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Prospects for ab initio Protein Structural Genomics
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We present the results of a large-scale testing of the ROSETTA method
for ab initio protein structure prediction. Models were generated for two
independently generated lists of small proteins (up to 150 amino acid
residues), and the results were evaluated using traditional rmsd based
measures and a novel measure based on the structure-based comparison
of the models to the structures in the PDB using DALI. For 111 of 136 all
a and a/b proteins 50 to 150 residues in length, the method produced at
least one model within 7 AÊ rmsd of the native structure in 1000 attempts.
For 60 of these proteins, the closest structure match in the PDB to at least
one of the ten most frequently generated conformations was found to be
structurally related (four standard deviations above background) to the
native protein. These results suggest that ab initio structure prediction
approaches may soon be useful for generating low resolution models and
identifying distantly related proteins with similar structures and perhaps
functions for these classes of proteins on the genome scale.
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Introduction

Protein sequences are being determined at a rate
faster than the solutions of their three-dimensional
structures. As structural information is critical to
our understanding of the basis of the biological
properties of protein molecules, there is a tremen-
dous incentive to develop computational methods
for obtaining such information. Results in the
recent CASP III protein structure prediction exper-
iments demonstrated that considerable progress
has been made toward predicting protein structure
from primary sequence information alone (Moult
et al., 1999).

The ROSETTA method for ab initio protein struc-
ture prediction developed in our group was one of
the best methods tested in CASP III (Orengo et al.,
1999; Simons et al., 1999a). ROSETTA is based on
the assumption that the distribution of confor-
mations sampled for a given nine residue segment
of the chain is reasonably well approximated by
the distribution of structures adopted by the
sequence (and closely related sequences) in known
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protein structures. Fragment libraries for each
three and nine residue segment of the chain are
extracted from the protein structure database using
a sequence pro®le-pro®le comparison method as
described by Simons et al. (1997). In the calcu-
lations described here, proteins homologous to the
sequence being folded (	-blast e-value <0.01) were
rigorously excluded from the fragment libraries
since our goal is to characterize the performance of
the method for ab initio structure prediction rather
than homology modeling. The conformational
space de®ned by these fragments is then searched
using a Monte Carlo procedure with an energy
function that favors compact structures with paired
b-strands and buried hydrophobic residues. A total
of 1000 independent simulations are carried out
(starting from different random number seeds) for
each query sequence, and the resulting structures
are clustered as described by Shortle et al. (1998).

The structures of large portions of several pro-
teins were reasonably accurately predicted using
ROSETTA in the CASP III structure experiment.
For example, a 99-residue segment of the transcrip-
tion factor MarA was predicted to 6.4 AÊ rmsd (root
mean square deviation), and a 75-residue fragment
of the dnaB helicase was predicted to 4.7 AÊ rmsd.
To test the method more comprehensively to deter-
mine what problems can be tackled currently and
which require further methods development, we
have carried out large-scale predictions using two
independently compiled lists of small protein
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structures, a total of 172 proteins in all. The ®rst
list was that used in a recent study by Friesner and
co-workers (Eyrich et al., 1999) and the second list
was derived from the PDB-select 25 protein set (see
Methods). The use of large independently com-
piled lists, while still not as perfect a test as that
provided by the CASP process, does alleviate the
two dangers of training the method to perform
well on a small test set and of tailoring the test set
to the strengths of the method.

Results and Discussion

Sets of 1000 structures were generated and clus-
tered for each protein on each of two lists. The
results are summarized in Tables 1 and 2; the pro-
teins are divided into separate categories based on
size (less than 50 residues (small), between 50 and
100 residues (medium) and between 100 and 150
residues (large)) and secondary structure (all a, all
b, and a/b). The results for each individual protein
(except the small proteins to save space) are pre-
sented in Table 1, and an overall summary of the
performance of the method for the different size
and secondary structure classes is presented in
Table 2.

