures, the improvement is 0.27 on the trigram and 0.18 on the 5-gram. So, approximately
one-third of the improvement seems to be correlated.

Iyer and Ostendorf(1999) reported experiments on both five-mixture components and
eight components and found no significant difference, using 38 million words of training
data. However, our more thorough investigation shows that indeed there is substantial room
for improvement by using larger numbers of mixtures, especially when using more training
data, and that this potential extends to at least 64 sentence types on our largest size. This is
an important result, leading to almost twice the potential improvement of using only a small
number of components.

We think this new result is one of the most interesting in our research. In particular, the
techniques we used here were relatively simple, and many extensions to these techniques
might lead to even larger improvements. For instance, rather than simply smoothing a sen-
tence type with the global model, one could create sentence types and supertypes, and then
smooth together the sentence type with its supertype and with the global model, all combined.
This would alleviate the data sparsity effects seen with the largest numbers of mixtures.

Our sentence mixture model results are encouraging, but disappointing when compared to
previous results. WhileIyer and Ostendorf(1999) achieve about 19% perplexity reduction
and about 3% word error rate reduction with five mixtures, on similar data we achieve only
about 9% and (as we will show later) 1.3% reductions with four mixtures. In the extended
version of this paper, we speculate on the potential causes of the differences. We suspect that



422 J. T. Goodman

our clustering technique, much simpler than theirs, or differences in the exact composition of
the data sets, account for the differences.

Sentence mixture models can also be useful when combining very different language
model types. For instance,Jurafsky, Wooters, Segal, Fosler, Tajchman and Morgan(1995)
uses a sentence mixture model to combine a stochastic context-free grammar (SCFG) model
with a bigram model, resulting in marginally better results than either model used separately.
The model of Jurafskyet al. is actually of the form:

P(wi |w1 . . . wi −1)

= P(SCFG|w1 . . . wi −1) × P(wi |w1 . . . wi −1, SCFG)

+P(bigram|w1 . . . wi −1) × P(wi |w1 . . . wi −1, bigram)

which turns out to be equivalent to a model in the form of Equation (6). Charniak(2001), as
discussed in Section10.4, uses a sentence level mixture model to combine a linguistic model
with a trigram model, achieving significant perplexity reduction.

8. Combining techniques

In this section, we present additional results on combining techniques. While each of the
techniques we have presented works well separately, we will show that some of them work
together synergistically, and that some of them are partially redundant. For instance, we have
shown that the improvement from Kneser–Ney modeling and 5-gram models together is
larger than the improvement from either one by itself. Similarly, as we have already shown,
the improvement from sentence mixture models when combined with 5-grams is only about
two-thirds of the improvement of sentence mixture models by themselves, because both tech-
niques increase data sparsity. In this section, we systematically study three issues: what effect
does smoothing have on each technique; how much does each technique help when combined
with all of the others; and how does each technique affect word error rate, separately and to-
gether.

There are many different ways to combine techniques. The most obvious way to combine
techniques is to simply linearly interpolate them, but this is not likely to lead to the largest
possible improvement. Instead, we try to combine concepts. To give a simple example, recall
that a fullibmpredict clustered trigram is of the form:

(λP(W|wi −2wi −1) + (1 − λ)P(W|Wi −2Wi −1))×

(µP(w|wi −2wi −1W) + (1 − µ)P(w|Wi −2Wi −1W).

One could simply interpolate this clustered trigram with a normal 5-gram, but of course it
makes much more sense to combine the concept of a 5-gram with the concept of fullibmpre-
dict, using a clustered 5-gram:

(λP(W|wi −4wi −3wi −2wi −1) + (1 − λ)P(W|Wi −4Wi −3Wi −2Wi −1))×

(µP(w|wi −4wi −3wi −2wi −1W) + (1 − µ)P(w|Wi −4Wi −3Wi −2Wi −1W).

We will follow this idea of combining concepts, rather than simply interpolating throughout
this section. This tends to result in good performance, but complex models.

Our overall combination technique is somewhat complicated. At the highest level, we use
a sentence mixture model, in which we sum over sentence-specific models for each sentence
type. Within a particular sentence mixture model, we combine different techniques with pre-
dictive clustering. That is, we combine sentence-specific, global, cache, and global skipping



A bit of progress in language modeling 423

models first to predict the cluster of the next word, and then again to predict the word itself
given the cluster.