A conformation within 5 AÊ rmsd to the native
structure was generated for 24 of the 30 small pro-
teins studied, and a structure within 7 AÊ rmsd, for
all 30 proteins. For eight of ten of the a-helical
small proteins and ®ve of 12 of the a/b proteins,
one of the top ®ve cluster centers was within 5 AÊ

rmsd of the native structure.
A conformation within 5 AÊ rmsd to the native

structure was generated for 56 of the 127 medium-
sized proteins studied, and a structure within 7 AÊ

rmsd, for 93 of the 127 proteins. For 46 of these 127
proteins, one of the top ®ve cluster centers was
within 7 AÊ rmsd of the native structure. Results
were signi®cantly worse for the all b proteins: con-
formations within 7 AÊ rmsd of the native structure
were generated for only 11 of 27 b proteins, and
for only ®ve of these 27 proteins was one of the
top ®ve cluster centers within 7 AÊ rmsd of the
native. In the large protein category, conformations
within 7 AÊ rmsd were generated for three of the
nine a proteins and four of the ®ve a/b proteins.

The large number of simulated structures gener-
ated for a large number of different sequences
allows a more global evaluation of the scoring
function and the search strategy. The scoring func-
tion contains terms which describe the density of
neighbors surrounding a residue, the distances
between pairs of residues given their densities,
strand pairing geometry, and the grouping of
b-strands in b-sheets (Simons et al., 1999a,b). For
each sequence, we randomly collected ten struc-
tures of the 1000 created and reconstructed the dis-
tributions used for the generation of the scoring
function. We found little difference between the
input distributions obtained from experimentally
determined structures and the output distributions
obtained from the simulated structures (Figure 1).
For the most part, all components of the scoring
function were minimized very well by the Metro-
polis Monte Carlo method (Metropolis et al., 1953).
Proteins of more than 80 residues and mostly
b-strand structure were the exception: the minimiz-
ation procedure failed to produce structures of bet-
ter score compared to the native fold (Figure 2). At
present, we are exploring the use of alternate mini-
mization approaches for longer sequences and
additional features of native protein structure not
captured by the current scoring function. There is
hope for improvement both from utilization of a
more detailed full-atom model and from incorpor-
ation of more global features.

While rmsd is the standard measure for evaluat-
ing structure models, it is somewhat removed from
the ultimate interest of a user of a structure predic-
tion method. If functional insights can be gained
from a 7 AÊ model, it is a better model in a very
real sense than a 5 AÊ model which does not allow
such insights. In particular, in the context of gen-
ome level structure predictions, there is a very real
value to models which allow for correct annotation
of previously unannotated sequences. With the
goals both of providing an alternative to rmsd for
evaluating structure predictions and for assessing
the current prospects of an ``ab initio structural
genomics'' strategy, we used the structure-struc-
ture comparison method DALI (Holm & Sander,
1995) to identify the closest structure in the PDB
for each of the top ten clusters for each of the pro-
teins in the two lists. Since there are many very clo-
sely related structures in the PDB, a positive result
is not only a match to the native structure, but also
a match to a structure similar to the native struc-
ture. Thus, each of the matches to a cluster center
in the PDB was in turn compared using DALI to
the native structure. A Z-score of >4 was some-
what arbitrarily chosen as a structural similarity
threshold; i.e. a model was considered a successful
prediction if the closest DALI match in the PDB
had a Z-score of >4 when compared with the true
structure.

For roughly half of the all a and a/b proteins
in the medium size class, one of the top ten
cluster centers was a success according to this
DALI-based criteria. More remarkable is that for
®ve of the nine large a-helical proteins and four
of the ®ve large a/b proteins, one of the top ten
cluster centers was a success according to this
measure. This success with the large a/b pro-
teins should be contrasted with the complete
failure to generate structures within 5 AÊ rmsd
for any of these proteins: although the models
are not very accurate, they retain suf®cient fea-
tures characteristic of the true structure to
speci®cally recognize proteins structurally related
to the true structure. It must be emphasized,
however, that the majority of the DALI matches
are false positives (i.e. matches to proteins not in
the same superfamily), and thus the ab initio
structure prediction followed by the DALI



Figure 1. Comparison of residue-
environment and strand pairing
distributions in native and simu-
lated structures. (a) The frequencies
of different numbers of residue cen-
troids within 10 AÊ for isoleucine
(squares), alanine and aspartate
(triangles) in native (left) and simu-
lated structures (right). The x-axis
is the neighbor density (the number
of residues within 10 AÊ ), and the
y-axis, the frequency with which
this neighbor density is observed
for the particular residue type. The
neighbor densities extend to larger
numbers for native proteins
because the simulated structures
are shorter than the majority of
proteins contributing to the native
plots. (b) The relative orientation of
dipeptides in paired b-strands in
native structures is similar to
that in simulated structures. The
angles are de®ned by Simons et al.
(1999b).
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approach is currently better viewed as narrowing
down the set of possible structures than
uniquely identifying the correct family.