For each sentence type, we wish to linearly interpolate the sentence-specific 5-gram model
with the global 5-gram model, the three skipping models, and the two cache models. Since
we are using fullibmpredict clustering, we wish to do this based on both words and clusters.
Let λ1, j . . . λ12, j , µ1, j . . . µ12, j be interpolation parameters. Then, we define the following
two very similar functions. First,4

senclusterj (W, wi −4 . . . wi −1)

= λ1, j P(W|wi −4wi −3wi −2wi −1sj ) + λ2, j P(W|Wi −4Wi −3Wi −2Wi −1sj ) +

λ3, j P(W|wi −4wi −3wi −2wi −1) + λ4, j P(W|Wi −4Wi −3Wi −2Wi −1) +

λ5, j P(W|wi −4wi −3wi −1) + λ6, j P(W|Wi −4Wi −3Wi −1) +

λ7, j P(W|wi −4wi −2wi −1) + λ8, j P(W|Wi −4Wi −2Wi −1) +

λ9, j P(W|wi −4wi −3wi −2) + λ10, j P(W|Wi −4Wi −3Wi −2) +

λ11, j Punicache(W) + λ12, j Ptricache(W|wi −2wi −1).

Next, we define the analogous function for predicting words given clusters:

senwordj (w, wi −4 . . . wi −1, W)

= µ1, j P(w|wi −4wi −3wi −2wi −1Wsj ) + µ2, j P(w|Wi −4Wi −3Wi −2Wi −1Wsj ) +

µ3, j P(w|wi −4wi −3wi −2wi −1W) + µ4, j P(w|Wi −4Wi −3Wi −2Wi −1W) +

µ5, j P(w|wi −4wi −3wi −1W) + µ6, j P(w|Wi −4Wi −3Wi −1W) +

µ7, j P(w|wi −4wi −2wi −1W) + µ8, j P(w|Wi −4Wi −2Wi −1W) +

µ9, j P(w|wi −4wi −3wi −2W) + µ10, j P(w|Wi −4Wi −3Wi −2W) +

µ11, j Punicache(w|W) + µ12, j Ptricache(w|wi −2wi −1W).

Now, we can write out our probability model:

Peverything(w1 . . . wN)

=

S∑
j =0

σ j

N∏
i =1

senclusterj (Wi , wi−4 . . . wi−1)×senwordj (wi , wi−4 . . . wi−1, Wi ). (7)

Clearly, combining all of these techniques together is not easy, but as we will show, the
effects of combination are very roughly additive, and the effort is worthwhile.

We performed several sets of experiments. In these experiments, when we perform caching,
it is with a unigram cache and conditional trigram cache; when we use sentence mixture mod-
els, we use four mixtures; when we use trigram skipping, it isw y andwx ; and when we
use 5-gram skipping it isvw y interpolated withv xy andvwx . Our word error rate experi-
ments were done without punctuation, so, to aid comparisons, we perform additional entropy
experiments in this section on “all-no-punc”, which is the same as the “all” set, but without
punctuation.

In the first set of experiments, we used each technique separately, and Katz smoothing. The
results are shown in Figure8. Next, we performed experiments with the same techniques, but
4This formula is actually an oversimplification because the valuesλ11, j andλ12, j depend on the amount of training
data in a linear fashion, and if the contextwi −1 does not occur in the cache, then the trigram cache is not used. In
either case, the values of theλs have to be renormalized for each context so that they sum to 1.



424 J. T. Goodman

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

100,000 1,000,000 10,000,000 all all no punc

Training Data Size

R
el

at
iv

e
E

nt
ro

py

Baseline: Katz
Trigram

Kneser Trigram

Katz 5-gram

Katz Cache

Katz Skip

Katz Cluster

Katz Sentence

Figure 8. Relative entropy of each technique vs. Katz trigram baseline.

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

100,000 1,000,000 10,000,000 all all no punc
Training Data Size

R
el

at
iv

e
E

nt
ro

py

Katz 3-gram

Baseline:
Kneser Trigram

Kneser 5-gram

Kneser Cache

Kneser Skip

Kneser Cluster

Kneser Sentence

Figure 9. Relative entropy of each technique vs. Kneser–Ney trigram baseline.



A bit of progress in language modeling 425

0

0.1

0.2

0.3

0.4

0.5

0.6

100,000 1,000,000 10,000,000 all all no punc
Training Data Size

R
el

at
iv

e
E

nt
ro

py

Baseline:
Everything

Everything -
Kneser

Everything -
5gram

Everything -
cache

Everything -
Skip

Everything -
Cluster

Everything -
Sentence

Figure 10.Relative entropy ofremovingeach technique vs. all techniques combined
baseline.

with Kneser–Ney smoothing; the results are shown in Figure9. The results are similar for
all techniques independent of smoothing, except 5-grams, where Kneser–Ney smoothing is
clearly a large gain; in fact, without Kneser–Ney smoothing, 5-grams actually hurt at small
and medium data sizes. This is a wonderful example of synergy, where the two techniques
together help more than either one separately. Caching is the largest gain at small and medium
data sizes, while, when combined with Kneser–Ney smoothing, 5-grams are the largest gain
at large data sizes. Caching is still key at most data sizes, but the advantages of Kneser–Ney
smoothing and clustering are clearer when they are combined with the other techniques.

In the next set of experiments, shown in Figure10, we tried removing each technique from
the combination of all techniques [Equation (7)]. The baseline is all techniques combined—
“Everything”, and then we show performance of, for instance, everything except Kneser–
Ney, everything except 5-gram models, etc. In Figure10we show all techniques together vs.
a Katz smoothed trigram. We add one additional point to this graph. With 100 000 words, our
Everything model was at 0.91 bits below a normal Katz model, an excellent result, but we
knew that the 100 000 word model was being hurt by the poor performance of fullibmpredict
clustering at the smallest data size. We therefore interpolated in a normal 5-gram at the word
level, a technique indicated as “Everything + normal 5-gram.” This led to an entropy reduc-
tion of 1.0061—1 bit. This gain is clearly of no real-world value—most of the entropy gains
at the small and medium sizes come from caching, and caching does not lead to substantial
word error rate reductions. However, it does allow a nice title for the paper! Interpolating the
normal 5-gram at larger sizes led to essentially no improvement.

We also performed word error rate experiments rescoring 100-best lists of WSJ94 dev
and eval, about 600 utterances. The one-best error rate for the 100-best lists was 10.1%



426 J. T. Goodman

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

100,000 1,000,000 10,000,000 all all no punc

Training Data Size

R
el

at
iv

e
E

nt
ro

py

Baseline: Katz Trigram
Kneser Trigram
Katz 5-gram
Katz Cache
Katz Skip
Katz Cluster
Katz Sentence
Kneser 5-gram
Kneser Cache
Kneser Skip
Kneser Cluster
Kneser Sentence
Everything
Everything - Kneser
Everything - 5gram
Everything - cache
Everything - Skip
Everything - Cluster
Everything - Sentence
Everything + normal5gram

Figure 11.All techniques together vs. Katz trigram baseline.

(our recognizer’s models were slightly worse than even the baseline used in rescoring) and
the 100-best error rate (minimum possible from rescoring) was 5.2%. We were not able to
obtain word error rate improvements by using caching (when the cache consisted of the
output of the recognizer), and were actually hurt by the use of caching when the interpolation
parameters were estimated on correct histories, rather than on recognized histories. Figure12
shows word error rate improvement of each technique, either with Katz smoothing, Kneser–
Ney smoothing, or removed from Everything, except caching. The most important single
factor for word error rate was the use of Kneser–Ney smoothing, which leads to a small gain
by itself, but also makes skipping, and 5-grams much more effective. Clustering also leads
to significant gains. In every case except clustering, the Kneser–Ney smoothed model has
lower word-error rate than the corresponding Katz smoothed model. The strange clustering
result (the Katz entropy is higher) might be due to noise, or might be due to the fact that
we optimized the number of clusters separately for the two systems, optimizing perplexity,
perhaps leading to a number of clusters that was not optimal for word error rate reduction.
Overall, we get an 8.9% word error rate reduction over a Katz smoothed baseline model. This
is very good, although not as good as one might expect from our perplexity reductions. This
is probably due to our rescoring ofn-best lists rather than integrating our language model
directly into the search, or rescoring large lattices.

9. Implementation notes

Actually implementing the model described here is not straightforward. We give here a few
notes on the most significant implementation tricks, some of which are reasonably novel, and
in the appendix of the extended paper give more details. First, we describe our parameter



A bit of progress in language modeling 427

Katz
KN

Katz 5-gram
Katz Sentence

Katz Cluster

KN Cluster
KN Sentence

KN Skip

KN 5gram

all-cache-KN

all-cache-cluster

all-cache-5gram

all-cache all-cache-skip

all-cache-
sentence

Katz skip

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

8.8 9 9.2 9.4 9.6 9.8 10

Word Error Rate

E
nt

ro
py

Figure 12.Word error rate vs. entropy.

search technique. Next, we discuss techniques we used to deal with the very large size of
the models constructed. Then, we consider architectural strategies that made the research
possible. Finally, we give a few hints on implementing our clustering methods.

The size of the models required for this research is very large. In particular, many of
the techniques have a roughly multiplicative effect on data sizes: moving to 5-grams from
trigrams results in at least a factor of two increase; fullibmpredict clustering results in nearly
a factor of four increase; and the combination of sentence-mixture models and skipping leads
to about another factor of four. The overall model size then, is, very roughly, 32 times the size
of a standard trigram model. Building and using such a complex model would be impractical.

Instead, we use a simple trick. We first make a pass through the test data (either text,
or n-best lists), and the heldout data (used for parameter optimization), and determine the
complete set of values we will need for our experiments. Then, we go through the training
data, and record only these values. This drastically reduces the amount of memory required to
run our experiments, reducing it to a manageable 1.5 gigabytes approximately. Another trick
we use is to divide the test data into pieces—the less test data there is, the fewer values we
need to store. The appendix of the extended paper describes some ways that we verified that
this “cheating” resulted in the same results that a non-cheating model would have achieved.

Careful design of the system was also necessary. In particular, we used a concept of a
“model”, an abstract object, with a set of parameters, that could return the probability of a
word or class given a history. We created models that could compose other models, by inter-
polating them at the word level, the class level, or the sentence level, or even by multiplying
them together as done in predictive clustering. This allowed us to compose primitive models
that implemented caching, various smoothing techniques, etc., in a large variety of ways.