Cartoon diagrams illustrating some of the more
interesting models are presented in Figure 3. The
Figure 2. Effect of protein length on the folding simulatio
of the 172 sequences, the average score of the 1000 structure
protein (x-axis). (b) The lowest rmsd structure generated in th
bols indicate the secondary structure of the native protein:
other (squares).
predicted structure (Figure 3, right) is the cluster
center indicated in the DALI > 2 column of Table 1.
The models provide an indication of how DALI is
able to detect the similarities to the native struc-
tures. In some cases, although there is not global
ns. (a) Normalized score versus protein length. For each
s minus the native score (y-axis) versus the length of the
e 1000 simulations versus the length of the protein. Sym-
>25 % b-strand (triangles), >25 % a-helical (circles), and



Table 1. Prediction results

Name Nres Na Nb <5 AÊ <6 AÊ <7 AÊ Low rmsd
Cluster
cutoff

DALI rank
z > 2

DALI rank
z > 4

Medium a
1a1z* 83 62 0 - - 87 5.9 6.0 Low Low
1a32* 65 55 0 1 1 1 1.9 2.3 1 1
1a6s* 87 54 0 - 96 96 5.1 7.0 Low Low
1aab* 74 40 0 - - 43 5.6 4.0 1 2
1aca* 86 58 0 - 75 40 5.0 6.6 2 -
1acp 73 39 0 - 16 16 4.4 6.2 - -
1adr* 76 44 0 - 18 18 4.9 6.0 4 4
2af8* 86 43 0 - 1 1 4.4 7.0 Low -
1ail 67 57 0 - 27 23 3.1 6.5 4 Low
1ail* 70 59 0 - - 58 5.9 7.0 2 2
1aj3 95 84 0 - - - 6.6 6.0 1 2
1am3 57 41 0 1 1 1 2.6 3.0 Low Low
1bw6* 56 32 0 1 1 1 2.5 3.0 1 8
1c5a 62 45 0 2 1 1 3.5 4.1 2 -
1cc5 76 39 0 - - 2 4.6 7.0 10 10
1cei* 85 49 0 - - - 5.7 7.0 5 Low
1coo* 81 35 0 - - 32 5.3 7.0 - -
1ddf 87 60 0 420 420 270 4.0 4.5 Low Low
2ezh 65 45 0 1 1 1 3.4 5.0 4 9
2ezh* 65 45 0 17 14 14 3.5 4.0 2 -
2ezk 93 63 0 210 210 210 5.0 7.0 3 Low
2ezl* 99 58 0 - - - 6.0 7.0 6 Low
1hp8* 68 43 0 - 3 1 4.7 5.0 1 -
2hp8 56 38 0 6 2 2 4.0 4.5 2 -
1hsn 62 43 0 - 78 1 5.7 3.0 5 5
1hyp* 75 43 0 - - 25 6.2 6.1 4 -
1jvr 74 38 0 - 20 7 4.6 6.5 - -
1kjs* 74 45 0 1 1 1 3.3 4.5 1 1
1lfb 69 39 0 - 138 7 4.7 6.5 3 7
1mzm 71 46 0 1 1 1 3.3 5.3 1 2
1mzm* 93 57 0 - - 1 4.9 7.0 1 3
1ner* 74 36 0 - 60 25 3.9 4.0 Low Low
1ngr* 85 52 0 - 3 3 4.1 7.0 3 3
1nkl 70 55 0 1 1 1 3.4 3.1 1 Low
1nkl* 78 57 0 15 15 15 3.6 5.0 2 7
1nre 66 53 0 69 5 3 3.5 5.7 5 5
1nre* 81 55 0 - 16 5 5.5 7.0 6 8
2pac 77 18 0 - - 1 5.2 7.0 Low Low
1pou 70 48 0 28 28 28 2.9 6.0 1 Low
1r69 61 39 0 1 1 1 2.4 2.9 1 1
1rpo* 61 55 0 92 40 27 4.6 4.0 4 4
1utg 62 49 0 33 10 10 4.6 3.6 2 -