428 J. T. Goodman

Both our smoothing techniques and interpolation require the optimization of free parame-
ters. In some cases, these free parameters can be estimated from the training data by leaving-
one-out techniques, but better results are obtained by using a Powell search of the parameters,
optimizing the perplexity of heldout data (Chen & Goodman, 1999), and that is the technique
used here. This allowed us to optimize all parameters jointly, rather than, say, optimizing one
model, then another, then their interpolation parameters, as is typically done. It also made it
relatively easy to, in essentially every experiment in this paper, find the optimal parameter
settings for that model, rather than use suboptimal guesses or results from related models.5

Although all smoothing algorithms were reimplemented for this research (reusing only
a small amount of code), the details closely followChen and Goodman(1999). This in-
cludes our use of additive smoothing of the unigram distribution for both Katz smoothing
and Kneser–Ney smoothing. That is, we found a constantb which was added to all unigram
counts; this leads to better performance in small training-data situations, and allowed us to
compare perplexities across different training sizes, since no unigram received zero counts,
meaning zero probabilities were never returned.

There is no shortage of techniques for generating clusters, and there appears to be little
evidence that different techniques that optimize the same criterion result in a significantly
different quality of clusters. We note, however, that different algorithms may require signifi-
cantly different amounts of run time. In particular, agglomerative clustering algorithms may
require significantly more time than top-down, splitting algorithms. Within top-down, split-
ting algorithms, additional tricks can be used, including the techniques of Buckshot (Cutting,
Karger, Pedersen & Tukey, 1992). We also use computational tricks adapted fromBrown et
al. (1992). Many more details about the clustering techniques used are given in the appendix
of the extended version of this paper.

10. Other techniques

In this section, we briefly discuss several other techniques that have received recent interest
for language modeling; we have performed a few experiments with some of these techniques.
These techniques include maximum entropy models, latent semantic analysis, parsing based
models, and neural network based models.Rosenfeld(2000) gives a much broader, differ-
ent perspective on the field, as well as additional references for the techniques discussed in
this paper.

10.1. Maximum entropy models

Maximum entropy models (Darroch & Ratcliff, 1972) have received a fair amount of at-
tention since their introduction for language modeling byRosenfeld(1994), who achieved
excellent results—up to 39% perplexity reductions. Maximum entropy models allow arbi-
trary constraints to be combined. For instance, rather than simply linearly interpolating the
components of a skipping model, the components of a clustering model, and a baselinen-
gram model, each of these models can be expressed as a constraint on how often we expect
words to occur in some context. We can then build a model that satisfies all of these con-
straints, while still being as smooth as possible. This is a highly seductive quality. In addi-
tion, recent improvements in maximum entropy smoothing (Chen & Rosenfeld, 1999b) and
5The only exception was that for Katz smoothed “everything” models we estimated the number of clusters from
simple Katz clustered models; large Katz smoothed models are extremely time consuming because of the need to
find theαs after each potential parameter change.



A bit of progress in language modeling 429

maximum entropy training speedups (Goodman, 2001b), are sources for optimism. Unfortu-
nately, typically maximum entropy models are compared only to trigram models, rather than
to comparablen-gram models that combine the same information using simple interpolation.
Our own pilot experiments comparing maximum entropy models to similarn-gram models
were negative.

The most substantial gain in maximum entropy models comes from word triggers. In these
models, a word such as “school” increases its own probability, as well as the probability
of similar words, such as “teacher.”Rosenfeld(1994) gets approximately a 25% perplexity
reduction by using word triggers, although the gain is reduced to perhaps 7–15% when com-
bining with a model that already contains a cache.Tillmann and Ney(1996) achieve about a
7% perplexity reduction when combining with a model that already has a cache, andZhang,
Black, Finch and Sagisaka(2000) reports an 11% reduction.

A recent variation of the maximum entropy approach is the whole sentence maximum en-
tropy approach (Rosenfeld, Chen & Zhu, 2001). In this variation, the probability of whole
sentences is predicted, instead of the probabilities of individual words. This allows features
of the entire sentence to be used, e.g. coherence (Cai, Rosenfeld & Wasserman, 2000) or
parsability, rather than word level features. However, training whole sentence maximum en-
tropy models is particularly complicated (Chen & Rosenfeld, 1999a), requiring sampling
methods such as Monte Carlo Markov Chain techniques, and we personally do not think
that there are many important features of a sentence that cannot be rephrased as features of
individual words.

10.2. Latent semantic analysis

Bellegarda(2000) shows that techniques based on Latent Semantic Analysis (LSA) are very
promising. LSA is similar to Principle Components Analysis (PCA) and other dimensional-
ity reduction techniques, and seems to be a good way to reduce the data sparsity that plagues
language modeling. The technique leads to significant perplexity reductions (about 20%)
and word error rate reductions (about 9% relative) when compared to a Katz trigram on
42 million words. It would be interesting to formally compare these results to conventional
caching results, which exploit similar long term information. Bellegarda gets additional im-
provement over these results by using clustering techniques based on LSA; the perplexity
reductions appear similar to the perplexity reductions from conventional IBM-style cluster-
ing techniques.