Medium b
3ait* 74 0 35 - - - 8.3 6.7 9 -
1aiw* 62 0 19 - - - 7.2 7.0 - -
1ark 55 0 12 - 49 7 5.0 4.6 7 -
1bdo 75 0 32 - - - 8.1 7.0 - -
1bq9* 53 0 10 - 72 2 4.1 5.7 Low Low
2cdx 54 0 15 - - - 6.9 6.5 - -
1csp 64 0 34 8 8 2 4.6 6.5 8 8
1fbr 93 0 26 - - - 9.5 7.0 - -
1gvp 82 0 37 - - - 7.6 7.0 - -
1iyv* 79 0 32 - - - 6.4 7.0 1 1
1kde* 65 0 8 - - - 7.6 6.2 - -
1ksr 92 0 35 - - - 8.6 7.0 1 1
1msi 60 4 8 - - 28 6.5 6.2 - -
2ncm 96 0 53 - - - 7.5 7.0 2 2
2ncm* 99 0 55 - - - 9.8 7.0 - -
1nxb 53 0 22 - - 4 4.5 6.2 - -
1pse* 69 0 21 - - - 6.9 7.0 - -
1rip* 81 0 4 - - - 7.7 7.0 - -
1sro 66 4 25 1 1 1 3.5 4.1 1 4
1tit 85 0 32 - - - 7.7 7.0 7 7
1tit* 89 0 32 - - - 5.4 7.0 2 2
1tul 97 0 49 - - - 9.4 7.0 - -
1vif* 60 0 26 - - 3 5.9 7.0 - -
1who 88 0 40 - - - 7.0 7.0 4 4
1wiu 90 0 44 - - - 7.3 7.0 2 2
1wiu* 93 0 48 - - - 8.5 7.0 3 -
1wkt* 88 0 30 - - - 8.7 7.0 - -

Medium a/b
1a68* 87 31 18 - - - 7.0 7.0 - -
1aa3 56 18 4 8 8 7 3.3 4.0 3 3
1aba* 87 30 16 - - - 8.0 7.0 - -
1ap0* 52 7 22 - - - 6.4 5.2 Low -
2acy 92 24 38 - - - 6.7 7.0 1 1



Name Nres Na Nb <5 AÊ <6 AÊ <7 AÊ Low rmsd
Cluster
cutoff

DALI rank
z > 2

DALI rank
z > 4

2acy* 98 24 41 - - - 8.3 7.0 1 2
1afi* 72 21 21 9 9 9 3.3 4.5 2 2
1ag2 97 54 4 - - - 8.1 7.0 - -
1ah9* 71 3 28 - - - 5.3 7.0 Low Low
1aoy* 78 32 8 - - 1 5.4 6.0 1 6
1bb8* 71 11 14 - - - 8.1 7.0 - -
2bby* 69 35 4 - 1 1 4.3 5.0 2 4
1beg* 98 59 4 - - - 8.0 7.0 2 -
1bor 52 0 0 - - 32 6.0 4.6 - -
1btb 89 37 16 - - - 7.9 7.0 - -
1ctf 67 35 13 2 1 1 3.4 3.7 1 2
1ctf* 68 38 18 4 4 4 4.1 3.5 4 8
1dol* 62 13 17 - - - 5.6 5.0 1 1
1dvc* 98 13 26 - - - 7.4 7.0 1 1
2fdn 55 4 10 - - 1 4.6 6.5 - -
2fmr* 65 18 18 2 2 2 4.1 5.5 2 2
2fow 66 30 6 6 2 1 3.3 4.3 4 Low
2fow* 68 31 8 2 1 1 3.9 4.3 1 2
1fwp 66 21 14 - - - 6.4 5.8 Low -
2fxb* 81 16 14 - - - 5.8 7.0 4 4
1gb1 54 13 16 2 1 1 1.9 3.6 2 7
1hqi* 90 30 16 - - - 6.9 7.0 Low -
5icb 72 41 4 32 1 1 3.9 4.7 6 -
2ife* 91 28 23 - 5 2 4.7 7.0 1 1
1lea* 72 39 6 - 89 89 4.6 4.0 10 Low
1leb 63 37 4 41 4 4 3.4 4.1 4 4
1orc 56 24 16 15 3 1 3.4 3.2 - -
2orc* 64 23 8 50 3 3 4.1 3.8 Low Low
1pgx 57 14 26 3 2 1 2.7 2.6 2 2
1pgx* 56 14 28 13 1 1 3.1 2.8 1 1
2pni* 86 3 24 - - - 9.0 7.0 1 -
5pti 55 8 14 - 66 2 5.0 6.0 - -
2ptl 60 12 22 1 1 1 3.0 3.5 1 1
2ptl* 60 12 22 9 9 9 2.4 4.0 3 10
1ris 92 28 45 - - 5 6.2 7.0 3 7
1sap* 66 20 27 - - 11 6.1 4.5 - -
1sro* 76 4 27 - 30 2 4.6 6.5 2 2
1stu* 68 26 20 - 42 42 5.4 6.7 - -
1svq 90 25 24 - 19 19 5.8 7.0 - -
1tif* 59 13 22 1 1 1 3.6 3.2 Low Low
1tnt* 65 24 4 - - 51 5.2 5.7 - -
1tsg* 98 10 4 - - - 9.2 7.0 - -
1tuc* 61 3 25 - - 19 5.4 5.0 8 8
2u1a* 76 22 18 - - - 4.8 5.0 2 2
4ull* 69 11 21 - - - 6.0 6.5 - -
1vcc* 77 11 25 - - 19 5.9 7.0 - -
1vig* 71 25 17 - - - 5.8 6.0 10 10
1vqh* 86 6 40 - - - 9.5 7.0 - -

Large a
1aa2 105 57 0 - - - 8.2 7.0 2 -
1eca 132 94 0 - - - 7.2 7.0 1 -
2fha 160 123 0 - - - 8.5 7.0 1 1
2gdm 149 106 0 - - - 6.6 7.0 1 2
1hlb 138 101 0 - - 7 5.9 7.0 7 7
2lfb* 100 60 0 - - - 8.6 7.0 3 6
1lis 111 86 0 - - 44 4.8 7.0 1 4
1mbd 147 112 0 - - - 7.4 7.0 1 Low
1pal 100 52 4 - - - 7.9 7.0 - -
1vls 143 112 0 - - - 7.2 7.0 1 2

Large b
4fgf 121 0 47 - - - 10.6 10.0 - -
1ksr* 100 0 39 - - - 8.8 7.0 - -

Large a/b
1acf 123 40 41 - - - 6.9 7.0 1 10
1erv 105 43 28 - - 5 6.0 7.0 1 5
1kte 100 48 18 - 171 171 5.2 7.0 Low Low
1lz1 116 39 10 - - - 8.5 3.0 3 3
1pdo 121 59 18 - - 3 6.2 7.0 1 1

The proteins are divided into categories based on size and secondary structure content; proteins with an asterisk are from the
PDB select list of proteins, those without, from the Friesner set (see Methods). Nres is the number of residues in the sequence. Na and
Nb are the number of a-helical and b-strand residues as assigned in the native structure by DSSP (Kabsch & Sander, 1983). The
ranks of the cluster centers are shown for three cutoffs, <5, <6 and <7 AÊ rmsd to native. The low rmsd is the lowest rmsd structure
in the set of structures. The clustering cutoff is described in Methods. The rank of the top cluster found by DALI related to the
native structure is indicated in the last two columns (using a DALI Z-score cutoff of 2 and 4 as indicated). Low, indicates that none
of the top ten clusters were similar to the native structure, but the lowest rmsd structure in the set had a DALI Z-score to the native
structure greater than the cutoff.



Table 2. Summary of predictions

Protein class Total <5 AÊ top five <5 AÊ set <7 AÊ top five <7 AÊ set
DALI hit top

five
DALI hit top

ten

All 172 32 71 73 130 52 69
a 65 18 40 30 56 25 32
b 36 2 11 13 19 7 9
a/b 71 12 30 30 55 20 28
Small all 30 14 24 25 30 4 4
Small a 10 8 10 10 10 4 4
Small b 8 1 7 8 8 0 0
Small a/b 12 5 7 7 12 0 0
Medium all 127 18 56 46 93 41 56
Medium a 46 10 29 20 43 17 23
Medium b 27 1 4 5 11 7 9
Medium a/b 54 7 23 21 39 17 24
Large all 15 0 1 2 7 7 9
Large a 9 0 1 0 3 4 5
Large b 1 0 0 0 0 0 0
Large a/b 5 0 0 2 4 3 4

The number of proteins for which one of the top ®ve clusters was within 5 AÊ of the native structure is reported in the <5 AÊ top
®ve column, while the number of proteins for which one of the proteins in the set of generated structures was within 5 AÊ rmsd of
the native structure is reported in the <5 AÊ set column. The following two columns report the same statistics for a 7 AÊ cutoff. The
last two columns indicate whether one of the top ®ve or ten cluster centers was found by DALI to be similar to the native structure.
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similarity, a signi®cant piece of the structure is
related to the true structure, more so than to the
vast majority of unrelated proteins in the structural
database. The DALI Z-score was found to be a
modest indicator of the prediction quality: the
more similar a cluster center is to a structure in the
PDB, the more likely the structure is similar to the
native structure (data not shown).