10.3. Neural networks

There has been some interesting recent work on using Neural Networks for language mod-
eling, by Bengio, Ducharme and Vincent(2000). In order to deal with data sparsity, they
first map each word to a vector of 30 continuous features, and then the probability of vari-
ous outputs is learned as a function of these continuous features. The mapping is learned by
backpropagation in the same way as the other weights in the network. The best result is about
a 25% perplexity reduction over a baseline deleted-interpolation style trigram. We performed
experiments on the same data set as Bengioet al.We found that their techniques appeared to
outperform clustered models somewhat (about 5% lower perplexity) and we think they have
a fair amount of potential. It remains to be seen how similar those techniques are to normal
clustering techniques.



430 J. T. Goodman

10.4. Structured language models

One of the most interesting and exciting new areas of language modeling research has been
structured language models (SLMs). The first successful structured language model was the
work of Chelba and Jelinek(1998), and other more recent models have been even more suc-
cessful (Charniak, 2001). The basic idea behind structured language models is that a properly
phrased statistical parser can be thought of as a generative model of language. Furthermore,
statistical parsers can often take into account longer distance dependencies, such as between
a subject and its direct or indirect objects. These dependencies are likely to be more useful
than the previous two words, as captured by a trigram model. Chelba is able to achieve an
11% perplexity reduction over a baseline trigram model, while Charniak achieves an impres-
sive 24% reduction. We hypothesized that much of the benefit of a structured language model
might be redundant with other techniques, such as skipping or clustering. With the help of
Chelba, we performed experiments on his model. It turned out to be hard to answer, or even
rigorously ask, the question of how redundant one model was with another, but based on
our experiments, in which we compared how much entropy reduction we got by combining
models, vs. how much we might expect, approximately one-half of the model appears to be
in common with other techniques, especially clustering. Details are given in the extended
version of this paper.

11. Conclusion

11.1. Previous combinations

There has been relatively little previous research that attempted to combine more than two
techniques, and even most of the previous research combining two techniques was not partic-
ularly systematic. Furthermore, one of the two techniques typically combined was a cache-
based language model. Since the cache model is simply linearly interpolated with another
model, there is not much room for interaction.

A few previous papers do merit mentioning. The most recent is that ofMartin et al.(1999).
They combined interpolated Kneser–Ney smoothing, classes, word-phrases, and skipping.
Unfortunately, they do not compare to the same baseline we use, but instead compare to
what they call interpolated linear discounting, a poor baseline. However, their improvement
over Interpolated Kneser–Ney is also given; they achieve about 14% perplexity reduction
over this baseline, vs. our 34% over the same baseline. Their improvement from clustering is
comparable to ours, as is their improvement from skipping models; their improvement from
word-phrases, which we do not use, is small (about 3%); thus, the difference in results is
due mainly to our implementation of additional techniques: caching, 5-grams, and sentence-
mixture models. Their word error rate reduction over Interpolated Kneser–Ney is 6%, while
ours is 7.3%. We assume that the reason our word error rate reduction is not proportional to
our perplexity reduction is twofold. First, 4% of our perplexity reduction came from caching,
which we did not use in our word error rate results. Second, they were able to integrate their
simpler model directly into a recognizer, while we needed to rescoren-best lists, reducing
the number of errors we could correct.

Another piece of work well worth mentioning is that ofRosenfeld(1994). In that work,
a large number of techniques are combined, using the maximum entropy framework and
interpolation. Many of the techniques are tested at multiple training data sizes. The best
system interpolates a Katz-smoothed trigram with a cache and a maximum entropy system.
The maximum entropy system incorporates simple skipping techniques and triggering. The



A bit of progress in language modeling 431

best system has perplexity reductions of 32–39% on data similar to ours. Rosenfeld gets
approximately 25% reduction from word triggers alone (p. 45), a technique we do not use.
Overall, Rosenfeld’s results are excellent, and would quite possibly exceed ours if more mod-
ern techniques had been used, such as Kneser–Ney smoothing the trigram model (which is
interpolated in), using smaller cutoffs made possible by faster machines and newer training
techniques, or smoothing the maximum entropy model with newer techniques. Rosenfeld
achieves about a 10% word error rate reduction.

There is surprisingly little other work combining more than two techniques. The only
other noteworthy research we are aware of is that ofWeng, Stolcke and Sankar(1997), who
performed experiments combining multiple corpora, 4-grams, and a class-based approach
similar to sentence-mixture models. Combining all of these techniques leads to an 18% per-
plexity reduction from a Hub4-only language model. This model was trained and tested on a
different text genre than our models, and so no comparison to our work can be made.

11.2. Discussion

We believe our results—a 50% perplexity reduction on a very small data set, and a 41%
reduction on a large one (38% for data without punctuation)—are the best ever reported
for language modeling, as measured by improvement from a fair baseline, a Katz smoothed
trigram model with no count cutoffs. We also systematically explored smoothing, higher
ordern-grams, skipping, sentence mixture models, caching, and clustering.

Our most important result is perhaps the superiority of Interpolated Kneser–Ney smoothing
in every situation we have examined. We previously showed (Chen & Goodman, 1998) that
Kneser–Ney smoothing is always the best technique across training data sizes, corpora types,
andn-gram order. We have now shown that it is also the best across clustering techniques, and
that it is one of the most important factors in building a high performance language model,
especially one using 5-grams.

We have carefully examined higher-ordern-grams, showing that performance improve-
ments plateau at about the 5-gram level, and we have given the first results at the 20-gram
level, showing that there is no improvement to be gained past 7-grams.

We have systematically examined skipping techniques. We examined trigram-like models,
and found that using pairs through to the 5-gram level captures almost all of the benefit.
We also performed experiments on 5-gram skipping models, finding a combination of three
contexts that captures most of the benefit.

We carefully explored sentence mixture models, showing that much more improvement
can be had than was previously expected by increasing the number of mixtures. In our exper-
iments, increasing the number of sentence types to 64 allows nearly twice the improvement
over a small number of types.

Our caching results show that caching is by far the most useful technique for perplexity
reduction at small and medium training data sizes. They also show that a trigram cache can
lead to almost twice the entropy reduction of a unigram cache.

Next, we systematically explored clustering, trying nine different techniques, finding a new
clustering technique, fullibmpredict, that is slightly better than standard ibm clustering, and
examining the limits of improvements from clustering.

Our word error rate reduction of 8.9% from combining all techniques except caching is
also very good.

Finally, we put all the techniques together, leading to a 38–50% reduction in perplexity,
depending on training data size. The results compare favorably to other recently reported



432 J. T. Goodman

combination results (Martin et al., 1999), where, essentially using a subset of these tech-
niques from a comparable baseline (absolute discounting), the perplexity reduction is half as
much. Our results show that smoothing can be the most important factor in language model-
ing, and its interaction with other techniques cannot be ignored.

In some ways, our results are a bit discouraging. The overall model we built is so complex,
slow and large that it would be completely impractical for a product system. Despite this size
and complexity, our word error rate improvements are modest. To us, this implies that the
potential for practical benefit to speech recognizers from language model research is limited.
On the other hand, language modeling is useful for many fields beyond speech recognition,
and is an interesting test bed for machine learning techniques in general.

Furthermore, parts of our results are very encouraging. First, they show that progress in
language modeling continues to be made. For instance, one important technique in our sys-
tem, sentence mixture models, is only a few years old, and, as we showed, its potential has
only been partially tapped. Similarly, the combination of so many techniques is also novel.
Furthermore, our results show that the improvements from these different techniques are
roughly additive: one might expect an improvement of 0.9 bits for the largest training size
based on simply adding up the results of Figure9, and instead the total is about 0.8 bits—very
similar. This means that further incremental improvements may also lead to improvements in
the best models, rather than simply overlapping or being redundant.

As we noted in Section10, there are many other promising language modeling techniques
currently being pursued, such as maximum entropy models, neural networks, latent semantic
analysis, and structured language models. Figuring out how to combine these techniques
with the ones we have already implemented should lead to even larger gains, but also yet
more complex models.

I would like to thank the entire Microsoft Speech.Net Research Team for their help, especially Milind
Mahajan, X. D. Huang, Alex Acero, Ciprian Chelba, as well as Jianfeng Gao. I would also like to
thank the anonymous reviewers, Sarah Schwarm, Roland Kuhn, Eric Brill, Hisami Suzuki, and Shaojun
Wang for their comments on drafts of this paper. I would like to especially thank Stanley Chen for
useful discussions; in addition, small amounts of text and code used for this implementation and paper
irrespectively were originally coauthored with Stanley Chen.

References

Bellegarda, J. R., Butzberger, J. W., Chow, Y.-L., Coccaro, N. B. & Naik, D. (1996). A novel word clustering algo-
rithm based on latent semantic analysis.International Conference on Acoustics, Speech and Signal Processing,
volume 1, pp. 172–175.

Bellegarda, J. R. (2000). Exploiting latent semantic information in statistical language modeling.Proceedings of the
IEEE, 88, 1279–1296.

Bengio, Y., Ducharme, R. & Vincent, P. (2000). A neural probabilistic language model. Technical Report 1178,
Département d’informatique et recherche opérationnelle, Université de Montŕeal.

Blasig, R. (1999). Combination of words and word categories in varigram histories. InInternational Conference on
Acoustics, Speech and Signal Processing, volume 1, pp. 529–532.