To assess whether the tertiary structure predic-
tions produced by ROSETTA provide information
beyond that contained in the predicted secondary
structure used in the fragment library generation,
we sent the secondary structure predictions for ten
large proteins and ten medium proteins to the
FORESST server (Di Francesco et al., 1999).
FORESST uses the predicted secondary structure
string to predict the fold. For six of the ten large
proteins FORESST correctly assigns the native fold
but is not as successful on the smaller proteins
(three of ten medium proteins are correctly
assigned). The low resolution 3D information in
the ROSETTA predictions may be complementary
to the 1D information utilized by many current
fold recognition methods, as FORESST and
ROSETTA succeed on different proteins in both
size ranges.

Beyond structural similarity identi®ed by DALI,
we were interested if the matches between the pre-
dicted structures and the most related structure in
the PDB could be used to predict the function of
the sequence. To this end, for the proteins where
the top DALI match correctly identi®ed the fold of
the protein (34 cases), the function of the protein
being folded and the top DALI match without sig-
ni®cant sequence similarity were compared. In a
number of cases there are interesting similarities in
function in the absence of signi®cant sequence
similarity (BLAST e-value <10). These functional
similarities cover a gamut of protein function.
Some proteins are nucleotide binding: 1r69 (434
repressor) found structurally similar to 1qpz (pur-
ine nucleotide synthesis repressor), 1bw6 (centro-
mere DNA binding) to 1mbe (c-myb DNA
binding), and 1sro (polyribonucleotide nucleotidyl
transferase) to 1a0i (DNA ligase). Similarities were
found both in enzymatic activity (1iyv (dihydroli-
pamide acetyltransferase) matched with 1htp (dec-
arboxylase with a lipoamide arm moeity)) and
protein-protein interactions: 1dvc (proteinase
inhibitor) to 1ugi (glycosylase inhibitor), the IgG
binding proteins 1pgx (protein G) matched to 2ptl
(protein L), 2ptl (protein L) to 2igd (protein G),
and 2pni (PI3 kinase, SH3 domain) to 1aoj (Eps8,
SH3 domain). These results suggest that ab initio
structure prediction followed by a global structure
comparison based search of the PDB can give
insights into protein function; this approach is
complementary to methods which focus on match-
ing active site templates (Skolnick & Fetrow, 2000;
Wallace et al., 1996).

The results presented here are a dramatic
improvement over our results of several years ago
in which good models were produced only for
small all helical proteins (Simons et al., 1997). With
continued improvements, the method should be
able to make an important contribution to the
interpretation of genome sequence information.
We envision generating low resolution models for
all globular protein domains of less than 150
amino acid residues, and using the DALI-based
approach described here to identify structurally
related known proteins where they exist. Such an
approach has the advantage over more traditional
fold recognition methods that models are produced
even in cases where there is not a related structure
already in the PDB, and in cases where there is a



Figure 3. Comparison of native
and predicted structures. The left
column depicts the native structure
and the right column is the best
cluster center as identi®ed in
Table 1. The coloring of the second-
ary structural elements is demar-
cated by the native secondary
structure assignment. Beginning
with the N terminus, the coloring
scheme is red, orange, yellow,
green, blue, indigo, violet,
turquoise and cyan. Images were
prepared using Molscript (Kraulis,
1991) and Raster3d (Merritt &
Bacon, 1997).
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distantly related structure in the PDB, the identi®-
cation of the structure does not depend on a low
energy threading of the query sequence through
the structure (which may not exist because of
differences in helix orientation, b-strand/sheet
twist, etc., between the true structure of the query
sequence and the structurally related protein in the
PDB). The results presented here suggest that this
method is almost ready to be used on the genome
scale. However, there is also quite clearly consider-
able room for improvement, particularly on the
b-sheet containing proteins, and the large-scale
tests reported here should provide a useful
benchmark/standard for evaluating future
improvements in ab initio structure prediction
methodology.