Brown, P. F., Cocke, J., DellaPietra, S. A., DellaPietra, V. J., Jelinek, F., Lafferty, J. D., Mercer, R. L. & Roossin,
P. S. (1990). A statistical approach to machine translation.Computational Linguistics, 16, 79–85.

Brown, P. F., DellaPietra, V. J., deSouza, P. V., Lai, J. C. & Mercer, R. L. (1992). Class-basedn-gram models of
natural language.Computational Linguistics, 18, 467–479.

Cai, C., Rosenfeld, R. & Wasserman, L. (May 2000). Exponential language models, logistic regression, and semantic
coherence.Proceedings of NIST/DARPA Speech Transcription Workshop.

Charniak, E. (2001). Immediate-head parsing for language models. InACL-01. pp. 116–123.
Chelba, C. & Jelinek, F. (1998). Exploiting syntactic structure for language modeling.Proceedings of the 36th

Annual Meeting of the ACL, pp. 225–231.



A bit of progress in language modeling 433

Chen, S. & Rosenfeld, R. (1999a). Efficient sampling and feature selection in whole sentence maximum entropy
language models.Proceedings of International Conference on Acoustics, Speech and Signal Processing, 1,
pp. 549–552.

Chen, S. F. & Goodman, J. (October 1999). An empirical study of smoothing techniques for language modeling.
Computer Speech and Language, 13, 359–394.

Chen, S. F. & Goodman, J. T. An empirical study of smoothing techniques for language modeling. Technical Report
TR-10-98, Harvard University, 1998. Available fromhttp://www.research.microsoft.com/~joshuago.

Chen, S. F. & Rosenfeld, R. (1999b). A gaussian prior for smoothing maximum entropy models. Technical Report
CMU-CS-99-108, Computer Science Department, Carnegie Mellon University.

Church, K. (1988). A stochastic parts program and noun phrase parser for unrestricted text.Proceedings of the
Second Conference on Applied Natural Language Processing, pp. 136–143.

Cutting, D. R., Karger, D. R., Pedersen, J. R. & Tukey, J. W. (1992). Scatter/gather: A cluster-based approach to
browsing large document collections.SIGIR 92, pp. 318–329.

Darroch, J. N. & Ratcliff, D. (1972). Generalized iterative scaling for log-linear models.The Annals of Mathematical
Statistics, 43, 1470–1480.

Dupont, P. & Rosenfeld, R. (1997). Lattice based language models. Technical Report CMU-CS-97-173, School of
Computer Science, Carnegie Mellon University. Pittsburgh, PA.

Good, I. J. (1953). The population frequencies of species and the estimation of population parameters.Biometrika,
40, 237–264.

Goodman, J. (2001a). A bit of progress in language modeling, extended version. Technical Report, Microsoft Re-
search. Draft available fromhttp://www.research.microsoft.com/~joshuago/longcombine.ps.

Goodman, J. (2001b). Classes for fast maximum entropy training.International Conference on Acoustics, Speech
and Signal Processing.

Goodman, J. & Gao, J. (2000). Language model size reduction by pruning and clustering.International Conference
on Spoken Language Processing, 3, pp. 110–113.

Huang, X., Alleva, F., Hon, H.-W., Hwang, M.-Y., Lee, K.-F. & Rosenfeld, R. (1993). The SPHINX-II speech
recognition system: An overview.Computer, Speech, and Language, 2, 137–148.

Hull, J. (1992). Combining syntactic knowledge and visual text recognition: A hidden Markov model for part of
speech tagging in a word recognition algorithm.AAAI Symposium: Probabilistic Approaches to Natural Lan-
guage, pp. 77–83.

Iyer, R. & Ostendorf, M. (1999). Modeling long distance dependence in language: Topic mixtures versus dynamic
cache models.IEEE Transactions on Acoustics, Speech and Audio Processing, 7, 30–39.

Iyer, R., Ostendorf, M. & Robin, R. J. (1994). Language modeling with sentence-level mixtures.DARPA-HLT,
pp. 82–86.

Jelinek, F., Merialdo, B., Roukos, S. & Strauss, M. (1991). A dynamic lm for speech recognition.Proceedings of
ARPA Workshop on Speech and Natural Language, pp. 293–295.

Jelinek, F. & Mercer, R. L. (1980). Interpolated estimation of Markov source parameters from sparse data.Pro-
ceedings of the Workshop on Pattern Recognition in Practice, pp. 381–397. North-Holland. Amsterdam, The
Netherlands.

Jurafsky, D., Wooters, C., Segal, J., Fosler, E., Tajchman, G. & Morgan, N. (1995). Using a stochastic context-free
grammar as a language model for speech recognition.International Conference on Acoustics, Speech and Signal
Processing, pp. 189–192.

Katz, S. M. (1987). Estimation of probabilities from sparse data for the langauge model component of a speech
recognizer.IEEE Transactions on Acoustics, Speech and Signal Processing, ASSP-35, 400–401.

Kernighan, M. D., Church, K. W. & Gale, W. A. (1990). A spelling correction program based on a noisy
channel model.Proceedings of the Thirteenth International Conference on Computational Linguistics,
pp. 205–210.

Kneser, R. & Ney, H. (1993). Improved clustering techniques for class-based statistical language modeling.Eu-
rospeech 93, volume 2, pp. 973–976.

Kuhn, R. (1988). Speech recognition and the frequency of recently used words: A modified Markov model for natural
language.12th International Conference on Computational Linguistics, Budapest, Hungary, pp. 348–350.

Kuhn, R. & De Mori, R. (1990). A cache-based natural language model for speech reproduction.IEEE Transactions
on Pattern Analysis and Machine Intelligence, 12, 570–583.

Kuhn, R. & De Mori, R. (1992). Correction to a cache-based natural language model for speech reproduction.IEEE
Transactions on Pattern Analysis and Machine Intelligence, 14, 691–692.

Kupiec, J. (1989). Probabilistic models of short and long distance word dependencies.Proceedings of ARPA Work-
shop on Speech and Natural Language, pp. 290–295.

http://www.research.microsoft.com/~joshuago
http://www.research.microsoft.com/~joshuago/longcombine.ps


434 J. T. Goodman

Martin, S., Hamacher, C., Liermann, J., Wessel, F. & Ney, H. (1999). Assessment of smoothing methods and
complex stochastic language modeling.6th European Conference on Speech Communication and Technology,
Budapest, Hungary, volume 5, pp. 1939–1942.

Ney, H., Essen, U. & Kneser, R. (1994). On structuring probabilistic dependences in stochastic language modeling.
Computer, Speech, and Language, 8, 1–38.

Niesler, T. R., Whittaker, E. W. D. & Woodland, P. C. (1998). Comparison of part-of-speech and automatically
derived category-based language models for speech recognition.International Conference on Acoustics, Speech
and Signal Processing, volume 1, pp. 177–180.

Pereira, F., Tishby, N. & Lee, L. (1993). Distributional clustering of english words.Proceedings of the 31st Annual
Meeting of the ACL, pp. 183–190.

Press, W. H., Flannery, B. P., Teukolsky, S. A. & Vetterling, W. T. (1988).Numerical Recipes in C. Cambridge
University Press, Cambridge.

Rosenfeld, R. (1994).Adaptive statistical language modeling: a maximum entropy approach. PhD Thesis, Carnegie
Mellon University.

Rosenfeld, R. (2000). Two decades of statistical language modeling: Where do we go from here?Proceedings of the
IEEE, 88, 1270–1278.

Rosenfeld, R., Chen, S. F. & Zhu, X. (2001). Whole-sentence exponential language models: a vehicle for linguistic-
statistical integration.Computer Speech and Language, to appear.

Saul, L. & Pereira, F. (1997). Aggregate and mixed-order Markov models for statistical language processing.Pro-
ceedings of the Second Conference on Empirical Methods in Natural Language Processing, pp. 81–89.

Siu, M. & Ostendorf, M. (2000). Variable n-grams and extensions for conversational speech language modeling.
IEEE Transactions on Speech and Audio Processing, 8, 63–75.

Srihari, R. & Baltus, C. (1992). Combining statistical and syntactic methods in recognizing handwritten sentences.
AAAI Symposium: Probabilistic Approaches to Natural Language, pp. 121–127.

Stern, R. M. (1996). Specification of the 1995 ARPA hub 3 evaluation: Unlimited vocabulary NAB news baseline.
Proceedings of the DARPA Speech Recognition Workshop, pp. 5–7.

Tillmann, C. & Ney, H. (1996). Statistical language modeling and word triggers.Proceedings of the International
Workshop “Speech and Computer” (SPECOM 96), pp. 22–27.

Ueberla, J. P. (1995). More efficient clustering of n-grams for statistical language modeling.Eurospeech-95,
pp. 1257–1260.

Weng, F., Stolcke, A. & Sankar, A. (1997). Hub4 language modeling using domain interpolation and data clustering.
1997 DARPA Speech Recognition Workshop, pp. 147–151.

Yamamoto, H. & Sagisaka, Y. (1999). Multi-class composite n-gram based on connection direction.Proceedings of
the IEEE International Conference on Acoustics, Speech and Signal Processing, Phoenix, Arizona.

Zhang, R., Black, E., Finch, A. & Sagisaka, Y. (2000). Integrating detailed information into a language model.
International Conference on Acoustics, Speech and Signal Processing, pp. 1595–1598.

(Received 30 April 2001 and accepted for publication 9 August 2001)


	Introduction
	Smoothing
	Fig. 1

	Higher-order n-grams
	Fig. 2

	Skipping
	Fig. 3
	Fig. 4

	Clustering
	Fig. 5

	Caching
	Fig. 6

	Sentence mixture models
	Fig. 7

	Combining techniques
	Fig. 8
	Fig. 9
	Fig. 10
	Fig. 11
	Fig. 12

	Implementation notes
	Other techniques
	Conclusion
	References