Methods

A total of 1000 structures were generated for each
sequence in two large sets of sequences of proteins of
known structure. The ®rst list of proteins was compiled
by selecting proteins greater than 50 and less than 100
amino acid residues with no chain identi®er and less
than 30 % sequence identity from the PDB culled list of
proteins, resulting in a list of 77 proteins (http://
chaos.fccc.edu/research/labs/dunbrack/culledpdb.html;
Hobohm et al., 1992). The set from the Friesner labora-
tory was chosen to cover proteins from all secondary
structure classes and sizes up to 150 residues (Eyrich
et al., 1999). Each sequence was folded in a pseudo-blind
manner: the native and homologous sequences of known
structure were eliminated from the nearest neighbor sets.
The contribution of the native structure to the scoring
function is very minimal; in test cases where the native
structure and sequence homologs are removed from all
components of the scoring function, the results were
unchanged (Simons et al., 1999a,b; results not shown).
The simulation method was similar to that used in our
earlier work (Simons et al., 1997, 1999a,b) except for two
improvements.

First, information from three different secondary struc-
ture prediction methods: PHD (Rost et al., 1994), DSC
(King et al., 1997), and PSI-PRED (Jones et al., 1999), is
used in the fragment picking process to reduce the sensi-
tivity to errors in any one of the methods. Six neighbors

(http://
chaos.fccc.edu/research/labs/dunbrack/culledpdb.html;
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were chosen with each of the three secondary structure
predictions and seven nearest neighbors were chosen
with sequence pro®ling alone using the following
equation:
DISTANCE �
X9

i

X20

aa

jS�aa; i� ÿ X�aa; i�j

� w�
X9

i

X3

s

SSconf �i; s��d�SS�i; s�;XX�i��

where S(aa,i) and X(aa,i) are the frequencies of amino
acid aa at position i in nine residue segments of multipe
sequence alignments for either the sequence being folded
(S) or of one of the proteins in the pdb_select_25 set(X).
The second part of the equation uses the secondary
structure prediction SS (s is helical, strand or other) and
the con®dence of the prediction (SSconf). The delta func-
tion is one if the secondary structure of the known frag-
ment, XX(i), is the same as the prediction, SS(i,s), or zero
if otherwise. The weight, w, normalizes the sequence
pro®ling score with the secondary structure matching
score and was optimized for local structure prediction
(w � 0.05). The combination of sequence pro®ling and
secondary structure matching has been used in prior
work for protein fold recognition (Fischer & Eisenberg,
1996).

Second, ``smooth'' moves which reduce the overall
perturbation to the structure caused by a fragment inser-
tion are used late in the simulation to increase the accep-
tance rate and thus improve minimization of the scoring
function. Following the approach of Gunn (1997), the
relative orientation of coordinate systems embedded in
the ®rst and last residues of each fragment was com-
puted and stored at the beginning of the simulation, and
fragments producing relatively small perturbations to
the overall structure were selected based on the simi-
larity of the relative orientation of these coordinate sys-
tems to those in the segment of the current conformation
being replaced.

To generate 1000 structures for a 100-residue protein
required 12 hours of computer time on a pentium III 450
MHz Personal Computer. Each simulation consisted of
20,000 attempted insertions of nine-residue fragments,
4000 attempted insertions of three-residue fragments,
and 8000 attempted insertions of ``smooth'' three-residue
fragments. The score being minimized includes terms
for hydrophobic burial (Pdensity, Penv), polar side-chain
interactions (Ppair), hydrogen bonding between b-strands
(PHS-dist, PHS-fy, PSS-dist, PSS-fy, Phb, Psheet) and hard sphere
repulsion (VdW) as described by Simons et al. (1999a,b).
The bins of the PXX-fy functions were every 10 � for f
and every 5 � for y totaling 1296 bins. We increased the
number of bins from earlier work (Simons et al., 1999b)
because the structure generation procedure could mini-
mize this function very well and there is enough data for
®ner binning. The set of structures were clustered on
global Ca rmsd (Shortle et al., 1998) with an rmsd cutoff
chosen such that 80 to 100 structures were in the largest
cluster. The cluster ``center'' was taken to be the struc-
ture in the cluster with the best score.

The lists of PDB codes of the lists of sequences folded
and additional details on the models are available upon
request. All structures and cluster center identities are
available in tarred and compressed format and can be
requested from the authors.
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